JPS597252A - Method and apparatus for measuring inclined angle of crystal surface - Google Patents

Method and apparatus for measuring inclined angle of crystal surface

Info

Publication number
JPS597252A
JPS597252A JP11653882A JP11653882A JPS597252A JP S597252 A JPS597252 A JP S597252A JP 11653882 A JP11653882 A JP 11653882A JP 11653882 A JP11653882 A JP 11653882A JP S597252 A JPS597252 A JP S597252A
Authority
JP
Japan
Prior art keywords
crystal
crystal surface
angle
disc
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11653882A
Other languages
Japanese (ja)
Inventor
Junji Matsui
松井 純爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11653882A priority Critical patent/JPS597252A/en
Publication of JPS597252A publication Critical patent/JPS597252A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure the inclined angle of the crystal surface with high precision, by rotating the crystal in a plane in parallel to the crystal surface, diffracting X-rays, and halving the angle difference between the 2 X-ray intensity peaks obtained from the specified grating faces. CONSTITUTION:The crystal wafer 1 to be measured is fixed to a disc 2, and the disc 2 is rotated with a motor 3 so as to allow the central axis of the disc 2 to coincide with the rotation axis. An X-ray flux 4 narrowed through holelike slits 5, 6 is allowed to fall on the disc through its central axis, and a relative incident angle beta with respect to the flux 4 is changed in the horizontal face of the disc 2. The intensity of the reflected X-rays is detected with an X-ray detector located at the position almost satisfying the Bragg condition. The inclined angle of the crystal surface is obtained by halving the angle difference between the 2 X-ray intensity peaks obtained from the specified grating faces of the crystal surface.

Description

【発明の詳細な説明】 この発明は単結晶表面の特定面方位からの傾きの角度を
測定する方法及びその測定装置痘に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the angle of inclination of a single crystal surface from a specific plane direction.

従来、単結晶の結晶学的面方位(以後単に1自力位」と
称する)を測定する方法として、特性X線の細束ビーム
(以後[入射線束コと称する)を結晶表面に照射し、特
定の結晶格子a+ (以後[格子面Jと称する)からの
ブラッグ回払をオリ用する方法がある。すなわち、特性
XffMの入射線束に対して、ブラッグ回折を起こす面
方位を探索し、そのブラッグ回折によって反射する細束
ビーム(以後「反射線束Jと称する)の強度が最大にな
る面方位と入射または反射線束とのなす角度(ブラッグ
角)を測定することにより、その面方位に対する結晶面
指数を決定することがよく行われている。
Conventionally, as a method for measuring the crystallographic plane orientation (hereinafter simply referred to as the 1st self-force orientation) of a single crystal, a narrow beam of characteristic X-rays (hereinafter referred to as the incident beam) is irradiated onto the crystal surface, and There is a method that uses Bragg repulsion from the crystal lattice a+ (hereinafter referred to as lattice plane J). That is, for the incident ray flux of the characteristic XffM, the surface orientation that causes Bragg diffraction is searched, and the surface orientation and the incident direction where the intensity of the narrow beam reflected by the Bragg diffraction (hereinafter referred to as "reflected ray flux J") is maximized are determined. It is common practice to determine the crystal plane index for the plane orientation by measuring the angle (Bragg angle) formed with the reflected ray flux.

一方、半導体ウェーハに代表される平行板状単結晶(以
後1−ウェーハコと称する)を単結晶インゴットから切
断加工してとシ出す場合に、このウェーハの表面が所要
面方位から傾いて加工され、その傾きの程度が問題とな
ることがるる。例えは、<100>の成長軸で育成され
だ即結晶インゴットから(100)表面を持つウェーハ
を切断加工した場合、特別の注意を払わない限り、加工
表面は±1°程度の紛、囲で結晶学的(100)面から
仙いてしまうことか多い。このようなウェーハに対して
、その傾きを改めて尚精度で測定する必要か生じた場合
には、通當前記X線のブラッグ回折をオリ用すれば、0
.10以下(モノクロメータを使用した)[に結晶法に
於いては0001°以下)の精度で測定が可能となる。
On the other hand, when cutting a parallel plate-shaped single crystal (hereinafter referred to as a 1-wafer), such as a semiconductor wafer, from a single crystal ingot, the surface of the wafer is processed to be inclined from the desired plane direction, The degree of the slope may become a problem. For example, if a wafer with a (100) surface is cut from a ready-to-crystal ingot grown with a <100> growth axis, the processed surface will have a deviation of about ±1° unless special care is taken. It is often dismissed from the crystallographic (100) aspect. If it becomes necessary to measure the inclination of such a wafer again with higher precision, it is generally possible to measure the inclination of the wafer by using the Bragg diffraction of X-rays.
.. Measurement can be performed with an accuracy of 10° or less (using a monochromator) [0001° or less in the crystal method].

しかしなから、ウェーハ表面の%定面方位からの傾きを
測にするためには、ウェーハ表面上において入射線束の
照射位置で立てた垂線を神々の方位に傾けなから前記ブ
ラッグ回折条件を満足する立体角を求める操作がj#:
氷される。この操作はその垂軸を傾ける方位の空間的自
由度が太きいだめに、ブラッグ回折条件を満足する空間
位置を定めることか容易ではないという欠点があった。
However, in order to measure the inclination of the wafer surface from the % constant plane orientation, the perpendicular line erected at the irradiation position of the incident beam on the wafer surface must be tilted toward the divine direction and the Bragg diffraction condition described above must be satisfied. The operation to find the solid angle is j#:
iced. This operation has the disadvantage that it is not easy to determine a spatial position that satisfies the Bragg diffraction conditions because the degree of spatial freedom in the direction in which the vertical axis is tilted is large.

この発明の目的は、これらの欠点を除き、単結晶ウェー
ハ表(田の%足面方向からの傾き角度を容易にかつ商精
度で測定できる結晶表向傾き角の測定力法およびその測
定装置を提供することにある。
The purpose of the present invention is to eliminate these drawbacks and provide a force method for measuring the tilt angle of a crystal surface, which can easily measure the tilt angle from the surface direction of a single crystal wafer with commercial accuracy, and a measuring device therefor. It is about providing.

この発明の結晶光m」ftMき角の測定方法は、平行板
状単結晶をその表面に平行な面内で連続して回転させな
からx6回折を行い、このX線入射角度に苅するその結
晶表面の特定格子囲からのX鞄i強度を測定し、このX
脚強度の2つのピーク値の間の角度差を二分することに
よシその傾き角を測定することl:t!rf徴とする。
The method of measuring the angle of crystal light m'ftM of this invention involves continuously rotating a parallel plate-shaped single crystal in a plane parallel to its surface, performing x6 diffraction, and then The X bag i intensity from a specific lattice area on the crystal surface is measured, and this
By bisecting the angular difference between the two peak values of leg strength, the inclination angle is measured l:t! It is assumed to be an rf signal.

この発明の結晶表面傾き角測定装置は、平行根状単結晶
を支持す名札Z状体と、この板状体をその板面と平行な
面内で連続回転させる回転手段と、@i」N+i 1#
結晶に入射角を変えなからX線照射を行い回折を生ぜし
めその帥JtfiX線強度を測定するX線回邦1手段と
を含み構成される。
The crystal surface inclination angle measuring device of the present invention includes a name plate Z-shaped body supporting a parallel root-shaped single crystal, a rotation means for continuously rotating this plate-shaped body in a plane parallel to the plate surface, and @i''N+i 1#
The apparatus includes an X-ray return means for irradiating the crystal with X-rays without changing the incident angle to cause diffraction and measuring the intensity of the X-rays.

以下図面によυこの発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図はこの発明に用いられる8i(001)ウェーハ
の斜祈1はjである。この実施例においては、Siウェ
ーハとして、結晶表面の(001)面方位からの傾き(
ずれ)の角度、即ちウェーハ表面に立てた垂i1と(0
01〕軸とのなす角度αが、それぞれ041°、O,O
So、o、oi°以下である3釉類のウェーハを用いて
いる。
In FIG. 1, the diagonal 1 of the 8i (001) wafer used in the present invention is j. In this example, as a Si wafer, the inclination (
The angle of (0
01] The angle α with the axis is 041°, O, O, respectively.
Wafers with three glazes having temperatures below So, o, and oi° are used.

第2図はこの発明の実施例の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of an embodiment of the invention.

図において、測定すべきウェーノ・1を適当な円板2に
固着し、この円板2の中心軸1(ウェーハの垂線tと平
行)が回転軸と一致するように、モーター3によって円
板2を回転させる。この円板2の中心軸に直径05間ψ
の穴状スリット5及び@径30μmψの穴状スリット6
によって絞られた入・肘紛束4を入射させ、その円板2
の水平面内で入射紐束4に対する相対的入射角丸βを変
化させる。このときのXhの反射強度をははブラッグ条
件が満足する位置に置かれたX&!検出器7によって検
出し%過当な増幅器及び記録計によってその出力を記録
する。
In the figure, a wafer 1 to be measured is fixed to a suitable disk 2, and a motor 3 is used to move the disk 2 so that the center axis 1 of the disk 2 (parallel to the perpendicular line t of the wafer) coincides with the rotation axis. Rotate. The central axis of this disk 2 has a diameter of 05 ψ
Hole-like slit 5 and hole-like slit 6 with a diameter of 30 μmψ
Inject the beam 4 narrowed down by the disk 2.
The relative incident angle β with respect to the incident string bundle 4 is changed within the horizontal plane of . The reflection intensity of Xh at this time is X&! placed at a position that satisfies the Bragg condition. It is detected by a detector 7 and its output is recorded by a percentage amplifier and a recorder.

この発明の原理は次のとおりである。回転軸に対する入
射線束の角度β。は004反射に対するブラッグの余角
で2 dou S” (l−β。)=λを満足する。し
たがって、この入射角β。の近傍では次の二式か成立す
る。
The principle of this invention is as follows. Angle β of the incident ray bundle with respect to the axis of rotation. is the Bragg complementary angle for the 004 reflection and satisfies 2 dou S'' (l-β.)=λ. Therefore, the following two equations hold true in the vicinity of this incident angle β.

2dsin(−一β。−α)二λ     (1)2d
stn(−一β。+α)=λ      (2)すなわ
ち、このような角度位置で、ブラッグ条件を満足した反
射線束が得られるから、β1=鳥十α。
2dsin(-1β.-α)2λ (1)2d
stn(-1β.+α)=λ (2) In other words, at such an angular position, a reflected ray flux that satisfies the Bragg condition can be obtained, so β1=Tori+α.

β、=β。−αとすれば、第3図のピーク間距離△βは
次式を満足する。
β, = β. -α, the inter-peak distance Δβ in FIG. 3 satisfies the following equation.

△β=β、−β、=2α         (3)した
がって、第3図のピーク間距離△βが測定されれは、こ
れから直接次式が求められる。
Δβ=β, −β,=2α (3) Therefore, when the peak-to-peak distance Δβ in FIG. 3 is measured, the following equation can be directly obtained from it.

第3図(al 、 (b) 、 (c)はこの実施例の
装置を用いて第1図の3種類のウェーノ・について測定
した特性図である。この実施例では特性X線としてCu
Kα。
Figures 3 (al, b), and (c) are characteristic diagrams measured for the three types of wafers shown in Figure 1 using the apparatus of this example.
Kα.

線(波長λ=1.54A)を用い、β二55.4°近傍
で測定したもので、横軸の入射角度βに対して縦軸のx
3強iIを示している。この第3図(a) 、 fb)
ではそれぞれ対称的に2つのピークを拐つ特性が得られ
た。この特性図において、ピーク間角度を△βとずれは
、第3し1(a)では△β=082°、第3図tb)で
t」、△β二0.16°、まだ第3図fc)ではピーク
は−りで△β−%−00であった。この糾合、ウェーハ
1はh転しているから2つのピークの強度かほぼltt
+じに測駕される。この実施例においてケよ、(4)式
の関係から第3図1a)では(X=0.41°、同+b
)でr、i:α=0.08°。
(wavelength λ = 1.54A), measured near β255.4°, where x is the angle of incidence on the vertical axis relative to the incident angle β on the horizontal axis.
3 strong iI is shown. This figure 3 (a), fb)
In this case, two symmetrical peaks were obtained. In this characteristic diagram, the peak-to-peak angle is △β and the deviation is △β = 082° in Figure 3 1 (a), t'' in Figure 3 tb), △β 2 0.16°, still in Figure 3 fc), the peak was clear and Δβ-%-00. In this combination, since wafer 1 is in h-turn, the intensity of the two peaks is almost ltt.
It is measured in the same way. In this example, from the relationship of equation (4), in Fig. 3 1a) (X = 0.41°, +b
) with r, i: α=0.08°.

同fc)では、α=0.O15°(この実施例の分解能
)以ドと測定できる。
fc), α=0. It can be measured as less than 015° (resolution of this example).

なお、この実施例においては、傾き角度αかそれぞれウ
ェーハ内のいずれの晶帯で何1いているかは間租にして
いないが、ウェーハ内の傾きの方向を知りたい場合にd
l、第4図の8+祝図に示す装置により測定できる。す
なわち、回転軸にelは平行に入射する光線】1が通過
用能なスリット21を廟、する円板2の上にウェーハ1
を161カヱし、円板2の回転時にスリット21を通崩
して光検出器22で検出される光軸のパルスと、X線検
出器7によって検出されるX線のパルスとの位相関係ヲ
、過当な知気回路、たとえば増幅器23およびロックイ
ンアンプ24等を用いて測定すればよい。
In this example, the tilt angle α is not specified in any crystal zone within the wafer, but if you want to know the direction of the tilt within the wafer, d
1. It can be measured using the device shown in the 8+ diagram in Figure 4. That is, a wafer 1 is placed on a disk 2 which has a slit 21 through which a ray of light incident parallel to the rotation axis 1 can pass.
161, and the phase relationship between the optical axis pulse that breaks through the slit 21 and is detected by the photodetector 22 when the disk 2 rotates, and the X-ray pulse detected by the X-ray detector 7. , the measurement may be performed using an appropriate circuit such as the amplifier 23 and the lock-in amplifier 24.

【図面の簡単な説明】[Brief explanation of drawings]

第1ジノはこの発明に用いられ結晶表面が(001)W
lよりαだけ傾いた表面を持つウェーハの斜視図、第2
図はこの発明の実施例ケ示す斜視図、第3図(al 、
 (b) 、 (clはこの実施例で異った傾き角を持
つウェーハ3柚についての測定結果を示す特性図、第4
図は本発明の他の実施例の構成を示す斜視図である。 図において、1・・・・・・ウェーハ、2・・・・・・
円板、3・・・・・・モーター、4・・・・・・入射X
i束、5,6・・・・・・スリット、7・・・・・・X
線検出器、11・・・・・・光線、21・・・・・・円
板のスリット、22・・・・・・光検出器、23・・・
・・・増幅器、24・・・・・・口、クインアンブであ
る。 ) 矛−21?J 乙β=0.82’ 6β−0,1(、’ 第3図
The first dino is used in this invention and has a crystal surface of (001)W.
Perspective view of a wafer with a surface inclined by α from l, 2nd
The figure is a perspective view showing an embodiment of the present invention, and FIG.
(b), (cl is a characteristic diagram showing the measurement results for three wafers with different tilt angles in this example, the fourth
The figure is a perspective view showing the configuration of another embodiment of the present invention. In the figure, 1... wafer, 2...
Disc, 3...Motor, 4...Incidence X
i bundle, 5, 6...slit, 7...X
Ray detector, 11...Light ray, 21...Disc slit, 22...Photodetector, 23...
...Amplifier, 24... Mouth, Quin Ambu. ) Spear-21? J Otsuβ=0.82'6β-0,1(,' Fig. 3

Claims (1)

【特許請求の範囲】 1)、平行板状単結晶を表面に平行な面内で連続的に(
ロ)転させながらX線回折を行い、Xh入射角に対する
その結晶表面の特定格子面からのX線強度を測戻し、と
のXIti1強度の2つのピーク値の間の角度差を2分
して傾き角を測定することを特徴とする結晶表面傾き角
の測定方法。 2)、平行板状単結晶を支持する板状体と、この板状体
をその板面と平行な面内で郊続的に回転させる回転手段
と、前記平行板状単結晶に入射角を震えながらX線を照
射して回折を生ぜしめその回折XfFJ!強度を測定す
るX線回折手段とを含むことを特徴とする結晶表面傾き
角の測定装置。
[Claims] 1) A parallel plate-like single crystal is continuously (
b) Perform X-ray diffraction while rotating, measure back the X-ray intensity from a specific lattice plane on the crystal surface with respect to the Xh incident angle, and divide the angular difference between the two peak values of the XIti1 intensity into two. A method for measuring a crystal surface tilt angle, characterized by measuring a tilt angle. 2) A plate-shaped body supporting a parallel plate-shaped single crystal, a rotation means for continuously rotating the plate-shaped body in a plane parallel to the plate surface, and an incident angle to the parallel plate-shaped single crystal. Shivering while irradiating X-rays and causing diffraction, the diffraction XfFJ! 1. An apparatus for measuring a crystal surface tilt angle, comprising an X-ray diffraction means for measuring intensity.
JP11653882A 1982-07-05 1982-07-05 Method and apparatus for measuring inclined angle of crystal surface Pending JPS597252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11653882A JPS597252A (en) 1982-07-05 1982-07-05 Method and apparatus for measuring inclined angle of crystal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11653882A JPS597252A (en) 1982-07-05 1982-07-05 Method and apparatus for measuring inclined angle of crystal surface

Publications (1)

Publication Number Publication Date
JPS597252A true JPS597252A (en) 1984-01-14

Family

ID=14689597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11653882A Pending JPS597252A (en) 1982-07-05 1982-07-05 Method and apparatus for measuring inclined angle of crystal surface

Country Status (1)

Country Link
JP (1) JPS597252A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168535A (en) * 1980-05-30 1981-12-24 Nec Corp Method for measuring surface bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168535A (en) * 1980-05-30 1981-12-24 Nec Corp Method for measuring surface bearing

Similar Documents

Publication Publication Date Title
EP0110469B1 (en) X-ray analysis apparatus comprising a four-crystal monochromator
EP0635716B1 (en) Asymmetrical 4-crystal monochromator
Jenichen et al. RTK 2-a double-crystal x-ray topographic camera applying new principles
JP3519203B2 (en) X-ray equipment
US4771446A (en) Grading orientation errors in crystal specimens
JP6009156B2 (en) Diffractometer
JPH08128971A (en) Exafs measuring device
JPS597252A (en) Method and apparatus for measuring inclined angle of crystal surface
JPH08313458A (en) X-ray equipment
US6285736B1 (en) Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus
JP3918216B2 (en) Single crystal cutting apparatus and method
JP3741398B2 (en) X-ray measuring method and X-ray measuring apparatus
JPH06122119A (en) Seed rod cutting method
JPH04164239A (en) Powder x-ray diffraction meter
JPH05312736A (en) Apparatus and method of x-ray measurement of single crystal orientation
JP2732311B2 (en) X-ray topography equipment
JPH03125948A (en) Method for precisely measuring lattice constant
JPH0933700A (en) X-ray monochromator and x-ray diffractor using it
JPS643064Y2 (en)
JPH0239738B2 (en) MENHOISOKUTEIHOHO
JPH11248652A (en) X-ray diffraction measuring method and x-ray differactometer
SU1103127A1 (en) Method of determination of monocrystal plate orientation
JP2723734B2 (en) Single crystal for collimator
JPS6382350A (en) X ray crystal diffraction apparatus
SU1087853A1 (en) Surface machining quality control method