JPH09216936A - Cure accelerator for epoxy resin - Google Patents

Cure accelerator for epoxy resin

Info

Publication number
JPH09216936A
JPH09216936A JP2219796A JP2219796A JPH09216936A JP H09216936 A JPH09216936 A JP H09216936A JP 2219796 A JP2219796 A JP 2219796A JP 2219796 A JP2219796 A JP 2219796A JP H09216936 A JPH09216936 A JP H09216936A
Authority
JP
Japan
Prior art keywords
dbu
curing accelerator
weight
epoxy resin
tpp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219796A
Other languages
Japanese (ja)
Inventor
Masatada Kurosaki
正雅 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Apro KK
Original Assignee
San Apro KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Apro KK filed Critical San Apro KK
Priority to JP2219796A priority Critical patent/JPH09216936A/en
Publication of JPH09216936A publication Critical patent/JPH09216936A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cure accelerator which retains adhesion characteristic of a phenol novolac salt of DBU and is improved in storage stability in which it is not satisfactory. SOLUTION: This accelerator is prepared by homogeneously melt-mixing 10-20wt.% 1,8-diazabicyclo(5,4,0)undecene-7 (DBU) with 6-18wt.% tetraphenylphosphonium tetraphenylborate and 62-84wt.% phenol novolac resin at 160-220 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体封止材などの
電子部品の封止に有用なエポキシ樹脂の硬化促進剤に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin curing accelerator useful for encapsulating electronic parts such as semiconductor encapsulants.

【0002】[0002]

【従来の技術】硬化剤としてフェノールノボラック類を
用い多量のフィラーなどを配合したエポキシ樹脂は、成
形性または硬化物の電気特性などに優れ、例えば半導体
封止材などの電子部品の封止などに広く使用されてい
る。近年、半導体の高集積化、薄型化または実装方式の
改良などに伴い、封止材の成形性もしくは保存安定性、
または封止された半導体の信頼性の向上などが強く要望
されており、この要望に対して封止材の一成分である硬
化促進剤の役割も大きくなっている。半導体封止材の硬
化促進剤として、1,8−ジアザビシクロ(5,4,
0)ウンデセン−7(以下、DBUと略記する、)また
はそのフェノールノボラック塩などはすでに広く知られ
ており、例えば信頼性の重要な一つの要因となる密着性
などに優れた封止材を提供している(例えば、特公平 6
-57745号公報および特開平4-369254号公報参照)。しか
し、これらの封止材の性能は、配合系の水分、配合原料
の種類、または成形条件などの影響を受けやすく、性能
を十分に発揮させるためには厳密な工程の管理が要求さ
れており、また結果的に、DBUの添加量の増大を伴う
ケースでは、封止材の流動性などの成形性に悪影響を及
ぼすことなどが問題となっている。
2. Description of the Related Art Epoxy resins containing phenol novolacs as a curing agent and a large amount of fillers are excellent in moldability or electrical properties of cured products, and are suitable for encapsulation of electronic parts such as semiconductor encapsulants. Widely used. In recent years, along with the high integration of semiconductors, thinning, or improvement of mounting method, the moldability or storage stability of the encapsulant,
Further, there is a strong demand for improving the reliability of the encapsulated semiconductor, and in response to this demand, the role of the curing accelerator, which is one component of the encapsulating material, is also increasing. 1,8-diazabicyclo (5,4,4) as a curing accelerator for semiconductor encapsulants
0) Undecene-7 (hereinafter abbreviated as DBU), its phenol novolac salt, etc. are already widely known, and for example, provide an encapsulant excellent in adhesion, which is one of the important factors of reliability. (For example, Japanese Patent Fairness 6
-57745 and JP-A-4-369254). However, the performance of these encapsulants is easily affected by the water content of the compounding system, the type of compounding raw materials, molding conditions, etc., and strict process control is required to fully demonstrate the performance. Further, as a result, in the case where the addition amount of DBU is increased, there is a problem that the moldability such as fluidity of the sealing material is adversely affected.

【0003】[0003]

【発明が解決しようとする課題】これらの問題を解決す
るために、DBUまたはその塩類と、他の硬化促進剤、
例えばイミダゾール類、2、3級アミン類、トリフェニ
ルホスフィン、またはテトラフェニルホスホニウム・テ
トラフェニルボレート(以下、TPP−Bと略記す
る。)などを併用する方法もすでに多く知られている
(例えば、特開昭58-57427号公報または特開平3-157447
号公報参照)。しかし、これらの併用もまた、それぞれ
の硬化促進剤の欠点を付随することとなっている。例え
ば、イミダゾール類などの併用は少量の併用であっても
信頼性の低下が大きく、またTPP−Bは潜在性を特徴
とする硬化促進剤として古くから知られているものであ
るが、これを併用した場合も安定した性能を発揮させる
ための工程の管理が極めて困難である。さらに、TPP
−Bとフェノールノボラック類を併用したもの(例え
ば、特開昭54-58795号公報)では、配合方法などの違い
による熱履歴の差異で触媒活性などに変化を起こす欠点
があった。したがって、本発明の目的は、DBUのフェ
ノールノボラック塩などの特徴である密着性を保持しな
がら、その欠点である保存安定性を改良したエポキシ樹
脂の硬化促進剤を提供するにある。
In order to solve these problems, DBU or its salts and other curing accelerators,
For example, many methods have already been known in which imidazoles, secondary and tertiary amines, triphenylphosphine, tetraphenylphosphonium tetraphenylborate (hereinafter abbreviated as TPP-B), and the like are used in combination (for example, a special method). JP-A-58-57427 or JP-A-3-157447
Reference). However, these combinations are also associated with the drawbacks of the respective curing accelerators. For example, the combined use of imidazoles and the like causes a large decrease in reliability even with a small amount of combined use, and TPP-B has long been known as a curing accelerator characterized by its latent property. Even when used together, it is extremely difficult to control the process for exhibiting stable performance. Furthermore, TPP
The combination of -B and phenol novolacs (for example, Japanese Patent Laid-Open No. 54-58795) has a drawback that the catalyst activity and the like change due to the difference in thermal history due to the difference in the compounding method. Therefore, an object of the present invention is to provide a curing accelerator for an epoxy resin that has improved adhesiveness, which is a drawback of DBU's phenol novolac salt, while improving its storage stability.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の問題
点を解決すべく鋭意検討した結果、10〜20重量%の1,
8−ジアザビシクロ(5,4,0)ウンデセン−7、6
〜18重量%のテトラフェニルホスホニウム・テトラフェ
ニルボレートおよび62〜84重量%のフェノールノボラッ
ク類を、 160〜 220℃の温度で均一に溶融混合してなる
硬化促進剤が、優れた効果を有することを見出し、本発
明を完成した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that 10 to 20% by weight of 1,
8-diazabicyclo (5,4,0) undecene-7,6
~ 18% by weight of tetraphenylphosphonium tetraphenylborate and 62 ~ 84% by weight of phenol novolaks are uniformly melt-mixed at a temperature of 160 ~ 220 ° C. Heading, completed the present invention.

【0005】[0005]

【発明の実施の形態】本発明の硬化促進剤の製造は、例
えば特公平6-57745号公報に記載された方法に準じて実
施することができる。DBUとフェノールノボラック類
は不均一な塩を形成しやすいため、安定した性能を発揮
させるための均一な混合が重要であり、例えば軟化点以
上の温度で溶融したフェノールノボラック類に、撹拌下
にDBUおよびTPP−Bを添加し、 160〜 220℃で1
〜5時間程度均一に混合して取り出し、冷却後、通常微
粉砕して製造することができる。混合温度が 160℃以下
では安定した性能が得られず、一方 220℃を超えると一
般にフェノールノボラック類の熱分解が起こり始めるた
め好ましくない。DBUおよびTPP−Bの添加の順序
については、DBUを添加した後では粘度が高く、TP
P−Bの熱処理で発生する泡の除去が困難になることか
ら、まずTPP−Bを添加し、同温度で1〜3時間脱泡
した後に、DBUを添加するのが好ましい。また前記脱
泡工程は、好ましくは最終的に減圧下に実施される。均
一混合後の温度、例えば取出し時の温度については、安
全性および収量などの点から 200℃以下のできるだけ低
い、生成物の軟化点より20℃以上高い温度であることが
好ましい。なお、本発明は、前記の方法でDBUまたは
TPP−Bを用いて別個に製造した硬化促進剤を、封止
材の製造時に併用することを妨げるものではない。本発
明の利点の一つは、かかる少量の硬化促進剤を併用する
ような、封止材の工程管理の面から弊害となる煩雑な作
業を避けることにもある。
BEST MODE FOR CARRYING OUT THE INVENTION The curing accelerator of the present invention can be produced, for example, according to the method described in JP-B-6-57745. Since DBU and phenol novolacs are likely to form a non-uniform salt, it is important to mix them uniformly in order to exert stable performance. For example, phenol novolacs melted at a temperature above the softening point should be mixed with DBU under stirring. And TPP-B were added, and at 160-220 ° C, 1
It can be produced by uniformly mixing and taking out for about 5 hours, cooling, and usually finely pulverizing. If the mixing temperature is 160 ° C. or less, stable performance cannot be obtained, while if it exceeds 220 ° C., thermal decomposition of phenol novolacs generally begins to occur, which is not preferable. Regarding the order of addition of DBU and TPP-B, the viscosity was high after addition of DBU and TP
Since it is difficult to remove bubbles generated by heat treatment of P-B, it is preferable to add TPP-B first, defoam at the same temperature for 1 to 3 hours, and then add DBU. The defoaming step is preferably finally performed under reduced pressure. The temperature after uniform mixing, for example, the temperature at the time of taking out is preferably as low as 200 ° C. or less as much as possible from the viewpoint of safety and yield, and 20 ° C. or more higher than the softening point of the product. It should be noted that the present invention does not prevent the curing accelerator separately produced using DBU or TPP-B by the above method from being used together during the production of the encapsulant. One of the advantages of the present invention is to avoid a complicated work such as using a small amount of the curing accelerator, which is harmful to the process control of the sealing material.

【0006】本発明の硬化促進剤で用いられるフェノー
ルノボラック類としては、封止材の硬化剤であるフェノ
ールノボラック類と同じものが使用でき、例えば軟化点
50〜120℃のフェノールノボラック、クレゾールノボラ
ック、キシリレンフェノール樹脂、ジクロロペンタジエ
ンフェノール樹脂などが挙げられる。本発明の硬化促進
剤におけるDBUの量は10〜20重量%で、これはフェノ
ールノボラック類と安定な塩を形成する目安となる量で
あり、最適な量はフェノールノボラック類の種類などに
よって設定されるが、特に10重量%以下では硬化促進剤
自身の吸湿性が強くなるなどの問題を起こすため好まし
くない。またTPP−Bの量は6〜18重量%であり、6
重量%以下では併用の効果が認められず、一方18重量%
以上では密着性の低下などを起こすため好ましくない。
As the phenol novolacs used in the curing accelerator of the present invention, the same phenol novolacs as the encapsulant curing agent can be used, for example, the softening point.
Examples include phenol novolac at 50 to 120 ° C., cresol novolac, xylylene phenol resin, and dichloropentadiene phenol resin. The amount of DBU in the curing accelerator of the present invention is 10 to 20% by weight, which is a standard for forming a stable salt with phenol novolacs, and the optimum amount is set depending on the type of phenol novolacs. However, if the content is 10% by weight or less, the moisture absorption of the curing accelerator itself becomes strong, which is not preferable. The amount of TPP-B is 6-18% by weight,
If it is less than 10% by weight, the effect of combination is not recognized, while 18% by weight
The above is not preferable because the adhesion is deteriorated.

【0007】本発明の硬化促進剤は前記フェノールノボ
ラック類およびフィラーを配合したエポキシ樹脂の硬化
促進剤として使用される。エポキシ化合物としては、通
常固状のものが使用され、例えばすでに公知のビスフェ
ノールA型エポキシ、前記フェノールノボラック類のグ
リシジル化により得られるエポキシ化合物、ビフェニル
エポキシ、臭素化フェノールノボラックエポキシ、トリ
グリシジルイソシアヌレートなどが挙げられる。エポキ
シ樹脂は、必要により、その他の添加剤、例えば離型
剤、着色剤、難燃化剤、低応力化剤、フィラーのカップ
リング処理剤、イオン捕捉剤などが配合された系であっ
てもよいことは言うまでもない。本発明の硬化促進剤の
添加量は通常エポキシ化合物 100重量部に対してDBU
およびTPP−Bの合計で 0.5〜 4.0重量部であり、そ
の最適な添加量は要求される硬化性などに合わせて設定
される。
The curing accelerator of the present invention is used as a curing accelerator for an epoxy resin containing the above-mentioned phenol novolacs and a filler. As the epoxy compound, a solid one is usually used, and for example, a known bisphenol A type epoxy, an epoxy compound obtained by glycidylation of the phenol novolacs, biphenyl epoxy, brominated phenol novolac epoxy, triglycidyl isocyanurate, etc. Is mentioned. The epoxy resin may be a system in which other additives such as a release agent, a colorant, a flame retardant, a stress reducing agent, a filler coupling treatment agent, and an ion scavenger are blended, if necessary. It goes without saying that it is good. The addition amount of the curing accelerator of the present invention is usually DBU with respect to 100 parts by weight of the epoxy compound.
And TPP-B are 0.5 to 4.0 parts by weight in total, and the optimum addition amount is set according to the required curability and the like.

【0008】[0008]

【実施例】以下実施例および比較例により本発明を説明
するが、本発明はこの実施例の記載に限定されるもので
はない。 (実施例)窒素気流中、容積1リットルのコルベンにフ
ェノールノボラック(軟化点80℃) 518gを仕込み、 1
40〜 150℃で均一に溶融する。次いで、撹拌下にTPP
−B(和光純薬工業(株)製)84gを加えて徐々に 190
℃に昇温し、同温度で1時間混合後、徐々に減圧して脱
泡した(最終減圧度:約20mmHg)。次いで、 170℃に冷
却し、DBU(サンアプロ(株)製)98gを徐々に添加
し、中和熱を利用して 180〜 190℃に昇温し、同温度で
1時間混合した後にバットに取り出し、黄褐色均質透明
な樹脂 650gを得た。これを冷却後、微粉砕して実施例
の硬化促進剤を得た。なお、DBUとTPP−Bの配合
割合はNMR分析によりDBUのメチレン基の内の一部
のメチレン基のHとTPP−Bのテトラフェニルホスホ
ニウム基のすべてのHの吸収強度(面積比)を用いて確
認した。 (比較例1および2)フェノールノボラック、TPP−
BおよびDBUの配合割合を表1に示す通りにしたほか
は実施例と同様にして、比較例1および2の硬化促進剤
を得た。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to the description of the examples. (Example) In a nitrogen stream, 518 g of phenol novolac (softening point 80 ° C) was charged into a 1-liter volume Kolben, and 1
Melts uniformly at 40-150 ℃. Then under stirring TPP
-B (manufactured by Wako Pure Chemical Industries, Ltd.) 84g and gradually added 190
The temperature was raised to 0 ° C., and the mixture was mixed at the same temperature for 1 hour, and then gradually depressurized to defoam (final degree of reduced pressure: about 20 mmHg). Next, the mixture was cooled to 170 ° C, 98 g of DBU (manufactured by San-Apro Co., Ltd.) was gradually added, the temperature was raised to 180-190 ° C using the heat of neutralization, the mixture was mixed at the same temperature for 1 hour, and then taken out in a vat. As a result, 650 g of a yellowish brown homogeneous transparent resin was obtained. This was cooled and then finely pulverized to obtain the curing accelerator of the example. The blending ratio of DBU and TPP-B was determined by NMR analysis using the absorption intensity (area ratio) of H of a part of the methylene groups of DBU and all H of the tetraphenylphosphonium group of TPP-B. I confirmed it. (Comparative Examples 1 and 2) Phenol novolac, TPP-
The curing accelerators of Comparative Examples 1 and 2 were obtained in the same manner as in Example except that the mixing ratios of B and DBU were as shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】(試験例1〜5)次に、軟化点72℃、エポ
キシ当量195 のo−クレゾールノボラックエポキシ樹
脂:90重量部、軟化点85℃、エポキシ当量 275の臭素化
フェノールノボラックエポキシ樹脂:10重量部、軟化点
80℃のフェノールノボラック樹脂(硬化促進剤のフェノ
ールノボラックの量を含めた値を示す):50重量部、1
重量%のシランカップリング剤で処理した溶融シリカ粉
末: 400重量部、カルナバワックス: 1.5重量部、三酸
化アンチモン:4重量部、カーボンブラック:1重量
部、各例で得られた硬化促進剤およびTPP−Bを表2
に示す配合割合(DBUおよびTPP−Bの量に換算し
た値で示す)で均一に粉砕混合後、 100℃の熱ロールを
用いて5分間溶融混合し、冷却後粉砕して封止材を得
た。この封止材については、下記の方法でゲルタイムお
よびフロー値(流動性)を測定し、封止材を 175℃×2
分(プレス圧70kg/cm2)の条件でトランスファー成形
し、脱型直後の硬度をバコール硬度計を用いて測定し
た。さらに、封止材を 175℃×3分の条件でトランスフ
ァー成形後、 175℃×6時間の条件で後硬化した試料の
ガラス転移温度(Tg)を測定した。同様にして、テス
ト用半導体素子をそれぞれの封止材を用いて封止し、リ
フロークラック(密着性)を測定した。一方、封止材を
一定の条件で保存し、バコール硬度およびガラス転移温
度(Tg)の測定により保存安定性(水分の影響)を評
価した。これらの結果を表2に併記した。
Test Examples 1 to 5 Next, an o-cresol novolac epoxy resin having a softening point of 72 ° C. and an epoxy equivalent of 195: 90 parts by weight, a brominated phenol novolac epoxy resin having a softening point of 85 ° C. and an epoxy equivalent of 275: 10 Parts by weight, softening point
Phenol novolac resin at 80 ° C (shows the value including the amount of phenol novolac as a curing accelerator): 50 parts by weight, 1
Fused silica powder treated with wt% silane coupling agent: 400 parts by weight, carnauba wax: 1.5 parts by weight, antimony trioxide: 4 parts by weight, carbon black: 1 part by weight, the curing accelerator obtained in each example and Table 2 for TPP-B
After uniformly pulverizing and mixing with the blending ratio shown in (indicated by the value converted to the amount of DBU and TPP-B), melt mixing for 5 minutes using a hot roll at 100 ° C., cooling and pulverizing to obtain a sealing material. It was For this encapsulant, measure the gel time and flow value (fluidity) by the following methods, and seal the encapsulant at 175 ° C x 2
Transfer molding was performed under the condition of minute (pressing pressure 70 kg / cm 2 ) and the hardness immediately after demolding was measured using a Bacol hardness meter. Further, the glass transition temperature (Tg) of the sample which was post-cured under the condition of 175 ° C. × 6 hours was measured after transfer molding the sealing material under the condition of 175 ° C. × 3 minutes. Similarly, the test semiconductor element was sealed with each sealing material, and the reflow crack (adhesion) was measured. On the other hand, the encapsulant was stored under certain conditions, and the Bacol hardness and the glass transition temperature (Tg) were measured to evaluate the storage stability (influence of moisture). These results are shown in Table 2.

【0011】(試験方法) ・ゲルタイム:熱板法(175 ℃) ・フロー値:EMMI 1−66の方法に準じて 175℃
(70kg/cm2)でのスパイラルフローを測定 ・Tg:TMA法 ・リフロークラック:10個の封止した素子を85%RH/
85℃の雰囲気中に72時間放置し、次いで 240℃の半田浴
に30秒間浸漬してクラックの発生個数を求めた。 ・保存安定性:封止材を開放容器に入れ、75%RH/30
℃の雰囲気に放置する。1時間置きに混合し、合計8時
間吸湿させた後、同様にしてトランスファー成形し、あ
るいはトランスファー成形後、後硬化して測定した。
(Test method) -Gel time: Hot plate method (175 ° C) -Flow value: 175 ° C according to the method of EMMI 1-66
Measures spiral flow at (70kg / cm 2 ) ・ Tg: TMA method ・ Reflow crack: 85% RH /
It was left in an atmosphere of 85 ° C for 72 hours and then immersed in a solder bath at 240 ° C for 30 seconds to determine the number of cracks.・ Storage stability: Put the encapsulant in an open container, 75% RH / 30
Leave in the atmosphere at ℃. After mixing every 1 hour and absorbing moisture for a total of 8 hours, transfer molding was carried out in the same manner, or after transfer molding, post-curing was carried out and measurement was carried out.

【0012】[0012]

【表2】 [Table 2]

【0013】表2より、本発明の硬化促進剤は、半導体
封止材などのエポキシ樹脂の硬化促進剤として広く使用
されているDBUのフェノールノボラック塩などの特徴
の一つである密着性(耐リフロークラック性)を保持
し、その大きな欠点である保存安定性などが向上するこ
とがわかった。
From Table 2, it can be seen that the curing accelerator of the present invention is one of the characteristics of DBU phenol novolac salt, which is widely used as a curing accelerator for epoxy resins such as semiconductor encapsulants, and the like. It has been found that the reflow cracking property) is maintained and the storage stability, which is a major drawback, is improved.

【0014】[0014]

【発明の効果】本発明の硬化促進剤は、成形性、保存安
定性および密着性などに優れたエポキシ樹脂を提供し、
特に安定した性能はエポキシ樹脂の工程管理の面から優
れており、半導体封止材などのエポキシ樹脂の硬化促進
剤として極めて有用である。
The curing accelerator of the present invention provides an epoxy resin having excellent moldability, storage stability and adhesion.
Particularly, stable performance is excellent from the viewpoint of process control of epoxy resin, and is extremely useful as a curing accelerator for epoxy resin such as semiconductor encapsulant.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】10〜20重量%の1,8−ジアザビシクロ
(5,4,0)ウンデセン−7、6〜18重量%のテトラ
フェニルホスホニウム・テトラフェニルボレートおよび
62〜84重量%のフェノールノボラック類を、 160〜 220
℃の温度で均一に溶融混合してなるとを特徴とするエポ
キシ樹脂の硬化促進剤。
1. 10 to 20% by weight of 1,8-diazabicyclo (5,4,0) undecene-7, 6 to 18% by weight of tetraphenylphosphonium tetraphenylborate and
62-84% by weight of phenol novolacs, 160-220
A curing accelerator for an epoxy resin, characterized by being uniformly melt-mixed at a temperature of ° C.
JP2219796A 1996-02-08 1996-02-08 Cure accelerator for epoxy resin Pending JPH09216936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219796A JPH09216936A (en) 1996-02-08 1996-02-08 Cure accelerator for epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219796A JPH09216936A (en) 1996-02-08 1996-02-08 Cure accelerator for epoxy resin

Publications (1)

Publication Number Publication Date
JPH09216936A true JPH09216936A (en) 1997-08-19

Family

ID=12076077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219796A Pending JPH09216936A (en) 1996-02-08 1996-02-08 Cure accelerator for epoxy resin

Country Status (1)

Country Link
JP (1) JPH09216936A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274251B1 (en) * 1998-06-25 2001-08-14 Hokko Chemical Industry Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
US7268191B2 (en) * 2003-12-04 2007-09-11 Nitto Denko Corporation Method for producing epoxy resin composition for semiconductor encapsulation and epoxy resin composition for semiconductor encapsulation and semiconductor device obtained thereby
JP2008285592A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device made by using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274251B1 (en) * 1998-06-25 2001-08-14 Hokko Chemical Industry Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
US7268191B2 (en) * 2003-12-04 2007-09-11 Nitto Denko Corporation Method for producing epoxy resin composition for semiconductor encapsulation and epoxy resin composition for semiconductor encapsulation and semiconductor device obtained thereby
JP2008285592A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device made by using the same
WO2008143085A1 (en) * 2007-05-17 2008-11-27 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained by using the same
US8269213B2 (en) 2007-05-17 2012-09-18 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device produced by using the same

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
KR101955754B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP2862718B2 (en) Semiconductor device
JPH09216936A (en) Cure accelerator for epoxy resin
JP2019104887A (en) Epoxy resin composition for sealing, cured product, and semiconductor device
JP2003128759A (en) Epoxy resin composition and semiconductor device
JP3432445B2 (en) Epoxy resin composition for optical semiconductor and semiconductor device
JPH0977958A (en) Epoxy resin composition and semiconductor device
JPH05206331A (en) Resin composition for sealing semiconductor
JP2009046556A (en) Epoxy resin composition
JPH07173253A (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP3543854B2 (en) Resin composition for sealing and semiconductor device
JPS5975923A (en) Epoxy resin composition for semiconductor sealing
JPH107770A (en) Epoxy resin composition and production thereof
JPH05175373A (en) Epoxy resin composition
JP3517961B2 (en) Epoxy resin composition and semiconductor encapsulating material
JPH06100658A (en) Epoxy resin composition
JPH10176035A (en) Epoxy resin composition for sealing semiconductor device
JPH1067914A (en) Modified phenol resin, its production and epoxy resin composition using the same phenol resin as hardener
JPH08176278A (en) Resin composition
JPH10130466A (en) Epoxy resin composition for sealing semiconductor
JPH05198705A (en) Resin composition for sealing semiconductor
JPH06100659A (en) Epoxy resin composition
JPH07268071A (en) Epoxy resin composition for sealing semiconductor