JPH0512868B2 - - Google Patents

Info

Publication number
JPH0512868B2
JPH0512868B2 JP59110244A JP11024484A JPH0512868B2 JP H0512868 B2 JPH0512868 B2 JP H0512868B2 JP 59110244 A JP59110244 A JP 59110244A JP 11024484 A JP11024484 A JP 11024484A JP H0512868 B2 JPH0512868 B2 JP H0512868B2
Authority
JP
Japan
Prior art keywords
layer
base layer
source
mosfet
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59110244A
Other languages
Japanese (ja)
Other versions
JPS60254658A (en
Inventor
Akio Nakagawa
Tsuneo Tsukagoshi
Yoshihiro Yamaguchi
Kiminori Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP11024484A priority Critical patent/JPS60254658A/en
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to US06/738,188 priority patent/US4672407A/en
Priority to DE3546745A priority patent/DE3546745C2/en
Priority to GB08513599A priority patent/GB2161649B/en
Priority to DE19853519389 priority patent/DE3519389A1/en
Publication of JPS60254658A publication Critical patent/JPS60254658A/en
Priority to US07/019,337 priority patent/US4782372A/en
Priority to US07/116,357 priority patent/US4881120A/en
Priority to US07/146,405 priority patent/US5093701A/en
Priority to US07/205,365 priority patent/US4928155A/en
Priority to US07/712,997 priority patent/US5086323A/en
Priority to US07/799,311 priority patent/US5286984A/en
Publication of JPH0512868B2 publication Critical patent/JPH0512868B2/ja
Priority to US08/261,254 priority patent/US5780887A/en
Priority to US09/104,326 priority patent/US6025622A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、導電変調型MOSFETに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a conductivity modulation type MOSFET.

〔発明の技術的背景とその問題点〕 近年、電力用スイツチング素子として、DSA
(Diffusion Self Align)法によりソースおよび
チヤネル領域を形成するパワーMOSFETが市場
に現れている。しかしこの素子は1000V以上の高
耐圧ではオン抵抗が高くなつてしまい、大電流を
流すことが難しい。これに代わる有力な素子とし
て、ドレイン領域にソースとは逆の導電型層を設
けることにより高抵抗層に導電変調を起こさせて
オン抵抗を下げるようにした、いわゆる導電変調
型MOSFETが知られている。その基本的な構造
を第1図に示す。11はp+−Si基板(ドレイン
層)であつて、この上に低不純物濃度の高抵抗
n-層(第1ベース層)12が形成され、このn-
層12の表面にDSA法によりpベース層(第2
ベース層)13とn+ソース層14が形成されて
いる。即ちpベース層13を拡散形成した拡散窓
をそのままn+ソース層14の拡散窓の一部とし
て用いて二重拡散することにより、pベース層1
3の端部に自己整合的にチヤネル領域19を残し
た状態でn+ソース層14が形成される。そして、
チヤネル領域19上にはゲート絶縁膜15を介し
てゲート電極16が形成され、ソース層14上に
はベース層13に同時にオーミツクコンタクトす
るソース電極17が形成される。基板11の裏面
にはドレイン電極18が形成されている。
[Technical background of the invention and its problems] In recent years, DSA has been used as a power switching element.
Power MOSFETs whose source and channel regions are formed using the Diffusion Self Align method have appeared on the market. However, this element has a high on-resistance at high withstand voltages of 1000V or higher, making it difficult to conduct large currents. As a promising alternative element, a so-called conductivity modulation type MOSFET is known, in which a conductivity type layer opposite to that of the source is provided in the drain region to cause conductivity modulation in the high resistance layer and lower the on-resistance. There is. Its basic structure is shown in Figure 1. 11 is a p + -Si substrate (drain layer), on which a high resistance layer with a low impurity concentration is
An n - layer (first base layer) 12 is formed, and this n - layer (first base layer) 12 is formed.
A p base layer (second layer) is formed on the surface of layer 12 by DSA method.
A base layer) 13 and an n + source layer 14 are formed. That is, by double-diffusing the p-base layer 13 by using the diffusion window in which the p-base layer 13 is diffused as a part of the diffusion window of the n + source layer 14, the p-base layer 1
An n + source layer 14 is formed with a channel region 19 remaining in self-alignment at the end of the n + source layer 14 . and,
A gate electrode 16 is formed on the channel region 19 with a gate insulating film 15 interposed therebetween, and a source electrode 17 is formed on the source layer 14 simultaneously in ohmic contact with the base layer 13. A drain electrode 18 is formed on the back surface of the substrate 11.

この導電変調型MOSFETでは、ソース層14
からチヤネル領域19を通つてn-層12に注入
される電子電流に対して、p+基板11から正孔
注入が起こり、この結果n-層12には多量のキ
ヤリア蓄積による導電変調が起こる。n-層12
に注入された正孔電流はpベース層13のソース
層14直下を通り、ソース電極17へ抜ける。
In this conductivity modulation type MOSFET, the source layer 14
Holes are injected from the p + substrate 11 in response to electron current injected into the n - layer 12 through the channel region 19, and as a result, conductivity modulation occurs in the n - layer 12 due to a large amount of carrier accumulation. n - layer 12
The hole current injected into the p base layer 13 passes directly under the source layer 14 and exits to the source electrode 17.

この構造はサイリスタと似ているがサイリスタ
動作はしない。ソース電極17がpベース層13
とn+ソース層14を短絡してサイリスタ動作を
阻止しており、ゲート・ソース間電圧を零とすれ
ば素子はターンオフする。またこの構造は従来の
パワーMOSFETとも似ているが、ドレイン領域
にパワーMOSFETとは逆の導電型層を設けて、
バイポーラ動作を行なわせている点で異なる。
This structure is similar to a thyristor, but it does not operate as a thyristor. The source electrode 17 is the p base layer 13
The thyristor operation is prevented by short-circuiting the n + source layer 14, and the device is turned off when the gate-source voltage is reduced to zero. This structure is also similar to a conventional power MOSFET, but a layer of the opposite conductivity type to that of the power MOSFET is provided in the drain region.
The difference is that bipolar operation is performed.

この導電変調型MOSFETは、高耐圧化した場
合にも、従来のパワーMOSFETに比べて導電変
調の結果として十分低いオン抵抗が得られる。
This conduction modulation type MOSFET can achieve sufficiently low on-resistance as a result of conduction modulation compared to conventional power MOSFETs even when the breakdown voltage is increased.

しかしながらこの導電変調型MOSFETにも未
だ問題がある。即ち素子を流れる電流密度が大き
くなると、ソース層14下の横方向抵抗による電
圧降下が大きくなる。そしてpベース層13と
n+ソース層14の間が順バイアスされるように
なるとサイリスタ動作に入り、ゲート・ソース間
バイアスを零にしても素子がオフしない、いわゆ
るラツチアツプ現象を生じる。
However, there are still problems with this conductivity modulation type MOSFET. That is, as the current density flowing through the device increases, the voltage drop due to the lateral resistance under the source layer 14 increases. And p base layer 13
When the n + source layer 14 becomes forward biased, it enters into a thyristor operation, and a so-called latch-up phenomenon occurs in which the device does not turn off even if the gate-source bias is reduced to zero.

この問題を解決するために従来は、第2図に示
すように、深いp+層20を拡散形成して、pベ
ース層13の抵抗を下げることが行われている。
In order to solve this problem, conventionally, as shown in FIG. 2, a deep p + layer 20 is formed by diffusion to lower the resistance of the p base layer 13.

しかしこの方法だけでは、十分高い電流密度ま
でラツチアツプ現象を防ぐことができない。
However, this method alone cannot prevent the latch-up phenomenon up to sufficiently high current densities.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みてなされたもので、パ
ターン設計により効果的に大電流領域までラツチ
アツプ現象を生じないようにした導電変調型
MOSFETを提供することを目的とする。
The present invention has been made in view of the above points, and is a conductive modulation type that effectively prevents the latch-up phenomenon even in the large current region by pattern design.
The purpose is to provide MOSFET.

〔発明の概要〕[Summary of the invention]

本発明は、第1導通型ドレイン層に接して高抵
抗、第2導電型の第1ベース層が形成され、この
第1ベース層にDSA法により第1導電型の第2
ベース層とその表面に第2導電型ソース層が形成
される導電変調型MOSFETにおいて、ドレイン
側からベース層に注入されるキヤリアのうちソー
ス層下を通る成分を少なくして、ソース層下の横
方向抵抗による電圧降下を少なくし、もつて大電
流までラツチアツプを生じないようにする。この
ようにソース層下を通る電流成分を少なくするに
は、ソース電極と、第2ベース層が形成されてい
ない第1ベース層開孔部の間にMOSFET動作を
しない部分を周期的に形成すればよい。より具体
的には、例えば、ソース層を不連続的に形成する
のが一つの方法である。またチヤネル領域をしき
い値の低い部分と高い部分が周期的に形成される
ようにしてもよい。そのためには、第2ベース層
内に、高濃度第1導電型層を、チヤネル領域に終
端する部分とソース層下に終端する部分が現れる
ように凹凸パターンのエツジをもつて形成すれば
よい。
In the present invention, a first base layer of a high resistance and second conductivity type is formed in contact with a first conduction type drain layer, and a second base layer of a first conductivity type is formed on this first base layer by a DSA method.
In a conductivity modulation type MOSFET in which a base layer and a second conductivity type source layer are formed on the surface thereof, the component of carriers injected into the base layer from the drain side that passes under the source layer is reduced, and the lateral side under the source layer is To reduce voltage drop due to directional resistance and prevent latch-up even at large currents. In order to reduce the current component passing under the source layer, it is necessary to periodically form a portion that does not operate as a MOSFET between the source electrode and the first base layer opening where the second base layer is not formed. Bye. More specifically, one method is to form the source layer discontinuously, for example. Alternatively, the channel region may be formed such that portions with low thresholds and portions with high thresholds are periodically formed. For this purpose, a highly concentrated first conductivity type layer may be formed in the second base layer with an edge pattern of concave and convex portions so that a portion terminating in the channel region and a portion terminating under the source layer appear.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、パターン設計によつて簡単且
つ効果的に導電変調型MOSFETのラツチアツプ
現象を抑制することができ、大電流まで動作する
導電変調型MOSFETが得られる。
According to the present invention, the latch-up phenomenon of a conduction modulation type MOSFET can be suppressed simply and effectively by pattern design, and a conduction modulation type MOSFET that operates up to a large current can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を以下に説明する。第3図は一
実施例の導電変調型MOSFETを示すもので、a
は模式的平面図、bはaのA−A′断面図である。
この実施例は第2ベース層であるpベース層がス
トライプ状に基板上に形成された例である。第1
図、第2図と対応する部分にはそれらと同じ符号
を付してある。これを製造工程に従つて説明す
る。p+Si基板(ドレイン層)11を用意し、これ
にエピタキシヤル成長により低不純物濃度で比抵
抗50Ωcm以上のn-層(第1ベース層)12を
100μm程度形成する。次にこのn-層12の表面
を酸化してゲート酸化膜15を形成し、その上に
5000ÅのポリSi膜によるゲート電極16を形成す
る。この後ゲート電極16をマスクとしてボロン
を8μm程度拡散してpベース層(第2ベース層)
13を形成する。次いでゲート電極16による窓
の中にソース層形成用の開孔を持つ酸化膜(図示
せず)を形成し、この酸化膜とゲート電極16を
マスクとしてソース層形成のためのドーズ量5×
1015/cm2のASイオン注入を行ない、熱処理して
n+ソース層14を形成する。第3図aから明ら
かなようにソース層14は、チヤネル領域19及
びゲート16に沿つて不連続的に複数個配列形成
される。この後、pベース層13内に高濃度の
p+層20を拡散形成し、このp+層20とn+ソー
ス層14にコンタクトするソース電極17を形成
する。基板裏面にはV−Ni−Au膜の蒸着により
ドレイン電極18を形成する。チヤネル領域19
は、通常のMOSFET動作をする実効的チヤネル
部分19aと、ソースがないためにMOSFET動
作をしない部分19bとが交互に配列された状態
となる。
Examples of the present invention will be described below. Figure 3 shows an example of a conductivity modulation type MOSFET.
is a schematic plan view, and b is a sectional view taken along line A-A' of a.
This embodiment is an example in which a p base layer, which is a second base layer, is formed in stripes on a substrate. 1st
The same reference numerals are given to the parts corresponding to those in FIG. 2 and FIG. This will be explained according to the manufacturing process. A p + Si substrate (drain layer) 11 is prepared, and an n - layer (first base layer) 12 with a low impurity concentration and a resistivity of 50 Ωcm or more is formed on this by epitaxial growth.
Form about 100μm. Next, the surface of this n - layer 12 is oxidized to form a gate oxide film 15, and on top of that a gate oxide film 15 is formed.
A gate electrode 16 is formed of a poly-Si film of 5000 Å. After this, using the gate electrode 16 as a mask, boron is diffused to a thickness of about 8 μm to form a p base layer (second base layer).
form 13. Next, an oxide film (not shown) having an opening for forming a source layer is formed in the window formed by the gate electrode 16, and using this oxide film and the gate electrode 16 as a mask, the dose for forming the source layer is 5×.
After AS ion implantation at 10 15 /cm 2 and heat treatment,
An n + source layer 14 is formed. As is clear from FIG. 3a, a plurality of source layers 14 are discontinuously arranged along the channel region 19 and the gate 16. After this, a high concentration is added to the p base layer 13.
A p + layer 20 is formed by diffusion, and a source electrode 17 is formed in contact with the p + layer 20 and the n + source layer 14 . A drain electrode 18 is formed on the back surface of the substrate by vapor deposition of a V-Ni-Au film. Channel area 19
In this case, effective channel portions 19a that perform normal MOSFET operation and portions 19b that do not perform MOSFET operation because there is no source are arranged alternately.

この実施例のMOSFETでは、素子がオンの時
に、ゲート電極16下に開孔するn-層12から
pベース層13にドレインから注入される正孔電
流の内、チヤネル部分19bを通るものはソース
層14の下を通らず直接ソース電極17に流れ
る。従つて従来の構造に比べてソース層下の横方
向抵抗が実効的に小さくなり、大電流までラツナ
アツプ現象を生じない。
In the MOSFET of this embodiment, when the device is on, of the hole current injected from the drain from the n - layer 12 opened below the gate electrode 16 to the p base layer 13, the one that passes through the channel portion 19b is the source. It flows directly to the source electrode 17 without passing under the layer 14. Therefore, compared to the conventional structure, the lateral resistance under the source layer is effectively reduced, and the latch-up phenomenon does not occur even at large currents.

第4図a,bは本発明の別の実施例の導電変調
型MOSFETを示す模式的平面図とそのB−B′断
面図である。先の実施例と対応する部分には同じ
符号を付して詳細な説明は省略する。この実施例
においては、pベース層13内に拡散形成する
p+層20を、そのエツジが凹凸パターンとなる
ように、即ち、チヤネル領域に終端するエツジと
ソース層14下に終端するエツジが交互に現れる
パターンとする。つまり、チヤネル領域19は
p+層20が形成された部分19bとp+層のない
部分19aが交互に形成される。なお、n+ソー
ス層14は従来と同様にpベース層13内の両側
に連続的に形成している。
FIGS. 4a and 4b are a schematic plan view and a sectional view taken along the line B-B' of a conductivity modulation type MOSFET according to another embodiment of the present invention. Portions corresponding to those in the previous embodiment are given the same reference numerals and detailed explanations will be omitted. In this embodiment, the p base layer 13 is formed by diffusion.
The p + layer 20 is formed so that its edges have a concavo-convex pattern, that is, a pattern in which edges terminating in the channel region and edges terminating below the source layer 14 appear alternately. In other words, the channel area 19 is
Portions 19b where the p + layer 20 is formed and portions 19a where no p + layer is formed are alternately formed. Note that the n + source layer 14 is continuously formed on both sides of the p base layer 13 as in the conventional case.

この実施例では、チヤネル部分19bは、その
しきい値がチヤネル部分19aでのそれに比べて
高く実効的にはチヤネルとして寄与しない。即
ち、素子のしきい値はチヤネル部分19aで決ま
る。従つてゲート電極16にオンゲート信号を与
えた時、チヤネル部分19aがMOSFET動作に
よりオンし、チヤネル部分19bではオンしな
い。n-層12で導電変調が起こつて大電流が流
れるオン状態では、n-層12からの電流がチヤ
ネル部分19bをも流れるが、チヤネル部分19
aに比べると、p+層がソース層14の下全体に
渡つて形成されているため、ソース層14下の横
方向抵抗が小さく、従つてこのチヤネル部分19
bを通る電流による電圧降下は小さい。この結果
この実施例によつても、ラツチアツプを生じるこ
となく大電流を渡すことができる。
In this embodiment, channel portion 19b has a higher threshold value than channel portion 19a and does not effectively contribute as a channel. That is, the threshold value of the element is determined by the channel portion 19a. Therefore, when an on-gate signal is applied to the gate electrode 16, the channel portion 19a is turned on due to MOSFET operation, but the channel portion 19b is not turned on. In the on state where conductivity modulation occurs in the n - layer 12 and a large current flows, the current from the n - layer 12 also flows through the channel portion 19b;
Compared to a, since the p + layer is formed entirely under the source layer 14, the lateral resistance under the source layer 14 is small, and therefore this channel portion 19
The voltage drop due to the current through b is small. As a result, even in this embodiment, a large current can be passed without causing latch-up.

第4図の実施例では、n+ソース層14をpベ
ース層13の両側に連続的に形成しているが、こ
のソース層14を第3図の実施例と同様に実効的
にチヤネルとなる部分19aにのみ残して不連続
的に形成すれば、即ち第3図の実施例と第4図の
実施例を組合わせた構造とすれば、一層効果的で
ある。その実施例の模式的平面図を第5図に示
す。これにより、1500A/cm2程度までラツチアツ
プを生じない導電変調型MOSFETが得られる。
In the embodiment shown in FIG. 4, the n + source layer 14 is formed continuously on both sides of the p base layer 13, and this source layer 14 effectively becomes a channel as in the embodiment shown in FIG. It is even more effective if it is formed discontinuously by leaving it only in the portion 19a, that is, if the structure is a combination of the embodiment of FIG. 3 and the embodiment of FIG. 4. A schematic plan view of this embodiment is shown in FIG. As a result, a conduction modulation type MOSFET that does not cause latch-up up to about 1500 A/cm 2 can be obtained.

また第3図或いは第5図の実施例では、pベー
ス層13内の両側にそれぞれ複数のn+ソース層
14を設けたが、n+ソース層をpベース層の一
方の端部には連続的に設け、他方の端部には全く
設けないようにしてもよい。第6図はその実施例
で、aが模式的平面図、bはそのC−C′断面図で
ある。この実施例の場合、チヤネル領域19のう
ち、ソース層14のある側のチヤネル部分19a
のみ実効的なMOSFET動作のチヤネルとして寄
与し、もう一方のチヤネル部分19bは
MOSFET動作のチヤネルとしては働かない。そ
して先の各実施例と同じように、n-層12から
pベース層13に注入される電流のうちチヤネル
部分19bを通る成分はソース層14の下を通ら
ず直接ソース電極に流れるため、やはりラツプア
ツプ現象が効果的に抑制される。
Further, in the embodiment shown in FIG. 3 or FIG. 5, a plurality of n + source layers 14 are provided on both sides of the p base layer 13, but an n + source layer is provided continuously at one end of the p base layer. It may be provided at one end and not provided at all at the other end. FIG. 6 shows the embodiment, in which a is a schematic plan view and b is a sectional view taken along the line C-C'. In this embodiment, a channel portion 19a of the channel region 19 on the side where the source layer 14 is located
contributes as a channel for effective MOSFET operation, and the other channel portion 19b contributes as a channel for effective MOSFET operation.
It does not work as a channel for MOSFET operation. As in the previous embodiments, the component of the current injected from the n - layer 12 to the p base layer 13 that passes through the channel portion 19b does not pass under the source layer 14 but flows directly to the source electrode. The wrap-up phenomenon is effectively suppressed.

以上の実施例は、第1導電型としてp型、第2
導電型としてn型を用いたが、各部の導電型を逆
にしても本発明は有効である。更に以上の実施例
において、n-型層12を出発基板としてp+型ド
レインを拡散により形成するようにしてもよい。
In the above embodiments, the first conductivity type is p-type, the second conductivity type is p-type, and the second conductivity type is p-type.
Although n-type is used as the conductivity type, the present invention is effective even if the conductivity types of each part are reversed. Furthermore, in the above embodiments, the p + -type drain may be formed by diffusion using the n - -type layer 12 as a starting substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な導電変調型MOSFETを示す
断面図、第2図はこれを改良した導電変調型
MOSFETを示す断面図、第3図a,bは本発明
の一実施例の導電変調型MOSFETを示す平面図
とそのA−A′断面図、第4図a,bは本発明の
別の実施例の導電変調型MOSFETを示す平面図
とそのB−B′断面図、第5図は上記実施例を組
合わせた実施例の導電変調型MOSFETを示す平
面図、第6図a,bは更に別の実施例の導電変調
型MOSFETを示す平面図とそのC−C′断面図で
ある。 11……p+Si基板、12……n-層、13……
pベース層、14……n+ソース層、15……ゲ
ート酸化膜、16……ゲート電極、17……ソー
ス電極、18……ドレイン電極、19……チヤネ
ル領域、19a……実効的チヤネル部分、19b
……MOSFET動作に寄与しないチヤネル部分、
20……p+層。
Figure 1 is a cross-sectional view of a typical conduction modulation type MOSFET, and Figure 2 is an improved conduction modulation type MOSFET.
A sectional view showing a MOSFET, FIGS. 3a and 3b are a plan view and an A-A' sectional view of a conductivity modulation type MOSFET according to an embodiment of the present invention, and FIGS. 4a and 4b are another embodiment of the present invention. FIG. 5 is a plan view showing a conductivity modulation type MOSFET as an example and its BB' sectional view, FIG. FIG. 7 is a plan view and a cross-sectional view taken along the line C-C' of a conductivity modulation MOSFET according to another embodiment. 11... p + Si substrate, 12... n - layer, 13...
p base layer, 14...n + source layer, 15... gate oxide film, 16... gate electrode, 17... source electrode, 18... drain electrode, 19... channel region, 19a... effective channel part , 19b
...Channel part that does not contribute to MOSFET operation,
20...p + layer.

Claims (1)

【特許請求の範囲】 1 第1導通型のドレイン層と、このドレイン層
に接する低不純物濃度で第2導電型の第1ベース
層と、この第1ベース層の表面に選択的に形成さ
れた第1導通型の第2ベース層と、この第2ベー
ス層の表面に選択的に拡散形成された第2導電型
のソース層と、このソース層と前記第1ベース層
に挟まれた領域の第2ベース層表面をチヤネル領
域としてこの上にゲート絶縁膜を介して形成され
たゲート電極と、前記ドレイン層にコンタクトす
るドレイン電極と、前記ソース層と前記第2ベー
ス層に同時にコンタクトするソース電極とを備え
た導電変調型MOSFETにおいて、前記ソース電
極と、前記第2ベース層が形成されていない第1
ベース層の表面領域との間にMOSFET動作をし
ない部分が周期的に形成されていることを特徴と
する導電変調型MOSFET。 2 前記MOSFET動作をしない部分は、チヤネ
ル領域に沿つてソース層を不連続的に形成するこ
とにより、ドレイン側からのキヤリアがソース層
の下を通らずソース電極に流れる通路を形成した
ものである特許請求の範囲第1項記載の導電変調
型MOSFET。 3 前記MOSFET動作をしない部分は、第2ベ
ース層内に高濃度の第1導電型層を、チヤネル領
域に終端する部分とソース層下に終端する部分が
周期的に現れるような凹凸パターンのエツジをも
つて形成することにより、しきい値を他の部分よ
り高くしたものである特許請求の範囲第1項記載
の導電変調型MOSFET。 4 前記MOSFET動作をしない部分は、ゲート
電極に沿つてソース層を第2ベース層内に不連続
的に形成することにより、ドレイン側からのキヤ
リアがソース層の下を通らずソース電極に流れる
通路を形成したものである特許請求の範囲第1項
記載の導電変調型MOSFET。
[Claims] 1. A drain layer of a first conductivity type, a first base layer of a second conductivity type with a low impurity concentration in contact with the drain layer, and a first base layer of a second conductivity type selectively formed on the surface of the first base layer. a second base layer of a first conductivity type; a source layer of a second conductivity type selectively diffused on the surface of the second base layer; and a region sandwiched between the source layer and the first base layer. A gate electrode formed on the surface of the second base layer as a channel region through a gate insulating film, a drain electrode in contact with the drain layer, and a source electrode in contact with the source layer and the second base layer at the same time. A conductivity modulation type MOSFET comprising: the source electrode and a first base layer on which the second base layer is not formed;
A conductivity modulation type MOSFET characterized by periodically forming portions that do not operate as a MOSFET between the surface region of the base layer. 2 In the part where the MOSFET does not operate, the source layer is discontinuously formed along the channel region, thereby forming a path through which carriers from the drain side flow to the source electrode without passing under the source layer. A conduction modulation type MOSFET according to claim 1. 3 The portion that does not operate as a MOSFET is formed by forming a highly concentrated layer of the first conductivity type in the second base layer at the edge of a concavo-convex pattern in which a portion terminating in the channel region and a portion terminating below the source layer appear periodically. 2. The conductivity modulation type MOSFET according to claim 1, wherein the conduction modulation type MOSFET has a threshold value higher than that of other parts by forming the conduction modulation type MOSFET. 4 The portion where the MOSFET does not operate is a path where carriers from the drain side do not pass under the source layer but flow to the source electrode by discontinuously forming the source layer in the second base layer along the gate electrode. A conductivity modulation type MOSFET according to claim 1, which is formed of a conductive modulation type MOSFET.
JP11024484A 1984-05-30 1984-05-30 Conductive modulation type mosfet Granted JPS60254658A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP11024484A JPS60254658A (en) 1984-05-30 1984-05-30 Conductive modulation type mosfet
US06/738,188 US4672407A (en) 1984-05-30 1985-05-28 Conductivity modulated MOSFET
DE3546745A DE3546745C2 (en) 1984-05-30 1985-05-30 Variable conductivity power MOSFET
GB08513599A GB2161649B (en) 1984-05-30 1985-05-30 Conductivity modulated mosfet
DE19853519389 DE3519389A1 (en) 1984-05-30 1985-05-30 VARIABLE CONDUCTIVITY MOSFET
US07/019,337 US4782372A (en) 1984-05-30 1987-02-26 Lateral conductivity modulated MOSFET
US07/116,357 US4881120A (en) 1984-05-30 1987-11-04 Conductive modulated MOSFET
US07/146,405 US5093701A (en) 1984-05-30 1988-01-21 Conductivity modulated mosfet
US07/205,365 US4928155A (en) 1984-05-30 1988-06-10 Lateral conductivity modulated MOSFET
US07/712,997 US5086323A (en) 1984-05-30 1991-06-10 Conductivity modulated mosfet
US07/799,311 US5286984A (en) 1984-05-30 1991-11-27 Conductivity modulated MOSFET
US08/261,254 US5780887A (en) 1984-05-30 1994-06-14 Conductivity modulated MOSFET
US09/104,326 US6025622A (en) 1984-05-30 1998-06-25 Conductivity modulated MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024484A JPS60254658A (en) 1984-05-30 1984-05-30 Conductive modulation type mosfet

Publications (2)

Publication Number Publication Date
JPS60254658A JPS60254658A (en) 1985-12-16
JPH0512868B2 true JPH0512868B2 (en) 1993-02-19

Family

ID=14530759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024484A Granted JPS60254658A (en) 1984-05-30 1984-05-30 Conductive modulation type mosfet

Country Status (1)

Country Link
JP (1) JPS60254658A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212396A (en) * 1983-11-30 1993-05-18 Kabushiki Kaisha Toshiba Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations
US4641162A (en) * 1985-12-11 1987-02-03 General Electric Company Current limited insulated gate device
US4779123A (en) * 1985-12-13 1988-10-18 Siliconix Incorporated Insulated gate transistor array
JPS62282465A (en) * 1986-03-05 1987-12-08 イクシス・コーポレーション Monolithic semiconductor device and manufacture of the same
US5237186A (en) * 1987-02-26 1993-08-17 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
JPH0821713B2 (en) * 1987-02-26 1996-03-04 株式会社東芝 Conduction modulation type MOSFET
JPH0834312B2 (en) * 1988-12-06 1996-03-29 富士電機株式会社 Vertical field effect transistor
JPH02312280A (en) * 1989-05-26 1990-12-27 Mitsubishi Electric Corp Insulated gate bipolar transistor
JPH05160407A (en) * 1991-12-09 1993-06-25 Nippondenso Co Ltd Vertical insulating gate type semiconductor device and manufacture thereof
US6204533B1 (en) * 1995-06-02 2001-03-20 Siliconix Incorporated Vertical trench-gated power MOSFET having stripe geometry and high cell density
US6492663B1 (en) 1999-05-20 2002-12-10 Richard A. Blanchard Universal source geometry for MOS-gated power devices
JP4839578B2 (en) * 2004-04-26 2011-12-21 富士電機株式会社 Horizontal semiconductor device
JP4830263B2 (en) * 2004-04-26 2011-12-07 富士電機株式会社 High voltage insulated gate bipolar transistor
JP2007049061A (en) * 2005-08-12 2007-02-22 Toshiba Corp Semiconductor device
JP6206599B2 (en) * 2014-09-11 2017-10-04 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211773A (en) * 1981-06-16 1982-12-25 Thomson Csf Semiconductor structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211773A (en) * 1981-06-16 1982-12-25 Thomson Csf Semiconductor structure

Also Published As

Publication number Publication date
JPS60254658A (en) 1985-12-16

Similar Documents

Publication Publication Date Title
JPH0467343B2 (en)
JP3321185B2 (en) High voltage semiconductor device
US5169793A (en) Method of making an insulated gate bipolar transistor having gate shield region
JPH0512868B2 (en)
JP2585505B2 (en) Conduction modulation type MOSFET
JP2590863B2 (en) Conduction modulation type MOSFET
JP2864629B2 (en) Conductivity modulation type MOSFET
JPH0752770B2 (en) Conduction modulation type MOSFET
JPH03211771A (en) Conductivity-modulation mosfet
JPS62232167A (en) Semiconductor device
JPH0783112B2 (en) Conduction modulation type MOSFET
JP2000164859A (en) Semiconductor device and method for manufacturing the same
JPH0620141B2 (en) Conduction modulation type MOSFET
JPH07101737B2 (en) Method for manufacturing semiconductor device
JP2644989B2 (en) Conduction modulation type MOSFET
JP2513640B2 (en) Conduction modulation type MOSFET
JP2536302B2 (en) Insulated gate type bipolar transistor
US6147382A (en) Semiconductor switching device with segmented sources
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JPH09148566A (en) Mos type semiconductor element
JPS62283669A (en) Conductivity modulation type mosfet
JPH05136015A (en) Semiconductor device
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2718911B2 (en) Conduction modulation type MOSFET

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term