JPS5975923A - Epoxy resin composition for semiconductor sealing - Google Patents

Epoxy resin composition for semiconductor sealing

Info

Publication number
JPS5975923A
JPS5975923A JP18475482A JP18475482A JPS5975923A JP S5975923 A JPS5975923 A JP S5975923A JP 18475482 A JP18475482 A JP 18475482A JP 18475482 A JP18475482 A JP 18475482A JP S5975923 A JPS5975923 A JP S5975923A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
parts
curing agent
novolak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18475482A
Other languages
Japanese (ja)
Inventor
Masateru Sogabe
曽我部 正照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP18475482A priority Critical patent/JPS5975923A/en
Publication of JPS5975923A publication Critical patent/JPS5975923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:The titled resin composition excellent in storage stability and electrical properties, prepared by adding a specified phenylborate as a cure accelerator to a novolak epoxy resin composition. CONSTITUTION:As a cure accelerator there is used tetraphenylborate of 1,8- diazabicyclo(5.4.0)undencene-7. Namely, 4-20wt%, based on curing agent, above phenylborate is added to a composition comprising a novolak epoxy resin [a polymer prepared by condensing a phenol (phenol, cresol, xylenol, or the like) with a formaldehyde with the aid of an acid catalyst to form novolak, and then etherifying this novolak with epichlorohydrin into a glycidyl ether] and novolak of the above phenol (curing agent).

Description

【発明の詳細な説明】 本発明は貯蔵安定性に優れかつ電気特性にも優れた半導
体封入用エポキシ樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent storage stability and excellent electrical properties.

半導体の封入はその経済性の優位からエポキシ樹脂によ
る低圧トランスファー成形が主流となっており、なかで
も耐湿性に優れたノボラック系エポキシ樹脂をフェノー
ルノボラックで硬化させる系が良(用いられている。こ
れらの系に於いては、成形時のサイクルを短くするため
硬化促進剤を用いるのが普通であり、実用化できる速さ
の硬化性を持たそうとすれば室温でも反応が進み成形材
料が保存中圧フローが短くなり成形トラブル或は成形不
能の原因となっている。このため成形材料は低温で保管
、運搬する必要があり多大な不便さと費用とを余儀なく
されていた。さらに硬化促進剤の添加は、一般には材料
中に不純物を持ちこむ結果となり材料の電気特性を悪く
する。これはますます高信頼性を要求される最近の半導
体封入用成形材料にとっては致命的となる。
Low-pressure transfer molding using epoxy resin has become mainstream for semiconductor encapsulation due to its economical advantages, and among these, systems in which novolac-based epoxy resin with excellent moisture resistance is cured with phenol novolac are preferred. In this system, it is common to use a curing accelerator to shorten the cycle during molding, and in order to achieve a curing speed that can be put to practical use, the reaction progresses even at room temperature, and the molding material is stored during storage. The pressure flow is shortened, causing molding problems or the inability to mold.For this reason, the molding material must be stored and transported at low temperatures, resulting in great inconvenience and cost.Furthermore, the addition of a curing accelerator is necessary. This generally results in impurities being introduced into the material, which deteriorates the electrical properties of the material.This is fatal to modern molding materials for semiconductor encapsulation, which require increasingly high reliability.

成形時に速い反応性を持ち材料の保存温度(室温)では
反応しない即ち、潜伏性を有し、なおかつ成形材料の電
気特性を低下させない硬化促進剤の出現が長い間求めら
れていたものであった。
There has been a long-awaited need for a curing accelerator that has rapid reactivity during molding, does not react at the storage temperature (room temperature) of the material, that is, has latent properties, and does not reduce the electrical properties of the molding material. .

このような硬化促進剤に関する研究は数多くなされてい
る。
Many studies have been conducted on such curing accelerators.

潜伏性を良くする硬化促進剤としては古くからアミンの
ホウ素塩、またはアミンのホウ素錯塩が知られているが
これらは電気的特性に劣り、しかも硬化も遅く目的の成
形材料用としては使用できるものではなかった。その改
良として、テトラフェニルボレート塩のアミン塩の使用
例(例エバ特開昭49−118798 )があるが、電
気特性で充分でなく、アミンをトリエチルアンモニウム
に限定し、しかもあらかじめ硬化剤と混融する方法(例
えば特開昭54−110297 )によって電気特性に
もかなりの改良が加えられた。
Boron salts of amines or boron complex salts of amines have long been known as curing accelerators that improve latent properties, but these have poor electrical properties and are slow to cure and cannot be used for the intended molding material. It wasn't. As an improvement, there is an example of using an amine salt of a tetraphenylborate salt (e.g. EVA JP-A-49-118798), but the electrical properties were insufficient, and the amine was limited to triethylammonium, and the amine was mixed with a curing agent in advance. Considerable improvements have been made to the electrical characteristics by the method (for example, JP-A-54-110297).

我々は更に優れた電気特性と保存性とを両立させるべく
鋭意検討を続けた結果、この発明に至ったものである。
We have continued to conduct intensive studies to achieve both superior electrical properties and storage stability, and as a result, we have arrived at this invention.

即ち、本発明の骨子とするところは、ノボラック系エポ
キシ樹脂と硬化剤としてフェノール類のノボラックを使
用する系に於て、硬化促進剤として1.8ジアザビシク
ロ(5,4,0)ウンデセン7(以下OBUという。)
のテトラフェニルボレート(以下TPBという。)を硬
化剤に対して4〜20重量部望ましくは5〜10重量部
をあらかじめ硬化剤に固体のままブレンドすることであ
り、その目である。
That is, the gist of the present invention is that in a system using a novolak epoxy resin and a phenolic novolak as a curing agent, 1.8 diazabicyclo(5,4,0) undecene 7 (hereinafter referred to as It is called OBU.)
4 to 20 parts by weight, preferably 5 to 10 parts by weight, of tetraphenylborate (hereinafter referred to as TPB) to the curing agent are blended in advance in solid form with the curing agent.

ノボラック系エポキシ樹脂としては、フェノール、クレ
ゾール、キシレノールなどとホルムアルデヒドなどとを
酸性触媒で縮合させ生成する樹脂を原料とし、エピクロ
ルヒドリンでグリシジルエーテル化したものがとくに好
適である。
Particularly suitable as the novolac-based epoxy resin are resins produced by condensing phenol, cresol, xylenol, etc. with formaldehyde, etc. using an acidic catalyst as a raw material, and glycidyl etherified with epichlorohydrin.

さらに硬化剤としての7エノール類のノボラックとして
は、上記の原料ノボラックと同様のものがとくに好適で
ある。
Furthermore, as the novolac of heptanenol as a curing agent, those similar to the above-mentioned raw material novolak are particularly suitable.

これらとDBU−TPB 硬化促進剤とを組み合わせる
ことのみによって目的は達せられる。硬化促進剤として
DBUまたはその塩を使うことはすでに公知であるが(
例えば特開昭51−26999)、この場合潜伏性は持
たず、BP、などとの錯塩、BF4゜塩、TPB塩とし
てはじめて潜伏性を賦与できるが電気特性が充分でなく
この観点からTPB塩が必須となる。
Only by combining these with the DBU-TPB curing accelerator will the objective be achieved. It is already known to use DBU or its salt as a curing accelerator (
For example, JP-A-51-26999) does not have latent properties, and can only be imparted with latent properties by complex salts such as BP, BF4° salts, and TPB salts, but from this point of view, TPB salts do not have sufficient electrical properties. Required.

その配合量は硬化剤に対し4〜20重量部望ましくは5
〜10重量部である。これより少い場合材料は充分な硬
化性を得られず、多すぎる場合は硬化促進剤のかさばり
が大きいため混合がうまく行かず特性への悪影響があら
れれる。
The blending amount is 4 to 20 parts by weight, preferably 5 parts by weight based on the curing agent.
~10 parts by weight. If the amount is less than this, the material will not have sufficient curability, and if it is too much, the curing accelerator will be too bulky, resulting in poor mixing and adversely affecting the properties.

その添加方法は硬化剤へのトライブレンドである。電気
特性を維持するために、硬化剤へ混融する方法(例えば
特開昭54−110297 )があるが、混融すると肝
腎の潜伏性が損なわれる。DBU−TPBは混融せずド
ラブレンドで充分な電気特性を得ることができる。方法
としては、ブレンダーその他が考えられるが望ましくは
ボールミルを使用することが良好な結果が得られる。こ
れらのレジン−硬化促進剤系は無機フィラー、離型剤、
着色剤その他の添加物などと通常の方法(ロール混線、
スクリュー押出し混線など)によって混練され、成形材
料とされる。
The method of addition is triblend to the curing agent. In order to maintain the electrical properties, there is a method of mixing with a curing agent (for example, Japanese Patent Application Laid-Open No. 110297/1983), but when mixing, the incubation property of the liver and kidneys is impaired. DBU-TPB does not mix and melt, and sufficient electrical properties can be obtained with Drablend. As a method, a blender or the like may be used, but it is preferable to use a ball mill to obtain good results. These resin-hardening accelerator systems contain inorganic fillers, mold release agents,
Colorants and other additives, etc., and the usual methods (roll cross-wiring,
It is kneaded by screw extrusion (mixing wire, etc.) and used as a molding material.

以下実施例によって説明する。なお特に注記しない限り
量は重量部で表す。
This will be explained below using examples. Amounts are expressed in parts by weight unless otherwise noted.

実施例1゜ フェノールノボラック硬化剤10部とDBU−TPB塩
1.0部とをボールミルを使って1時間粉砕混合する。
Example 1 10 parts of phenol novolak curing agent and 1.0 part of DBU-TPB salt were pulverized and mixed for 1 hour using a ball mill.

これにエポキシオルトクレゾールノボラック20部、溶
融シリカ粉末64部、ステアリン酸1.0部、7ランカ
ツプリング剤2.0部、カーボンブラック2.0部をブ
レンドし、70〜90℃の熱ロールで約10分間混線冷
却後粉砕して成形材料とした。
This was blended with 20 parts of epoxy orthocresol novolak, 64 parts of fused silica powder, 1.0 part of stearic acid, 2.0 parts of a 7-run coupling agent, and 2.0 parts of carbon black, and heated with a hot roll at 70 to 90°C. After cooling for about 10 minutes, the mixture was crushed to obtain a molding material.

この材料を用いて硬化性、材料保存性、150℃での体
積抵抗率を測定した(測定方法は後述)。
Using this material, curability, material storage stability, and volume resistivity at 150°C were measured (measurement methods will be described later).

表1より硬化性と保存性を両立させしかも150℃での
体積抵抗率も高レベルにある。
From Table 1, it shows that both curability and preservability are achieved, and the volume resistivity at 150°C is also at a high level.

実施例2゜ エポキシオルトクレゾールノボラックのかわりにエポキ
シフェノールノボラックを使い実施例1と同様の方法で
材料を得表1に示す結果を得た。
Example 2 A material was obtained in the same manner as in Example 1 using epoxyphenol novolac instead of epoxy orthocresol novolac, and the results shown in Table 1 were obtained.

実施例1と同様の特性の材料が得られた。A material with properties similar to those of Example 1 was obtained.

比較例1゜ 硬化促進剤としてトリエチルアミン−TPB。Comparative example 1゜ Triethylamine-TPB as curing accelerator.

2メチルイミダゾール−TPB塩を使い、実施例1と同
様の方法で得た材料を用い表1の結果を得た。
Using 2-methylimidazole-TPB salt and materials obtained in the same manner as in Example 1, the results shown in Table 1 were obtained.

保存性は良好であるが、実施例1より体積抵抗率で劣る
。これはLSI用としてはレベルが低い。
Although the storage stability is good, the volume resistivity is inferior to that of Example 1. This level is low for LSI.

比較例2゜ 硬化促進剤としてDBUのフェノール塩、2エチルヘキ
サン酸塩を使い、実施例1と同様の方法で得た材料を用
い表1の結果を得た。電気特性は良好であるが潜伏性は
全く示さず従来の材料の域を出ない。
Comparative Example 2 Using a phenol salt of DBU and 2-ethylhexanoate as a curing accelerator, and using a material obtained in the same manner as in Example 1, the results shown in Table 1 were obtained. Although its electrical properties are good, it shows no latent properties and is no better than conventional materials.

実施例3゜ 実施例1と同様の組成でロールのかわりにコニーダを用
いて材料を得た。
Example 3 A material with the same composition as in Example 1 was obtained using a co-kneader instead of a roll.

コニーダーの条件 初期フロー    90α フロー残存率  92% 硬化性 70 体積抵抗率(150°C)  6.8X10130−ル
と同様目標の材料が得られる。
Co-kneader conditions Initial flow: 90α Flow residual rate: 92% Curing property: 70 Volume resistivity (150°C): 6.8×10 The target material is obtained in the same way as 130-L.

実施例4゜ フェノールノボラック硬化剤100部に対しDBtJ−
TPB をそれぞれ0.4部、2部をそれぞれ添加し、
あとは実施例1の方法によって材料を得た。材料試作中
硬化促進剤2部を加えたものは硬化促進剤のかさばりが
多く、ボールミルでの混合に時間を要した。特性を表2
に示す。0.4部は硬化性で下限であり、2部は、電気
特性スパイラルフロー、材料製造面から上限である。
Example 4 DBtJ- for 100 parts of phenol novolac curing agent
Add 0.4 parts and 2 parts of TPB, respectively,
The rest of the material was obtained by the method of Example 1. When 2 parts of curing accelerator was added during material trial production, the curing accelerator was bulky, and mixing in a ball mill took time. Table 2 characteristics
Shown below. 0.4 parts is the lower limit in terms of curability, and 2 parts is the upper limit in terms of electrical characteristics, spiral flow, and material production.

表2 実施例5 フェノールノボラック硬化剤40部とDBLI−TPB
  1.0部とを150℃で溶融混合した。溶融物は透
明な均一層となる。冷却後粉砕し以下実施例1と同様の
方法で材料を得た。そのフロー変化は次の通り。
Table 2 Example 5 40 parts of phenol novolak curing agent and DBLI-TPB
1.0 parts were melt-mixed at 150°C. The melt forms a transparent homogeneous layer. After cooling, the material was pulverized in the same manner as in Example 1 to obtain a material. The flow changes are as follows.

初期フロー  75crL フロー残存率    50 % (40℃ 7日 )実
施例6゜ 実施例1の材料を使って模擬素子による信頼性のテスト
を行なった。
Initial flow 75 crL Flow residual rate 50% (40°C 7 days) Example 6 Using the material of Example 1, a reliability test was conducted using a simulated element.

アルミニウムの配線を持った模擬素子を材料で封入し1
20℃ 2,2気圧の水蒸気中で処理し、その絶縁抵抗
の劣化を追跡した。
A simulated element with aluminum wiring is enclosed in material 1
It was treated in water vapor at 20° C. and 2.2 atm, and the deterioration of its insulation resistance was monitored.

なおブランクとしては、市販のLSI封入用成形材料を
用いた。その結果本発明の材料は良い結果を示した。
As the blank, a commercially available molding material for LSI encapsulation was used. As a result, the material of the present invention showed good results.

表3 10個中の不良率で示す。Table 3 Shown as defective rate out of 10 items.

測定方法 (1)e化性 トランスファー成形で10X50X3 mの成形品を成
形し、型より取り出して後10″後にバーコル硬度計(
4935)で熱時の硬さを測定した。
Measurement method (1) A molded product of 10 x 50 x 3 m was molded using e-transfer molding, and after 10" of removal from the mold, it was measured using a Barcol hardness tester (
4935) to measure the hardness when heated.

成形条件は圧力50 Ky/ci 、165℃、90″
である。
Molding conditions are pressure 50 Ky/ci, 165°C, 90″
It is.

(2)保存性 材料をポリエチレン袋に取り、40℃の乾燥機中に一定
時間保存後、保存前後のフローをEMM工法スパイラル
フローを測定した。
(2) Preservability The material was placed in a polyethylene bag and stored in a dryer at 40° C. for a certain period of time, and the EMM method spiral flow was measured for the flow before and after storage.

(3)150℃の体積抵抗率 JIS6911 の体積抵抗率測定方法に準じ、サンプ
ルを150℃雰囲気K 30分放置後同じ雰囲気中で測
定した。なお試験片は165℃で12 hrs  アフ
ターキュアーしたものを用いた。
(3) Volume resistivity at 150°C According to the volume resistivity measuring method of JIS6911, the sample was left in an atmosphere K at 150°C for 30 minutes and then measured in the same atmosphere. The test piece used was after-cured at 165°C for 12 hours.

Claims (3)

【特許請求の範囲】[Claims] (1)ノボラック系エポキシ樹脂と硬化剤としてフェノ
ール類のノボラックを使用する系に於いて、硬化促進剤
として、1.8ジアザビシクロ(5,4,0)ウンデセ
ン7のテトラフェニルボレート塩を硬化剤に対し4〜2
0重量部望ましくは5〜10重量部を予め硬化剤に固体
のままブレンドして成ることを特徴とするエポキシ樹脂
組成物。
(1) In a system that uses a novolac epoxy resin and a phenolic novolac as a curing agent, a tetraphenylborate salt of 1.8 diazabicyclo(5,4,0) undecene 7 is used as a curing accelerator. Against 4-2
An epoxy resin composition characterized in that 0 parts by weight, preferably 5 to 10 parts by weight, is blended in advance with a curing agent in a solid state.
(2)ノボラック系エポキシ樹脂又は(及び)硬化剤と
してのフェノール類のノボラックが、フェノール、クレ
ゾール又はキシレノール等とホルムアルデヒド等とを酸
性触媒で縮合させて生成する樹脂を原料としてエピクロ
ルヒドリンでグリシジルエーテル化したものである特許
請求の範囲第(1)項記載のエポキシ樹脂組成物。
(2) Novolac-based epoxy resin or (and) phenolic novolac as a curing agent is glycidyl etherified with epichlorohydrin using a resin produced by condensing phenol, cresol, or xylenol, etc., and formaldehyde, etc. with an acidic catalyst as a raw material. An epoxy resin composition according to claim (1).
(3) 1.8ジアザビシクロ(5,4,0)ウンデセ
ン7のテトラフェニルボレート塩が5〜10重量部であ
る特許請求の範囲第(1)又は(2)項記載のエポキシ
樹脂組成物。
(3) The epoxy resin composition according to claim 1 or 2, wherein the tetraphenylborate salt of 1.8 diazabicyclo(5,4,0) undecene 7 is contained in an amount of 5 to 10 parts by weight.
JP18475482A 1982-10-22 1982-10-22 Epoxy resin composition for semiconductor sealing Pending JPS5975923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18475482A JPS5975923A (en) 1982-10-22 1982-10-22 Epoxy resin composition for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18475482A JPS5975923A (en) 1982-10-22 1982-10-22 Epoxy resin composition for semiconductor sealing

Publications (1)

Publication Number Publication Date
JPS5975923A true JPS5975923A (en) 1984-04-28

Family

ID=16158755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18475482A Pending JPS5975923A (en) 1982-10-22 1982-10-22 Epoxy resin composition for semiconductor sealing

Country Status (1)

Country Link
JP (1) JPS5975923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276247A (en) * 1988-09-12 1990-03-15 Nitto Denko Corp Semiconductor device
US6495270B1 (en) 1998-02-19 2002-12-17 Hitachi Chemical Company, Ltd. Compounds, hardening accelerator, resin composition, and electronic part device
JP2006335894A (en) * 2005-06-02 2006-12-14 Nippon Kayaku Co Ltd Epoxy resin liquid composition for optical semiconductor
CN106589827A (en) * 2016-12-22 2017-04-26 科化新材料泰州有限公司 Environmentally-friendly epoxy resin composition with good storability, and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276247A (en) * 1988-09-12 1990-03-15 Nitto Denko Corp Semiconductor device
US6495270B1 (en) 1998-02-19 2002-12-17 Hitachi Chemical Company, Ltd. Compounds, hardening accelerator, resin composition, and electronic part device
JP2006335894A (en) * 2005-06-02 2006-12-14 Nippon Kayaku Co Ltd Epoxy resin liquid composition for optical semiconductor
JP4641869B2 (en) * 2005-06-02 2011-03-02 日本化薬株式会社 Epoxy resin liquid composition for optical semiconductors
CN106589827A (en) * 2016-12-22 2017-04-26 科化新材料泰州有限公司 Environmentally-friendly epoxy resin composition with good storability, and preparation method thereof

Similar Documents

Publication Publication Date Title
KR930008739B1 (en) Epoxy resin composition and semiconductor sealing material comprising same
TWI809189B (en) Epoxy resin hardening accelerator, epoxy resin composition, and hardened product
JP2003213081A (en) Epoxy resin composition and semiconductor device
JPS5975923A (en) Epoxy resin composition for semiconductor sealing
JP2020200393A (en) Epoxy resin curing accelerator and epoxy resin composition
JPS6189247A (en) Epoxy resin composition for semiconductor sealing
JP3137295B2 (en) Epoxy resin curing agent and epoxy resin composition
JP3432445B2 (en) Epoxy resin composition for optical semiconductor and semiconductor device
JPH0249329B2 (en)
JP2000191749A (en) Epoxy resin composition and device for sealing semiconductor
JPS5918724A (en) Termosetting resin composition
JPS6225118A (en) Sealing resin composition
JPH0576490B2 (en)
JPH03131057A (en) Semiconductor device
JPH09216936A (en) Cure accelerator for epoxy resin
JP3244195B2 (en) Melamine / phenolic resin composition
JPH10176035A (en) Epoxy resin composition for sealing semiconductor device
JPH01118562A (en) Epoxy resin composition for sealing semiconductor
JP3841528B2 (en) Epoxy resin composition
JPH03177451A (en) Sealing resin composition and semiconductor device
JP2001253933A (en) Epoxy resin molding material for sealing semiconductor and semiconductor device produced by using the material
JPS62192423A (en) Sealing resin composition
JPS63142024A (en) Resin composition for sealing use
JPS6296522A (en) Sealing resin composition
JPH0739471B2 (en) Sealing resin composition