JPS62283669A - Conductivity modulation type mosfet - Google Patents

Conductivity modulation type mosfet

Info

Publication number
JPS62283669A
JPS62283669A JP12761486A JP12761486A JPS62283669A JP S62283669 A JPS62283669 A JP S62283669A JP 12761486 A JP12761486 A JP 12761486A JP 12761486 A JP12761486 A JP 12761486A JP S62283669 A JPS62283669 A JP S62283669A
Authority
JP
Japan
Prior art keywords
layer
type
gate electrode
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12761486A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamaguchi
好広 山口
Akio Nakagawa
明夫 中川
Kiminori Watanabe
渡辺 君則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12761486A priority Critical patent/JPS62283669A/en
Publication of JPS62283669A publication Critical patent/JPS62283669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

PURPOSE:To improve the load shortcircuit resistance of a conductive modulation type MOSFET by forming the channel length of a channel region formed on a base layer interposed between a source layer and a high resistance layer directly under a gate electrode, the width of the gate electrode and the width of the high resistance layer interposed between a drain layer and the base layer in specific sizes, respectively. CONSTITUTION:A high resistance layer 13 is formed through a buffer layer 12 on a drain layer 11, and a gate electrode 15 is formed by a polycrystalline silicon film through a gate insulating film 14 on the layer 13. The electrode 15 is formed in a lattice shape having a stripelike gap 16. With the electrode 15 as a mask an impurity is diffused to form a base layer 17 and a source layer 18, and a channel region 19 is formed on the layer 17 interposed between the layers 18 and 13. In such a structure, a channel length l is set to 5.5mum, a gate electrode length LG is set to 30mum or longer, and the width Wn of the layer 13 is set to 120mum or longer. Thus, a latchup current can be increased without raising an ON voltage by the optimum design of an element parameter.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、導電変調型M OS F E Tに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a conductivity modulated MOS FET.

(従来の技術) 近年、電力用スイッチング素子として、D S A (
D 1ffusion  S elf  A ling
n )法によりソースおよびチャネル領域を形成するパ
ワーMO8FETが市場に現れている。しかしこの素子
は1000V以上の高耐圧ではオン抵抗が高くなってし
まい、大電流を流すことが難しい。これに代わる有力な
素子として、ドレイン領域にソースとは逆の導電型層を
設けることにより、高抵抗層に導電変調を起こさせてオ
ン抵抗を下げるようにした、いわゆる導電変調型MO8
FETが知られている。導電変調型M OS F E、
 Tは一般に次のように形成される。ドレイン層となる
p”Si基板にn1型バッファ層を介してn−型高抵抗
層が形成される。この高抵抗層上にゲート絶縁膜を介し
てストライブ状の開口を有するゲート電極が形成され、
このゲート電極をマスクとして不純物の二重拡散を行う
ことにより、p型代−ス層とその端部に自己整合された
n型ソース層が形成される。
(Prior art) In recent years, DSA (
D 1ffusion S elf A ring
Power MO8FETs whose source and channel regions are formed by the n) method have appeared on the market. However, this element has a high on-resistance at a high breakdown voltage of 1000V or more, making it difficult to flow a large current. A promising alternative element is the so-called conductivity modulation type MO8, which lowers the on-resistance by causing conductivity modulation in the high-resistance layer by providing a layer of conductivity type opposite to that of the source in the drain region.
FET is known. conductivity modulation type MOS F E,
T is generally formed as follows. An n-type high-resistance layer is formed on a p'' Si substrate that will serve as a drain layer via an n1-type buffer layer.A gate electrode having a striped opening is formed on this high-resistance layer via a gate insulating film. is,
By performing double diffusion of impurities using this gate electrode as a mask, a p-type source layer and a self-aligned n-type source layer are formed at the ends thereof.

これにより、ゲート電極下のn型ソース層とn−型高抵
抗層で挟まれたp型ベース層表面にチャネル領域が形成
される。ソース層とベース層には双方にコンタクトする
ソース電極が形成され、ドレイン層にはドレイン電極が
形成される。
As a result, a channel region is formed on the surface of the p-type base layer sandwiched between the n-type source layer and the n-type high-resistance layer under the gate electrode. A source electrode is formed in contact with both the source layer and the base layer, and a drain electrode is formed in the drain layer.

この導電変調型MO3FETでは、ゲートN極に正電圧
を印加してターンオンする際、n“型ソース層からチャ
ネル領域を通ってn−型高抵抗層に注入される電子電流
に対して、p1型ドレイン層から正孔注入が起り、この
結果n−型高抵抗層には多義のキャリア蓄積による導電
変調が起こる。
In this conductivity modulation type MO3FET, when turning on by applying a positive voltage to the gate N pole, the p1 type Hole injection occurs from the drain layer, and as a result, conductivity modulation occurs in the n-type high resistance layer due to ambiguous carrier accumulation.

n−型高抵isに注入された正孔電流は、n+梨型ソ一
層下のp型代−ス層を通り、ソース電極にぬける。ソー
ス電極はn+型ソース層とp型代−ス層を短絡している
ため、サイリスタ動作は阻止される。ゲート・ソース1
i1i1圧を零とすれば、素子はターンオフする。
The hole current injected into the n-type high-resistance layer passes through the p-type substitute layer below the n+ pear-shaped layer to the source electrode. Since the source electrode short-circuits the n+ type source layer and the p type substitute layer, thyristor operation is prevented. gate source 1
When the i1i1 pressure is reduced to zero, the element is turned off.

この導電変調型MO8FETは、高耐圧化した場合にも
、従来のパワーMO8FETに比べて導電変調の結果と
して十分に低いオン電圧が得られる。
This conductive modulation type MO8FET can obtain a sufficiently lower on-voltage as a result of conductive modulation than a conventional power MO8FET even when the withstand voltage is increased.

しかしながらこの導電変調型MO8FETにも未だ問題
がある。第1に、素子を流れる電流の密度が大きくなる
と、ソース層下の横方向抵抗による電圧降下が大きくな
る。そしてp型代−ス層とn+型ソース層間が順バイア
スされるようになるとサイリスタ動作に入り、ゲート・
ソース間バイアスを零にしても素子がオフしない、いわ
ゆるラッチアップ現象が生じる。この問題を解決する方
法として従来、p型代−ス層を深く拡散する方法、p型
ベース層内に重ねて深くρ型層を拡散する方法等が採用
されている。しかしこれらの方法では、オン電圧の上昇
を沼く。第5図はその様子を示すもので、p型代−ス層
の拡散深さXpとオン電圧VFおよびラッチアップ電流
ILの関係を示す。
However, this conductivity modulation type MO8FET still has problems. First, as the density of current flowing through the device increases, the voltage drop due to the lateral resistance under the source layer increases. When forward bias is applied between the p-type source layer and the n+-type source layer, thyristor operation begins, and the gate
A so-called latch-up phenomenon occurs in which the device does not turn off even if the source-to-source bias is reduced to zero. Conventionally, methods for solving this problem include a method of deeply diffusing a p-type substituent layer, a method of deeply diffusing a ρ-type layer superimposed on the p-type base layer, and the like. However, these methods result in an increase in on-voltage. FIG. 5 shows this situation, and shows the relationship between the diffusion depth Xp of the p-type substitute layer, the on-voltage VF, and the latch-up current IL.

図示のようにp型代−ス層の拡散深ざXpを大きくする
くこれは、チャネル長を大きくすることに対応する〉と
、ラッチアップ電流は増大するが、オン電圧も上昇して
しまう。第2に、従来の導電変調型MO8FETでは負
荷短絡耐量がまだ不十分である。導電変調型MO8FE
Tをインバータ¥装置等に用いて負荷が短絡した場合、
ドレイン・ソース間にはEl電圧電圧がそのままかかり
過大な電流が流れるために、この状態が続くと導電変調
型MO3FETは破壊される。これを防止するためには
保護回路が用いられるが、負荷短絡が発生してから保護
回路が作動するまでの概略10μsecの時間破壊しな
い耐量を有することが要求される。これが負荷短絡耐i
である。素子の順方向阻止電圧が高くなると取扱い電圧
も高くなり、負荷短絡耐量も大きくしなければならない
If the diffusion depth Xp of the p-type substitute layer is increased as shown in the figure, which corresponds to an increase in the channel length, the latch-up current will increase, but the on-voltage will also increase. Second, the load short-circuit withstand capability of the conventional conduction modulation type MO8FET is still insufficient. Conductivity modulation type MO8FE
If the load is short-circuited when T is used in an inverter, etc.,
Since the El voltage is directly applied between the drain and source and an excessive current flows, if this state continues, the conductivity modulation type MO3FET will be destroyed. In order to prevent this, a protection circuit is used, but it is required that the protection circuit has the ability to withstand breakdown for approximately 10 μsec from the occurrence of a load short circuit to the activation of the protection circuit. This is the load short circuit resistance i
It is. As the forward blocking voltage of the element increases, the handling voltage also increases, and the load short-circuit withstand capability must also be increased.

(発明が解決しようとする問題点) 以上のように従来の導電変調型MO8FETは、オン電
圧を上昇させることなくラッチアップ電流の大幅な増大
を図ることが難しく、負荷短絡耐量が不十分である、と
いう問題があった。
(Problems to be Solved by the Invention) As described above, it is difficult to significantly increase the latch-up current without increasing the on-voltage in the conventional conduction modulation type MO8FET, and the load short circuit resistance is insufficient. There was a problem.

本発明はこの様な問題を解決した導電変調型MO8FE
Tを提供することを目的とする。
The present invention is a conductive modulation type MO8FE that solves these problems.
The purpose is to provide T.

[発明の構成] (問題点を解決するための手段) 本発明にかかる導電度rA型MO8FETは、第1導電
型ドレイン層上に第2導電型の低抵抗バッファ層を介し
て第2導電型の高抵抗層を有し、この高抵抗層上にゲー
ト絶縁膜を介して格子状のゲート電極が配設され、この
ゲート電極の開口部からの不純物拡散により第1′s電
型ベース層およびこのベース層内に位置する第2導電型
ソース層が形成され、ドレイン層にコンタクトするトレ
イン電極、およびソース層とベース層に同時にコンタク
トするソース電極を有する。この様な導電変調型MO8
F E Tにおいて、本発明は、ゲート電極直下のソー
ス層と高抵抗W!1間に挟まれるベース層表面に形成さ
れるチャネル領域のチャネル長をl、ゲート電極の幅を
LG、ベース層とドレイン層に挟まれる高抵抗層の幅を
Wnとしたとき、2≧5.5μm しq≧30μm wn≧120μ而 なる条件を満たすようにしたことを特徴とする。
[Structure of the Invention] (Means for Solving Problems) The conductivity rA type MO8FET according to the present invention has a second conductivity type drain layer formed on a first conductivity type drain layer via a second conductivity type low resistance buffer layer. A lattice-shaped gate electrode is disposed on this high-resistance layer via a gate insulating film, and impurity diffusion from the opening of this gate electrode forms a first base layer and A second conductivity type source layer located within the base layer is formed and has a train electrode in contact with the drain layer and a source electrode in simultaneous contact with the source layer and the base layer. Such conductivity modulation type MO8
In FET, the present invention has a source layer directly under the gate electrode and a high resistance W! 1, the width of the gate electrode is LG, and the width of the high resistance layer sandwiched between the base layer and the drain layer is Wn, and 2≧5. It is characterized by satisfying the following conditions: 5 μm, q≧30 μm, and wn≧120 μm.

(作用) 上述のような設計パラメータを限定することにより、後
に具体的なデータを挙げて説明するように導電変調型M
O8FETの特性の大幅な改善が図られる。即ち、チャ
ネル長2およびゲート電極幅LGを大きくすることによ
り、オン電圧を上昇させることなくラッチアップ電流の
増大を図る。
(Function) By limiting the design parameters as described above, conductive modulation type M
The characteristics of O8FET are significantly improved. That is, by increasing the channel length 2 and the gate electrode width LG, the latch-up current is increased without increasing the on-voltage.

ことができ、また高抵抗層幅Wnを大きく設定すること
により負荷短絡耐量の改善を因ることができる。
In addition, by setting the high resistance layer width Wn large, the load short-circuit withstand capability can be improved.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図(a)(b)は−実施例の導電変調型MO8FE
Tを示す平面図とそのA−A’断面図である。11はp
+型トド142層11あり、この上にn+型バッファ層
12を介してn−型高抵抗113が形成されている。こ
の高抵抗1113上にゲート絶縁膜14を介して例えば
多結晶シリコン膜によりゲート電極15が形成されてい
る。ゲート絶縁膜15は第1図(a)に斜線を施して示
したように、ストライプ状の間隙(開口部)16を有す
る格子状に配設形成される。このゲート電極15をマス
クとしてDSA法による不純物拡散を行うことにより、
p型ベース層17およびn++ソース層18が形成され
ている。これにより、p型ベース層の端部、即ちソース
層18と^抵抗層13に挟まれた領域のp型ベース11
17表面にチャネルa域19が形成される。20はソー
ス層18とベース層17に同時にコンタクトするソース
電橋であり、21はドレイン1慟である。p型ベース層
17の中央部には、その横方向抵抗を小さくするために
p+型!122が拡散形成されている。
Figures 1(a) and 1(b) show - Example conductivity modulation type MO8FE
It is a top view which shows T, and its AA' sectional view. 11 is p
There is a + type layer 142 layer 11, on which an n- type high resistance layer 113 is formed with an n + type buffer layer 12 interposed therebetween. A gate electrode 15 made of, for example, a polycrystalline silicon film is formed on this high resistance 1113 with a gate insulating film 14 in between. The gate insulating film 15 is arranged in a lattice shape having stripe-shaped gaps (openings) 16, as shown by hatching in FIG. 1(a). By performing impurity diffusion using the DSA method using this gate electrode 15 as a mask,
A p-type base layer 17 and an n++ source layer 18 are formed. As a result, the p-type base 11 at the end of the p-type base layer, that is, the region sandwiched between the source layer 18 and the resistance layer 13
A channel a region 19 is formed on the surface of 17. 20 is a source bridge that contacts the source layer 18 and the base layer 17 at the same time, and 21 is a drain bridge. In the center of the p-type base layer 17, a p+ type! 122 is formed by diffusion.

この様な構成においてこの実施例では4、チャネル長ρ
を5.5μm以上、ゲート電極幅Laを30μ扉以上に
設定し、またp型ベース層17とドレイン層11の間(
より正確には、p++層22とn++バッフ?層12の
間)の高抵抗層13の幅Wnを120μm以上に設定す
る。
In this embodiment, in such a configuration, the channel length ρ is 4.
is set to 5.5 μm or more, the gate electrode width La is set to 30 μm or more, and between the p-type base layer 17 and the drain layer 11 (
More precisely, the p++ layer 22 and the n++ buffer? The width Wn of the high resistance layer 13 (between the layers 12) is set to 120 μm or more.

この素子の具体的な製造工Pi!例を説明すると、次の
通りである。先ず0.001〜0.004Ω・口のp+
型S1塁板と、100〜150Ω・crttのn−型5
i基板を用意する。n−型S1基板の一方の鏡面研磨面
にドーズ量0.5〜1×1olS/c!A2のリン・イ
オン注入を行い熱処理する。次にp4″型Si基板の鏡
面研磨面とn−型SiW板のリン・イオン注入面を、直
接接着技術により接合させる。これにより、p型ドレイ
ンWA1 i−n′″型バッフ7112−n−型高抵抗
層13のウェーハが得られる。ここでn°型Si基板の
厚さは、最終的に高抵抗層13の幅Wnが12C17F
L以上となるように予め調整しておく。この後n−型高
抵抗1113表面にゲート絶縁114として1000人
の熱酸化膜を形成し、この上に5000人の多結晶シリ
コン膜を堆積する。そしてこの多結晶シリコン膜を、周
期的な開口部16を有するようにエツチング加工してゲ
ート電極15とする。ゲート電極15の4!lL aは
30μm以上とする。次にこのゲート電極14をマスク
としてボロンを7μm以上拡散形成してp型ベース層1
7を形成する。更にゲート電極15をマスクの一部とし
て用いて、ヒ素をドーズ量5 X 10” /art2
イオン注入して熱処理し、ソース層18を形成する。こ
れによりチャネル領域19が形成され、チャネル長λは
5.5μm以上になる。この後全面をCVOm化膜で覆
い、これにコンタクト孔を開けてソース電1!!20を
形成する。基板裏面には、V−Ni−Aullの蒸着に
よりドレイン電極21を形成する。
The specific manufacturer of this element Pi! An example is as follows. First, 0.001-0.004Ω・mouth p+
Type S1 base plate and n-type 5 of 100-150Ω・crtt
Prepare the i-board. A dose of 0.5 to 1×1 olS/c was applied to one mirror-polished surface of the n-type S1 substrate! A2 phosphorus ion implantation is performed and heat treatment is performed. Next, the mirror-polished surface of the p4'' type Si substrate and the phosphorus ion-implanted surface of the n-type SiW plate are bonded together by direct bonding technology. A wafer with molded high resistance layer 13 is obtained. Here, the thickness of the n° type Si substrate is such that the final width Wn of the high resistance layer 13 is 12C17F.
Adjust in advance so that it is equal to or larger than L. Thereafter, a 1,000-layer thermal oxide film is formed as a gate insulator 114 on the surface of the n-type high-resistance layer 1113, and a 5,000-layer polycrystalline silicon film is deposited thereon. This polycrystalline silicon film is then etched to form a gate electrode 15 so as to have periodic openings 16. Gate electrode 15 no 4! lLa is 30 μm or more. Next, using this gate electrode 14 as a mask, boron is diffused to a thickness of 7 μm or more to form a p-type base layer 1.
form 7. Furthermore, using the gate electrode 15 as part of a mask, arsenic is applied at a dose of 5×10”/art2.
A source layer 18 is formed by ion implantation and heat treatment. As a result, a channel region 19 is formed, and the channel length λ becomes 5.5 μm or more. After that, the entire surface is covered with a CVOm film, a contact hole is opened in this, and the source voltage 1! ! Form 20. A drain electrode 21 is formed on the back surface of the substrate by vapor deposition of V-Ni-Aull.

以上のようにして、チャネル長C≧5.5μm1ゲート
電極幅Lo≧30t、tm、高抵抗層幅wn≧120μ
mの導電変調型MO8FETが得られる。
As described above, channel length C≧5.5 μm, gate electrode width Lo≧30t, tm, high resistance layer width wn≧120 μm.
m conduction modulation type MO8FET is obtained.

以上のような構造パラメータの設定により優れた素子特
性が得れる理由を、具体的な実験データに基づいて次に
説明する。前述したようにラッチアップ電流の増大を図
るために単にチャネル長λを大きくするだけでは、オン
電圧が急激に増大する。
The reason why excellent device characteristics can be obtained by setting the structural parameters as described above will be explained below based on specific experimental data. As described above, if the channel length λ is simply increased in order to increase the latch-up current, the on-state voltage will increase rapidly.

第2図は、ゲート電極幅しGとオン電圧VFの関係を、
チャネル長2をパラメータとして測定した結果である。
Figure 2 shows the relationship between the gate electrode width G and the on-voltage VF.
This is the result of measurement using channel length 2 as a parameter.

チャネル長2が3.2μmでは、ゲート電極幅し0の変
化に対してオン電圧VFの変化は余り認められない。こ
れに対して、チャネル長2が5.5μnではオン電圧V
Fはゲート電極11Loに大きく依存し、Laが30μ
m以上になるとチャネル長ff1−3.2μ乳の場合と
殆ど変わらないオン電圧VFが得られることが分る。
When the channel length 2 is 3.2 μm, there is not much change in the on-voltage VF with respect to a change in the gate electrode width. On the other hand, when the channel length 2 is 5.5 μn, the on-voltage V
F largely depends on the gate electrode 11Lo, and La is 30μ
It can be seen that when the channel length is ff1-3.2μ, an on-voltage VF that is almost the same as in the case of the channel length ff1-3.2μ can be obtained.

またゲート電極幅Loを大きくすると一般には単位面積
当たりのベース層に流入する電流が増大して、ラッチア
ップ電流が低下すると考えられる。
Furthermore, it is considered that when the gate electrode width Lo is increased, the current flowing into the base layer per unit area generally increases and the latch-up current decreases.

しかしチャネル艮2をある値以上にするとこれを防止で
きることが実験的に明らかになった。第3図がその結果
である。第3図の縦軸はLo−20μmにおけるラッチ
アップ電流を1とした時のラッチアップ電流の変化率を
示す。図示のようにチャネル長2が5.5μm未満では
、ゲート電極幅し。が大きくなるとラッチアップ電流は
低下しているが、チャネル長2が5.5μm以上ではゲ
ート電極幅Loが大きくなってもラッチアップ電流の低
下は認められない。
However, it has been experimentally revealed that this can be prevented by increasing channel 2 to a certain value or more. Figure 3 shows the results. The vertical axis in FIG. 3 shows the rate of change in latch-up current when the latch-up current at Lo-20 μm is set to 1. As shown in the figure, when the channel length 2 is less than 5.5 μm, the gate electrode width is small. The latch-up current decreases as becomes larger, but when the channel length 2 is 5.5 μm or more, no decrease in the latch-up current is observed even if the gate electrode width Lo increases.

以上を纒めると、チャネル長2を5.5μm以上、ゲー
ト電極幅しGを30μm以上に設定することにより、オ
ン電圧VFを余り上昇させることなく、効果的にラッチ
アップ電流の増大を図ることができる。
In summary, by setting the channel length 2 to 5.5 μm or more and the gate electrode width G to 30 μm or more, the latch-up current can be effectively increased without increasing the on-voltage VF too much. be able to.

次に負荷短絡耐量について説明する。順方向阻止電圧が
1000V以上の導電変調型MO8FETでは、取扱い
電圧が500V以上になる。またゲート電圧は15Vで
ある。従って、電a電圧1000V、ゲート電圧15V
の条件で負荷短絡通電をお°こない、1oμsecの間
素子が非破壊であれば、負荷短絡耐】は十分であるとい
える。そこで種々の構造パラメータについて実験を行っ
た結果、負荷短絡耐量はベース層とドレイン層に挟まれ
る高抵抗層の幅Wnに依存することが明らかになった。
Next, load short-circuit tolerance will be explained. A conduction modulation type MO8FET with a forward blocking voltage of 1000V or more has a handling voltage of 500V or more. Further, the gate voltage is 15V. Therefore, the electric voltage is 1000V, and the gate voltage is 15V.
It can be said that the load short circuit resistance is sufficient if the element is not destroyed for 1 μsec when the load short circuit is energized under the following conditions. As a result of conducting experiments on various structural parameters, it became clear that the load short-circuit withstand capability depends on the width Wn of the high-resistance layer sandwiched between the base layer and the drain layer.

第4図がそのデータであり、Wnと素子の非破壊率の関
係をヒストグラムで表わしたものである。因から明らか
なように、Wnが120μm以上になると非−壊率が急
激に高くなり、負荷短絡耐量が十分大きくなることが分
る。なお、wnが同一のとき、低抵抗バッファ層がある
場合とない場合とでは、ある場合の方が負荷短絡耐量が
大きいことが確認された。
FIG. 4 is the data, and is a histogram representing the relationship between Wn and the non-destructive rate of the element. As is clear from the above, when Wn is 120 μm or more, the non-destructive rate increases rapidly, and the load short-circuit resistance becomes sufficiently large. Note that, when wn is the same, it was confirmed that the load short-circuit tolerance is greater in the case with and without the low-resistance buffer layer.

なお本発明は上記実施例に限られるものではなく、その
趣旨を逸脱しない範囲で種々変形して実施することがで
きる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、素子パラメータの最
通設計により、オン電圧の上昇をもたらすことなくラッ
チアップ電流の増大を図ることができ、また負荷短絡耐
量の向上を図った導電変調型MO8FETを得ることが
できる。
[Effects of the Invention] As described above, according to the present invention, the latch-up current can be increased without causing an increase in the on-voltage, and the load short-circuit resistance can be improved by the flexible design of the element parameters. The desired conductivity modulation type MO8FET can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の一実施例の導電変調型M
O5FETを示す平面図とそのA−A’断面図、第2図
はゲート電極幅LGとオン電圧VFの関係を示す図、第
3図は同じくゲート電極幅し。とラッチアップ電流IL
の関係を示す図、第4図は高抵抗層幅Wnと素子の非破
壊率の関係を示す図、第5図はp型ベース圏の拡w1深
さとオン電圧VFおよびラッチアップ電RI Lの関係
を示す図である。 11・・・p1型ドレイン層、12・・・n+型バッフ
ァWi、13・・・n−型高抵抗層、14・・・ゲート
絶縁膜、15・・・ゲート電極、16・・・間隙(開口
部)、17・・・p型ベース層、18・・・n4′型ソ
一ス層、19・・・チャネル領域、20・・・ソース電
極、21・・・トレイン電極、22・・・p+型層。 出願人代理人 弁理士 鈴江武彦 第2図 LG [μm] 第3図 第4図
FIGS. 1(a) and 1(b) show a conductive modulation type M according to an embodiment of the present invention.
A plan view showing an O5FET and its AA' cross-sectional view, FIG. 2 is a diagram showing the relationship between gate electrode width LG and on-voltage VF, and FIG. 3 is a diagram showing the relationship between gate electrode width LG and on-voltage VF. and latch-up current IL
4 is a diagram showing the relationship between the high resistance layer width Wn and the non-destructive rate of the element, and FIG. 5 is a diagram showing the relationship between the width Wn of the high resistance layer and the non-destructive rate of the element. It is a figure showing a relationship. DESCRIPTION OF SYMBOLS 11... p1 type drain layer, 12... n+ type buffer Wi, 13... n- type high resistance layer, 14... gate insulating film, 15... gate electrode, 16... gap ( opening), 17... p-type base layer, 18... n4' type source layer, 19... channel region, 20... source electrode, 21... train electrode, 22... p+ type layer. Applicant's agent Patent attorney Takehiko Suzue Figure 2 LG [μm] Figure 3 Figure 4

Claims (1)

【特許請求の範囲】  第1導電型ドレイン層と第2導電型高抵抗層に挟まれ
た領域に前記高抵抗層より不純物濃度が高い第2導電型
の低抵抗バッファ層を有し、前記高抵抗層上にゲート絶
縁膜を介して格子状のゲート電極が配設され、このゲー
ト電極の間隙部からの不純物拡散により第1導電型ベー
ス層およびこのベース層内に位置する第2導電型ソース
層が形成され、前記ドレイン層にコンタクトするドレイ
ン電極、および前記ベース層とソース層の双方にコンタ
クトするソース電極を有する導電変調型MOSFETお
いて、前記ゲート電極直下のソース層と高抵抗層間に挟
まれたベース層表面に形成されるチャネル領域のチャネ
ル長をl、前記ゲート電極の幅をL_G、前記ドレイン
層とベース層に挟まれる高抵抗層の幅をWnとしたとき
、 l≧5.5μm L_G≧30μm Wn≧120μm を満たすことを特徴とする導電変調型MOSFET。
Claims: A low-resistance buffer layer of a second conductivity type having a higher impurity concentration than the high-resistance layer is provided in a region sandwiched between the drain layer of the first conductivity type and the high-resistance layer of the second conductivity type; A lattice-shaped gate electrode is disposed on the resistance layer via a gate insulating film, and impurity is diffused from the gap between the gate electrodes to form a first conductivity type base layer and a second conductivity type source located within the base layer. In a conductivity modulation type MOSFET, which has a drain electrode in contact with the drain layer, and a source electrode in contact with both the base layer and the source layer, the conductivity modulation type MOSFET has a conductivity modulation type MOSFET in which a conductivity modulation type MOSFET has a drain electrode in contact with the drain layer, and a source electrode in contact with both the base layer and the source layer. When the channel length of the channel region formed on the surface of the base layer is l, the width of the gate electrode is L_G, and the width of the high resistance layer sandwiched between the drain layer and the base layer is Wn, l≧5.5 μm. A conductive modulation type MOSFET that satisfies L_G≧30μm and Wn≧120μm.
JP12761486A 1986-06-02 1986-06-02 Conductivity modulation type mosfet Pending JPS62283669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12761486A JPS62283669A (en) 1986-06-02 1986-06-02 Conductivity modulation type mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12761486A JPS62283669A (en) 1986-06-02 1986-06-02 Conductivity modulation type mosfet

Publications (1)

Publication Number Publication Date
JPS62283669A true JPS62283669A (en) 1987-12-09

Family

ID=14964445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12761486A Pending JPS62283669A (en) 1986-06-02 1986-06-02 Conductivity modulation type mosfet

Country Status (1)

Country Link
JP (1) JPS62283669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990975A (en) * 1988-12-16 1991-02-05 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor and method of manufacturing the same
JPH0382162A (en) * 1989-08-25 1991-04-08 Fuji Electric Co Ltd P channel insulated gate bipolar transistor
US5489788A (en) * 1993-03-09 1996-02-06 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with improved short-circuit tolerance
JPH0897168A (en) * 1994-07-04 1996-04-12 Sgs Thomson Microelettronica Spa Manufacture of high dense mos type electric power device andhigh dense type electric power device manufactured by its method
US5569941A (en) * 1992-10-20 1996-10-29 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with a buried gapped semiconductor region
US5616938A (en) * 1994-08-08 1997-04-01 Asea Brown Boveri Ag MOS-controlled power semiconductor component for high voltages

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990975A (en) * 1988-12-16 1991-02-05 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor and method of manufacturing the same
JPH0382162A (en) * 1989-08-25 1991-04-08 Fuji Electric Co Ltd P channel insulated gate bipolar transistor
US5569941A (en) * 1992-10-20 1996-10-29 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with a buried gapped semiconductor region
US5489788A (en) * 1993-03-09 1996-02-06 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with improved short-circuit tolerance
JPH0897168A (en) * 1994-07-04 1996-04-12 Sgs Thomson Microelettronica Spa Manufacture of high dense mos type electric power device andhigh dense type electric power device manufactured by its method
US5616938A (en) * 1994-08-08 1997-04-01 Asea Brown Boveri Ag MOS-controlled power semiconductor component for high voltages

Similar Documents

Publication Publication Date Title
JPH0467343B2 (en)
JP3209091B2 (en) Semiconductor device having insulated gate bipolar transistor
JPH0671079B2 (en) Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof
JPH07115189A (en) Insulated gate type bipolar transistor
EP0091686B1 (en) Semiconductor device having a diffused region of reduced length and method of fabricating the same
US5360746A (en) Method of fabricating a semiconductor device
JP2585505B2 (en) Conduction modulation type MOSFET
JPH0512868B2 (en)
EP0338312B1 (en) Insulated gate bipolar transistor
JP2001060685A (en) High breakdown-strength transistor
JPS62232167A (en) Semiconductor device
JPH0752770B2 (en) Conduction modulation type MOSFET
JPS62283669A (en) Conductivity modulation type mosfet
JPS61164263A (en) Conductive modulation type mosfet
JP2513640B2 (en) Conduction modulation type MOSFET
JPH07101737B2 (en) Method for manufacturing semiconductor device
JP3240896B2 (en) MOS type semiconductor device
JP2644989B2 (en) Conduction modulation type MOSFET
JPH0671077B2 (en) Thyristor with improved emitter region and turn-off capability and method of manufacturing the same
US5925899A (en) Vertical type insulated gate bipolar transistor having a planar gate structure
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JPH10229191A (en) Insulated gate field effect transistor and manufacture thereof
JPH0467790B2 (en)
JPH0766966B2 (en) Semiconductor device
JPS62229977A (en) Manufacture of conduction-modulation mosfet