JPS5986262A - Gate turn-off thyristor - Google Patents

Gate turn-off thyristor

Info

Publication number
JPS5986262A
JPS5986262A JP19720582A JP19720582A JPS5986262A JP S5986262 A JPS5986262 A JP S5986262A JP 19720582 A JP19720582 A JP 19720582A JP 19720582 A JP19720582 A JP 19720582A JP S5986262 A JPS5986262 A JP S5986262A
Authority
JP
Japan
Prior art keywords
type
region
emitter
emitter region
current concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19720582A
Other languages
Japanese (ja)
Inventor
Hiroyasu Hagino
萩野 浩靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19720582A priority Critical patent/JPS5986262A/en
Publication of JPS5986262A publication Critical patent/JPS5986262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To increase the turn-OFF enabling current by dividing the current concentration in an emitter by dividing the emitter region of a gate side, thereby dispersing the current concentration at the gate turn-OFF time. CONSTITUTION:An n type emitter nE is divided into two parts 4x, 4y, an insulating film 10 is formed on a p type isolating region 9 therebetween, and a cathode 5a couples nE region parts 4x, 4y across the film 10. Since carrier is not injected in the region 9, the current concentration is completely isolated into two boundary region parts of the p type isolating regions 9 of two nE region parts 4x, 4y. In this manner, even if the width of the region 9 is of the degree of diffusing length of the carrier, the width of the current concentration region is increased into approx. 3L, thereby alleviating the current concentration.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はゲートターンオフサイリスクに係シ、特に最
大ターンオフ電流を大きくする改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to gate turn-off current risk, and in particular to improvements in increasing the maximum turn-off current.

〔従来技術〕[Prior art]

ゲートターンオフサイリスク(以下「GTOJという。 Gate Turn Off Sailisk (hereinafter referred to as “GTOJ”).

)はゲート逆バイアスによって主電流をオフはせること
が可能であるので、従来の通常のサイリスタにおけるよ
うな転流回路を心安としない。
) can turn off the main current by reverse biasing the gate, so it is not safe to use a commutation circuit as in a conventional normal thyristor.

従って、インバータ、チョッパー装置に用いた場合、装
置の小形化、軽量化が可能であるという大きな利点があ
る。
Therefore, when used in an inverter or chopper device, there is a great advantage that the device can be made smaller and lighter.

第1図は従来の大電力用のGTOの構造を示す断面図で
、(1)はn形ベース(n、)領域、(2)および(3
)はそれぞれnB領領域両生面側からP形不純物を拡散
して形成されたp形ベース(PR)領域およびp形エミ
ッタ(p8)領域、(4)はp、領域(2)にn形不純
物を選択的に拡散して形成されたn形エミッタ(nIり
領域、(5) 、 (6) 、 (7)はそれぞれn8
領域(4) 、 p、領域(2)。
Figure 1 is a cross-sectional view showing the structure of a conventional high-power GTO, in which (1) is the n-type base (n, ) region, (2) and (3).
) are a p-type base (PR) region and a p-type emitter (p8) region formed by diffusing P-type impurities from the nB region bidirectional side, respectively, (4) is a p-type region, and region (2) is an n-type impurity region. n-type emitters (nI regions, (5), (6), and (7) are each formed by selectively diffusing n8
region (4), p, region (2).

p8領域(3)にオーミック接触して形成された陰電極
、ゲート電極、陽電極を示す。
A negative electrode, a gate electrode, and a positive electrode formed in ohmic contact with the p8 region (3) are shown.

導通しているこのGTOをターンオンさせるには、陰電
極(5)に対してゲート電極(6)に負の電圧を加え、
pB領領域2) 、 nB領領域1)に充満していたキ
ャリアをゲート電極(6)から引抜くことKよって行わ
れる。
To turn on this conducting GTO, apply a negative voltage to the gate electrode (6) with respect to the negative electrode (5);
This is done by extracting the carriers filled in the pB region 2) and the nB region 1) from the gate electrode (6).

このターンオフをさらに細部にみると、GTOの導通領
域はゲート電極(6)に近い領域からn、iJI域(4
)の中心部にしlt Dこまれてゆく。すなわち、n0
領域(4)の中心部に電流が集中する部分ができ、大電
流をオフきせようとする場合、素子の局部で温度上昇が
生じ、しゃ断を失敗し、素子が破壊するという問題があ
った0 このターンオフ特性を改良する一力式として先行技術に
なるGTOの断面図を第2図に示す。図中る部分にp2
短絡n+形領域(8)が設けられている。この構造では
、ターンオフ時の電流集中は第2図にAで示す2つの領
域近傍忙分散されるので、従来り、局部温度上昇の緩和
が十分ではなかった。第3図はこの先行技術になるGT
Oの電流の最終的集中状況を示す部分断面図で、pI短
絡n+形領域(8〕に対向するn8領域(4ンの部分で
もキャリヤの注入が生じるので、集中領域の分散の効果
を十分く出すには短絡n+形領領域8〕の幅Wを十分に
取る必要がある。
Looking at this turn-off in more detail, the conduction region of GTO is from the region near the gate electrode (6) to the iJI region (4
) into the center of lt D. That is, n0
There is a part where current is concentrated in the center of region (4), and when trying to turn off a large current, a temperature rise occurs locally in the element, failure to shut off, and destruction of the element.0 FIG. 2 shows a cross-sectional view of a prior art GTO as a single-force type for improving this turn-off characteristic. p2 in the part of the figure
A shorting n+ region (8) is provided. In this structure, the current concentration during turn-off is dispersed in the vicinity of the two regions indicated by A in FIG. 2, so that the local temperature rise has not been sufficiently alleviated in the past. Figure 3 shows this prior art GT
This is a partial cross-sectional view showing the final state of current concentration in O. Since carrier injection also occurs in the n8 region (4) opposite to the pI-shorted n+ type region (8), the dispersion effect of the concentrated region can be fully absorbed. In order to take out the short circuit n+ type region 8], it is necessary to have a sufficient width W.

キャリヤの拡散長をLとすると、上記短絡♂影領域(8
)の幅Wは少なくとも2Lが必要で、十分な効果を考え
ると3L’−4Lは必要である。たとえば、短絡十分な
電流集中の分散が期待できなくなる。
If the carrier diffusion length is L, then the short circuit ♂ shadow area (8
) is required to be at least 2L, and to obtain a sufficient effect, 3L'-4L is required. For example, in a short circuit, sufficient distribution of current concentration cannot be expected.

〔信用の概要〕[Overview of credit]

この発明は上述のような点を改良することを目的とし、
ゲート側のエミッタ領域をも2分割して、当骸エミッタ
部における電流集中を分割することによってターンオフ
可能電流の大きいGTOを提供するものである。
This invention aims to improve the above-mentioned points,
The emitter region on the gate side is also divided into two to divide the current concentration in the main emitter section, thereby providing a GTO with a large turn-off current.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の一実施例の断面図で、n、領域は2
つの部分(4K)、(4,7)に分割され、それらの間
にはp形分離領域(9)が基体の陰極側表面に覗いてお
り、その上に絶縁膜QOが形成され、陰電極(5a)は
この絶縁膜θ()をまたいで2つのn。領域部&4X)
FIG. 4 is a sectional view of an embodiment of the present invention, where n and area are 2.
It is divided into two parts (4K) and (4,7), between which a p-type isolation region (9) is seen on the cathode side surface of the base, on which an insulating film QO is formed, and the cathode (5a) is two n across this insulating film θ(). Area section & 4X)
.

(4y)を連結している。第5図は1つのn。領域とそ
の周辺のゲート部とからなる1セグメントの平面図で、
クロス状のハツチングを施して示した部分は絶縁膜0I
を示し、その下にFip形分離領域(9)が存在する。
(4y) are connected. Figure 5 shows one n. A plan view of one segment consisting of a region and a gate part around it,
The cross-hatched area is the insulating film 0I.
, below which a Fip-shaped separation region (9) exists.

この実施例ではp形分離領域(9)ではキャリヤの注入
がおこらないので、電流の集中I/′i2つのn8領域
部分(4X) 、 (ay)のp形分離領域(9)との
2つの境界領域部分に完全に分離される。第6図はこの
実施例のゲートターンオフ時の最終的電流集中状況を示
す部分断面図で、上述のとおり、p形分離領域(9)で
のキャリヤの注入がないので、例えばp形分離領域(9
)の幅がキャリヤの拡散長り程度であつ示すように1個
所での集中領域が広がることになり、電流集中を緩和さ
せる役割をはたす。
In this embodiment, since carrier injection does not occur in the p-type isolation region (9), the current concentration I/'i is Completely separated into border area parts. FIG. 6 is a partial cross-sectional view showing the final current concentration situation at gate turn-off in this embodiment. As mentioned above, since there is no carrier injection in the p-type isolation region (9), for example, the p-type isolation region (9) 9
) is approximately the same as the diffusion length of the carriers, and as shown, the concentration area at one location becomes wider, which plays a role in alleviating current concentration.

上記説明はpゲートターンオフサイリスクについて行な
ったが、nゲートターンオアサイリスタについても同様
にこの発明は適用できる。
Although the above explanation has been made regarding a p-gate turn-off thyristor, the present invention is similarly applicable to an n-gate turn-off thyristor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明になるゲートターンオフ
サイリスタではゲート側エミッタ領域の中心部に分離領
域を形成し、しかも上記ゲート側エミッタ領域の中心部
に対向する他方のエミッタ領域の部分に高不純物濃度の
短絡領域を形成したので、ゲートターンオフ時の電流集
中が分散されターンオフ可能電流を大きくすることがで
きる。
As explained above, in the gate turn-off thyristor of the present invention, an isolation region is formed at the center of the gate-side emitter region, and a high impurity concentration is added to the other emitter region opposite to the center of the gate-side emitter region. Since the short-circuit region is formed, the current concentration at the time of gate turn-off is dispersed, and the current that can be turned off can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の大電力用のGTOの構造を示す断面図、
第2図は先行技術になるGTOの断面図、第3図はこの
先行技術になるGTOの最終的電流集中状況を示す部分
断面図、第4図はこの発明の一実施例を示す断面図、第
5図はこの実施例の1セグメントの平面図、第6図はこ
の実施例のゲートターンオフ時の最終的電流集中状況を
示す部分断面図である。 図において、(1)はn形ベース領域、(2)はp形ペ
ース領域、(J) y (3a)はp形エミッタ領域、
(4)はn形エミッタ領域、(4x) + (4y )
はn形エミッタ領域部分、(5)、 (5FL)は陰電
極、(6)はゲート電極、(7)はVvIi4極、(8
)はn+形領領域(9)は分離領域、Qoは絶縁膜であ
る。 なお、図中同一符号は同一または相当部分を示すO 代理人 葛野信−(外1名) 第1図 第2図   7
Figure 1 is a cross-sectional view showing the structure of a conventional high-power GTO.
FIG. 2 is a sectional view of a prior art GTO, FIG. 3 is a partial sectional view showing the final current concentration situation of this prior art GTO, and FIG. 4 is a sectional view showing an embodiment of the present invention. FIG. 5 is a plan view of one segment of this embodiment, and FIG. 6 is a partial sectional view showing the final current concentration situation at gate turn-off of this embodiment. In the figure, (1) is an n-type base region, (2) is a p-type pace region, (J) y (3a) is a p-type emitter region,
(4) is the n-type emitter region, (4x) + (4y)
is the n-type emitter region, (5), (5FL) is the cathode, (6) is the gate electrode, (7) is the VvIi quadrupole, (8
) is an n+ type region (9) is an isolation region, and Qo is an insulating film. In addition, the same reference numerals in the figures indicate the same or equivalent parts.O Agent: Makoto Kuzuno (1 other person) Figure 1 Figure 2 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)  半導体基体の一方の主面から他方の主面にわ
たって、p形エミッタ領域、n形ベース領域。 p形ベース領域及びn形エミッタ領域が順次相接して4
層構造が形成されたゲートターンオフサイリスタにおい
て、上記半導体基体の上記p形(−1だFin形)エミ
ッタ領域側の第1の主面部の上記n形(またはp形)エ
ミッタ領域の中心部分に対向する部分KFi上記P形(
またFin形)のエミッタ領域を欠き上記n形(または
p形)ペース領域につながる高不純物濃度のn+形(−
または■)+形)領域が形成され、この♂形(またはp
+形)領域は上記第1の主面上に上記p形(またはn形
)エミッタ領域に接続して形成された陽(または陰)電
極に接続されるとともに、上記n形(またはp形)エミ
ッタ領域の中心部分には上記p形(tたはn形)ベース
領域につながるp形(またはn形)の分離領域が形成さ
れ、この分離領域の表面に形成された絶縁膜をまたいで
、上記分離領域の両側の上記n形(またはp形)エミッ
タ領域の部分を接続するように陰(!iたけ陽)電極が
形成されたことを特徴とするゲートターンオフブイリス
ク。
(1) A p-type emitter region and an n-type base region from one main surface to the other main surface of the semiconductor substrate. The p-type base region and the n-type emitter region are successively adjacent to each other to form a 4
In the gate turn-off thyristor in which a layered structure is formed, a first main surface portion on the p-type (-1 Fin type) emitter region side of the semiconductor substrate faces a central portion of the n-type (or p-type) emitter region. The part KFi above P type (
In addition, it lacks the emitter region of the Fin type (Fin type) and has a high impurity concentration n+ type (-
or ■) + shape) region is formed, and this ♂ shape (or p
The + type) region is connected to a positive (or negative) electrode formed on the first main surface and connected to the p-type (or n-type) emitter region, and the n-type (or p-type) A p-type (or n-type) isolation region connected to the p-type (t or n-type) base region is formed in the center of the emitter region, and straddles the insulating film formed on the surface of this isolation region. A gate turn-off builisk characterized in that a negative (!i-positive) electrode is formed to connect portions of the n-type (or p-type) emitter region on both sides of the isolation region.
JP19720582A 1982-11-08 1982-11-08 Gate turn-off thyristor Pending JPS5986262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19720582A JPS5986262A (en) 1982-11-08 1982-11-08 Gate turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19720582A JPS5986262A (en) 1982-11-08 1982-11-08 Gate turn-off thyristor

Publications (1)

Publication Number Publication Date
JPS5986262A true JPS5986262A (en) 1984-05-18

Family

ID=16370564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19720582A Pending JPS5986262A (en) 1982-11-08 1982-11-08 Gate turn-off thyristor

Country Status (1)

Country Link
JP (1) JPS5986262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166977A2 (en) * 1984-06-30 1986-01-08 BROWN, BOVERI & CIE Aktiengesellschaft Gate turn-off thyristor
US5345095A (en) * 1992-05-06 1994-09-06 Mitsubishi Denki Kabushiki Kaisha Self arc-extinguishing thyristor and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150679A (en) * 1974-10-30 1976-05-04 Hitachi Ltd HANDOTA ISOCHI
JPS5397785A (en) * 1977-02-07 1978-08-26 Rca Corp Gate controlled semiconductor
JPS5477586A (en) * 1977-10-25 1979-06-21 Gen Electric Semiconductor
JPS5778172A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Gate turn-off thyristor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150679A (en) * 1974-10-30 1976-05-04 Hitachi Ltd HANDOTA ISOCHI
JPS5397785A (en) * 1977-02-07 1978-08-26 Rca Corp Gate controlled semiconductor
JPS5477586A (en) * 1977-10-25 1979-06-21 Gen Electric Semiconductor
JPS5778172A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Gate turn-off thyristor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166977A2 (en) * 1984-06-30 1986-01-08 BROWN, BOVERI & CIE Aktiengesellschaft Gate turn-off thyristor
EP0166977A3 (en) * 1984-06-30 1987-08-26 BROWN, BOVERI & CIE Aktiengesellschaft Gate turn-off thyristor
US5345095A (en) * 1992-05-06 1994-09-06 Mitsubishi Denki Kabushiki Kaisha Self arc-extinguishing thyristor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3111827B2 (en) Semiconductor device and power conversion device using the same
JPH01125979A (en) Insulated gate bipolar transistor
JP2950025B2 (en) Insulated gate bipolar transistor
JPS62176168A (en) Vertical mos transistor
JPH041510B2 (en)
JPS5986262A (en) Gate turn-off thyristor
EP0144654A2 (en) Semiconductor device structure including a dielectrically-isolated insulated-gate transistor
JP2000208768A (en) Semiconductor device and electric power conversion device using the device
JP3240896B2 (en) MOS type semiconductor device
JPS62283669A (en) Conductivity modulation type mosfet
JPS63164473A (en) Semiconductor device
JPS6380569A (en) Conductivity modulation lateral mos-fet
JPS6373670A (en) Conductive modulation type mosfet
JPS6252967A (en) Gto thyristor
JPS592371A (en) Gate turn-off thyristor
JPH0513768A (en) Insulating gate type bipolar transistor
JPH03166766A (en) Insulated-gate bipolar transistor and manufacture thereof
JPS59163867A (en) Gate turn-off thyristor
JPS6157713B2 (en)
JPH0244776A (en) Insulated gate type bipolar transistor
JPH05160409A (en) Semiconductor device
JPH06120484A (en) Gate turn-off thyristor
JPS63216377A (en) Semiconductor device
JPS61199663A (en) Gto thyristor
JPS59100569A (en) Mos transistor