JP2723734B2 - Single crystal for collimator - Google Patents
Single crystal for collimatorInfo
- Publication number
- JP2723734B2 JP2723734B2 JP35893491A JP35893491A JP2723734B2 JP 2723734 B2 JP2723734 B2 JP 2723734B2 JP 35893491 A JP35893491 A JP 35893491A JP 35893491 A JP35893491 A JP 35893491A JP 2723734 B2 JP2723734 B2 JP 2723734B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal
- collimator
- diffraction
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、X線回折用の結晶欠陥
の少ないコリメーター用単結晶に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal for collimator for X-ray diffraction with few crystal defects.
【0002】[0002]
【従来の技術】結晶欠陥を高性能に検出するためのX線
回折には、通常2結晶法もしくは3結晶法が用いられ、
入射X線の角度広がりを抑えるためにそれぞれ1または
2個のコリメーター用単結晶が使用される。2. Description of the Related Art A two-crystal method or a three-crystal method is usually used for X-ray diffraction for high-performance detection of crystal defects.
In order to suppress the angular spread of the incident X-ray, one or two single crystals for collimator are used.
【0003】それらの単結晶には、試料単結晶と同質の
ものが用いられる(+n,−n)配置とよばれる方法、
および、試料単結晶と異質のものを用いる事ができる
(+n1,+n2,−n3)配置とよばれる方法がある。こ
れらの方法を図1及び図2に示した。As those single crystals, those of the same quality as the sample single crystal are used, which is called a (+n, -n) arrangement.
Also, there is a method called (+n1, +n2, -n3) arrangement in which a material different from the sample single crystal can be used. These methods are shown in FIGS. 1 and 2.
【0004】ここで、nは回折格子面の指数を表してお
り、一般的には最終段に試料結晶が配置される。後者の
方法(図2)はX線の波長分散を抑えられることにより
試料と異質のコリメーター用単結晶を使用する事ができ
る(「X線の回折」、p.179、三宅静雄著、昭和4
4年、朝倉書店発行、参照)。Here, n represents the index of the diffraction grating surface, and the sample crystal is generally arranged at the final stage. The latter method (Fig. 2) can use a single crystal for collimator which is different from the sample because the wavelength dispersion of X-rays can be suppressed ("X-ray diffraction", p.179, Shizuo Miyake, Showa Showa). Four
4 years, published by Asakura Shoten).
【0005】かかるコリメーター用単結晶1もしくは2
に非対称反射を用いると角度発散が極めて小さくなり試
料結晶3からの回折を精密に測定できるようになる。こ
こで、非対称反射とは使用する回折面hklとコリメー
ター用単結晶表面との角度を傾けて切出し、入射X線と
回折線のコリメーター用単結晶表面に対する角度yから
非対称因子b=sin(x)/sin(y)を定義しb
<<1となるような幾何学的関係において達成される。Single crystal 1 or 2 for such a collimator
If asymmetric reflection is used for the angle divergence, the angle divergence becomes extremely small and the diffraction from the sample crystal 3 can be accurately measured. Here, the asymmetric reflection is cut out by inclining the angle between the diffractive surface hkl to be used and the collimator single crystal surface, and from the angle y of the incident X-ray and the diffracted ray with respect to the collimator single crystal surface, the asymmetry factor b=sin( x)/sin(y) and b
It is achieved in a geometric relation such that <<1.
【0006】コリメーター用単結晶からの回折X線の角
度分散は、コリメーター用単結晶にm回逐次反射すると
すると、bmに比例する。すなわち、b<1であれば、
入射X線の角度分散は回折後にb倍だけ小さくなる事に
なる。具体的には、入射X線を表面すれすれに入射すれ
ばよい。この関係を図3に示した。The angular dispersion of the diffracted X-ray from the collimator single crystal is proportional to b m when the collimator single crystal is successively reflected m times. That is, if b<1,
The angular dispersion of the incident X-ray is reduced by b times after diffraction. Specifically, the incident X-ray may be incident just on the surface. This relationship is shown in FIG.
【0007】この様な回折配置において試料からの回折
X線を図1に示したような写真乾板4により回折線の強
弱を検出し試料結晶中の格子歪を検出する回折顕微法が
公知の技術である。一般的にはこの種の装置を使用する
事により格子歪を10-7の高感度で検出する事ができ
る。A well-known technique is a diffraction microscopic method in which the intensity of the diffracted X-rays from the sample is detected by the photographic plate 4 as shown in FIG. 1 to detect the lattice distortion in the sample crystal in such a diffraction arrangement. Is. Generally, by using this type of device, lattice strain can be detected with high sensitivity of 10 -7 .
【0008】ただし、bを無限に0に近づける事はでき
ない。なぜならば、コリメーター用単結晶の表面すれす
れにX線を入射させると、光学的な全反射が起り回折が
起らなくなる。このときの臨界角θcはX線のその表面
に対する屈折率δよりθc≒√(2δ)で表される
(「X線の回折」、p.7、三宅静雄著、昭和44年、
朝倉書店発行、参照)。したがってxの下限はθcとな
り、bもb>sin(θc)/sin(y)となる。一
般的にはθcは10分程度である。However, b cannot be infinitely close to zero. This is because when X-rays are incident on the surface of the single crystal for a collimator, optical total reflection occurs and diffraction does not occur. The critical angle θc at this time is expressed by θc≈√(2δ) from the refractive index δ of the X-ray to the surface (“X-ray diffraction”, p. 7, Shizuo Miyake, 1969,
Published by Asakura Shoten, see). Therefore, the lower limit of x is θc, and b is also b>sin(θc)/sin(y). Generally, θc is about 10 minutes.
【0009】上述したごとく、この種の装置は試料単結
晶中の格子歪を高感度に検出する点に特徴がある。ここ
で問題になる点としてコリメーター用単結晶について、
測定する試料単結晶よりも完全性が要求される点にあ
る。As described above, this type of device is characterized in that it detects the lattice strain in the sample single crystal with high sensitivity. As a problem here, regarding the single crystal for collimator,
The point is that perfection is required rather than the sample single crystal to be measured.
【0010】一般的にはコリメーター用単結晶にはシリ
コン単結晶が使われるが、シリコン単結晶を試料としそ
の完全性を調べるには試料のシリコン単結晶よりもより
完全性の高いコリメーター用単結晶が必要とされる。Generally, a silicon single crystal is used as a single crystal for a collimator, but a silicon single crystal is used as a sample, and its integrity is examined. For a collimator having a higher completeness than a silicon single crystal of a sample. Single crystals are needed.
【0011】最近、16MDRAMなどの超LSIを作
成するにあたりシリコン単結晶の完全性が要求されてき
ているが、従来コリメーター用単結晶に使用されてきた
のは、かかる超LSI用のシリコン単結晶棒であり、同
等レベルのシリコン単結晶棒を試料とするにはコリメー
ター用単結晶の品質そのものが問題となってきている。Recently, the perfection of a silicon single crystal has been required for the production of a VLSI such as 16MDRAM. Conventionally, a single crystal for a collimator has been used as a silicon single crystal for the VLSI. The quality of the single crystal for collimator itself is becoming a problem when using a silicon single crystal ingot of the same level as a sample.
【0012】[0012]
【発明が解決しようとする課題】本発明者は、かかるコ
リメーター用単結晶について超LSI用単結晶以上の完
全性を備えた格子欠陥を含まない単結晶を得るために研
究を重ねたものである。DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive research on such a single crystal for collimators in order to obtain a single crystal that is more complete than a single crystal for VLSI and does not contain lattice defects. is there.
【0013】本発明に関連して、超LSI単結晶中の不
完全性をなす格子欠陥について本発明者は種々研究を行
った。その結果、かかる格子欠陥を重クロム酸と沸酸の
混合液中で30分間放置する事により光学顕微鏡下で観
察できることがわかった[参考文献、H.Yamagi
shi et al:DRIP41991年Engla
nd paper N 14]。In connection with the present invention, the present inventor has conducted various researches on incomplete lattice defects in VLSI single crystals. As a result, it was found that such lattice defects can be observed under an optical microscope by leaving them in a mixed solution of dichromic acid and hydrofluoric acid for 30 minutes [Reference, H. Yamagi
shi et al: DRIP 41991 Engla
nd paper N 14].
【0014】さらに、かかる格子欠陥はアンモニア溶液
と過酸化水素との混合液中で繰り返し洗浄した時に発生
するエッチピットの個数に相対的に比例する事がわかっ
た[参考文献、布施川泉他:応用物理学会第38回春季
連合学会 paper No.28p−ZL−3]。Further, it has been found that such lattice defects are relatively proportional to the number of etch pits generated when repeatedly washed in a mixed solution of ammonia solution and hydrogen peroxide [reference document, Izumi Fusegawa et al.: 38th Spring Association of Japan paper No. 28p-ZL-3].
【0015】本発明者は、かかる知見のもとにシリコン
単結晶表面に薄いエピタキシャル膜をCVDプロセスに
より成長させ基板シリコン単結晶よりかかる格子欠陥が
エピ膜中に侵入しない事を発見し、上述した従来の問題
点を解決して本発明を完成したものである。本発明は、
試料単結晶中の格子歪を高感度で検出することを可能と
する結晶欠陥の少ないコリメーター用単結晶を提供する
ことを目的とする。Based on such knowledge, the present inventor discovered that a thin epitaxial film was grown on the surface of a silicon single crystal by a CVD process and that the lattice defects caused by the substrate silicon single crystal did not penetrate into the epi film, and the above-mentioned was described above. The present invention has been completed by solving the conventional problems. The present invention is
An object of the present invention is to provide a single crystal for a collimator, which has a small number of crystal defects and which can detect lattice strain in a sample single crystal with high sensitivity.
【0016】[0016]
【0017】上記入射角xの最小値を入射X線が全反射
を起こす臨界角θcよりも大となるように選択し、b>
sin(θc)/sin(y)となるように使用回折面
から傾けた表面を有する基板単結晶と、該基板単結晶の
表面に成長させた該単結晶と同質の材料からなる単結晶
薄膜とを有するのが好ましい。また、上記基板単結晶が
シリコン単結晶であり、該シリコン単結晶にエピタキシ
ャル成長により単結晶薄膜を成長させるのが好ましい。The minimum value of the incident angle x is selected so as to be larger than the critical angle θc at which the incident X-ray causes total reflection, and b>
Use diffractive surface so that sin(θc)/sin(y)
A substrate a single crystal having a surface inclined from preferably has a single-crystal thin film made of a substrate a single crystal single crystal of the same quality of the material grown on the surface of the. Further, it is preferable that the substrate single crystal is a silicon single crystal, and a single crystal thin film is grown on the silicon single crystal by epitaxial growth.
【0018】[0018]
【作用】さらに、本発明の要点はX線回折において、シ
リコン単結晶表面と使用する回折面が傾いている前述し
た非対称反射に際し、シリコン単結晶表面にCVDでエ
ピタキシャル膜を成長させる技術を応用できるようにし
た事にある。Further, the point of the present invention is that in X-ray diffraction, a technique for growing an epitaxial film on the surface of a silicon single crystal by CVD can be applied to the above-mentioned asymmetric reflection in which the surface of the silicon single crystal and the diffraction surface used are inclined. I have done so.
【0019】従来、シリコン単結晶表面にエピタキシャ
ル膜を成長させる技術は公知であった。しかし、かかる
技術はシリコンウェーハ表面の指数が(100)や(1
10)もしくは(111)などのように低次のものか、
または公知文献(C.E.Drum;Journal
of Electrochemical Societ
y 115(1968),664)に開示されているよ
うにその面から表面が3゜程傾いたものである。Conventionally, a technique for growing an epitaxial film on the surface of a silicon single crystal has been known. However, such a technology has a silicon wafer surface index of (100) or (1
10) or (111) etc.
Or publicly known literature (CE Drum; Journal)
of Electrochemical Societ
y 115 (1968), 664), the surface is inclined by about 3° from that surface.
【0020】本発明は従来のエピタキシャル成長技術に
おけるこれらの固定観念を打破し、X線回折における非
対称反射における非対称因子bが1より小さくなるよう
に表面と回折面とが大きく傾くようにしてエピタキシャ
ル膜を作成しそれをコリメーター用単結晶として使用す
るようにしたものである。The present invention overcomes these fixed ideas in the conventional epitaxial growth technique, and forms an epitaxial film such that the asymmetry factor b in asymmetric reflection in X-ray diffraction is smaller than 1 and the surface and the diffractive surface are largely inclined. It was created and used as a single crystal for a collimator.
【0021】[0021]
【実施例】以下に本発明の実施例を挙げて本発明をさら
に具体的に説明する。本発明がこの実施例の記載に限定
されるものでないことは勿論である。 製造例1 チョクラルスキー法により石英ルツボ中にポリシリコン
原料を充填し溶融後成長方位<100>をもつ直径6”
のシリコン単結晶棒を成長させた。このとき、ドーパン
ト用不純物を添加せずに成長させたため成長後の単結晶
棒の抵抗率は2000ohm・cmであった。EXAMPLES The present invention will be described more specifically with reference to examples of the present invention. Of course, the present invention is not limited to the description of this embodiment. Manufacture example 1 After the polysilicon raw material was filled in a quartz crucible by the Czochralski method, a diameter of 6" having a growth orientation <100> after melting
Of silicon single crystal rods were grown. At this time, since the growth was performed without adding the dopant impurities, the resistivity of the single crystal rod after the growth was 2000 ohm·cm.
【0022】かかる単結晶棒からコリメーター用シリコ
ン単結晶を切断する事とした。加工をするにあたりX線
回折を念頭においた。X線回折に使用するX線の波長λ
をCuKα1としシリコンの422反射によるブラッグ
回折角θbを算出した。以上の計算は「X線回折要論」
(カリティ著、昭和47年、アグネ社発行)によって行
った。A silicon single crystal for a collimator was cut from the single crystal rod. X-ray diffraction was taken into consideration when processing. X-ray wavelength used for X-ray diffraction λ
Was set as CuKα1 and the Bragg diffraction angle θb due to 422 reflection of silicon was calculated. The above calculation is "X-ray diffraction principle"
(Written by Curity, published by Agne Publishing Co. in 1972).
【0023】この時の回折角は44.040°であるこ
とがわかった。したがって、表面を(211)面から4
3.540°傾けて、先に成長させたシリコン単結晶棒
より切出すものとした。このときの、X線のシリコン単
結晶表面に対する入射角xと回折角yはそれぞれ0.5
°と87.580°となり、非対称因子b=0.008
7となった。It was found that the diffraction angle at this time was 44.040°. Therefore, from the (211) plane to the surface 4
It was tilted at 3.540° and cut from the previously grown silicon single crystal ingot. At this time, the incident angle x and the diffraction angle y of the X-ray with respect to the silicon single crystal surface are 0.5 and 0.5, respectively.
And 87.580°, and the asymmetry factor b=0.008
It became 7.
【0024】切出したシリコン単結晶の厚さは2mmで
あり、かかるウェーハ上にエピタキシャル膜を成長させ
たものa(実施例1)とさせないものc(比較例1)を
複数枚用意した。エピタキシャル成長はトリクロロシラ
ンと水素の混合ガスを流しながら1100℃で2時間行
なった。The thickness of the cut out silicon single crystal was 2 mm, and a plurality (a) of which an epitaxial film was grown on such a wafer (Example 1) and a sample (c) of Comparative Example 1 (Comparative Example 1) were prepared. The epitaxial growth was performed at 1100° C. for 2 hours while flowing a mixed gas of trichlorosilane and hydrogen.
【0025】測定例1 このときのコリメーター用単結晶a(実施例1)のエピ
タキシャル膜の厚さをエリプソメーターで測定したとこ
ろ、30μmであった。X線の試料単結晶の表面から結
晶内部に侵入するいわゆる消衰距離は高々数ミクロンメ
ートルであるので成長すべきエピタキシャル膜の厚さは
この消衰距離を基準に考えればよい。Measurement Example 1 The thickness of the epitaxial film of the collimator single crystal a (Example 1) at this time was measured by an ellipsometer and found to be 30 μm. Since the so-called extinction distance of X-rays penetrating from the surface of the sample single crystal into the inside of the crystal is at most several micrometers, the thickness of the epitaxial film to be grown can be considered on the basis of this extinction distance.
【0026】また、a(実施例1)とc(比較例1)に
対して前述のアンモニア溶液と過酸化水素との混合液
(表1においてはアンモニア過水と略称する。)中で5
回それぞれ20分ずつ繰り返し洗浄を行い生成したエッ
チピットの密度をレーザーパーティクルカウンターで測
定した。In addition, for a (Example 1) and c (Comparative Example 1), 5 in a mixed solution of the above-mentioned ammonia solution and hydrogen peroxide (abbreviated as ammonia-hydrogen peroxide in Table 1).
The cleaning was repeated 20 minutes each, and the density of the generated etch pits was measured with a laser particle counter.
【0027】この時の測定原理は、生成したエッチピッ
トからの照射レーザー光の散乱を測定している点にあ
る。この時のカウント数を表1に示したが、a(実施例
1),c(比較例1)に対してそれぞれ1ケ/表面、1
52ケ/表面となりエピタキシャル膜を成長させたもの
の方が結晶欠陥が少ない事が予想された。The measurement principle at this time is that the scattering of the irradiation laser light from the generated etch pit is measured. The number of counts at this time is shown in Table 1 and is 1/surface for a (Example 1) and c (Comparative Example 1), respectively.
It was expected that the number of crystal defects would be less in the case where the number was 52/surface and the epitaxial film was grown.
【0028】かかる結晶をコリメーター用単結晶に使用
した時に、格子欠陥による異常な像が現れないかどうか
をチェックした。この時の配置を図1に示した(+n,
−n)配置にしてX線顕微回折法によりチェックした。
第1結晶および第2結晶にa,cの結晶をペアで配置し
た。即ち、a−a(実施例1),c−c(比較例1)の
組合わせとした。When such a crystal was used as a single crystal for a collimator, it was checked whether an abnormal image due to lattice defects appeared. The arrangement at this time is shown in FIG. 1 (+n,
-N) configuration and checked by X-ray microscopy.
The crystals of a and c were arranged in pairs in the first crystal and the second crystal. That is, a combination of aa (Example 1) and cc (Comparative Example 1) was used.
【0029】X線源には回転対陰極回転法によるCuタ
ーゲットから発生したCuKα1線を用いた。スリット
5で100μmの線幅に絞り第1結晶に入射させた。X
線源から第1結晶までの距離は1m、第1結晶と第2結
晶との距離は10cm、また、第2結晶とX線像撮影用
フィルムとの距離は2cmであった。As the X-ray source, CuKα1 ray generated from a Cu target by the rotating anticathode rotation method was used. The slit 5 made a line width of 100 μm, and the light was made incident on the first crystal. X
The distance from the radiation source to the first crystal was 1 m, the distance between the first crystal and the second crystal was 10 cm, and the distance between the second crystal and the X-ray imaging film was 2 cm.
【0030】X線像撮影用フィルムには原子核乾板を使
用し、現像後のフィルムを顕微鏡下で20倍に拡大して
黒化された部分をカウントした。この時、X線トポグラ
フを撮影する手順を以下の様に行なった。A nuclear dry plate was used as a film for X-ray imaging, and the developed film was magnified 20 times under a microscope and the number of blackened portions was counted. At this time, the procedure for photographing the X-ray topography was performed as follows.
【0031】第2結晶をビームと垂直な鉛直方向を軸に
0.1秒ステップで回転させX線撮像フィルムの後方に
設置したカウンターでX線の回折強度を測定した。これ
を一般にロッキングカーブと呼んでいる。The second crystal was rotated in 0.1 second steps about the vertical direction perpendicular to the beam as an axis, and the X-ray diffraction intensity was measured by a counter installed behind the X-ray imaging film. This is generally called a rocking curve.
【0032】ところで、結晶中の格子欠陥がある部分で
は格子が歪み、面間隔dがΔdだけ変化しているとする
と、第2結晶の鉛直方向に対する回転角がΔθ=−ta
n(θb)・Δd/dだけブラッグ角からずれることが
知られている。By the way, if the lattice is distorted in the portion where the lattice defect exists in the crystal and the interplanar spacing d changes by Δd, the rotation angle of the second crystal with respect to the vertical direction is Δθ=-ta.
It is known to deviate from the Bragg angle by n(θb)·Δd/d.
【0033】したがって、結晶中の格子欠陥を上記方法
で検出するには、ロッキングカーブのピークから外れた
部分の第2結晶の回転角に保持すればよい事になる。本
測定例においては、上記ロッキングカーブ測定の後ピー
クを示す角度位置からマイナス方向からプラス方向にか
けて、0.3秒おきにX線トポグラフを撮影し、黒化さ
れた像の最大値を測定した。このときの角度のずれの絶
対値は1.2秒であった。Therefore, in order to detect the lattice defect in the crystal by the above method, it is sufficient to hold the rotation angle of the second crystal outside the peak of the rocking curve. In the present measurement example, after the rocking curve measurement, an X-ray topograph was photographed every 0.3 seconds from the angular position showing the peak to the minus direction to the plus direction, and the maximum value of the blackened image was measured. The absolute value of the angle deviation at this time was 1.2 seconds.
【0034】その結果を表1に示した。a−aの組合わ
せで黒点の密度がほぼ0となったことから、本発明にお
ける有効性が証明された。The results are shown in Table 1. Since the density of black dots became almost 0 in the combination of aa, the effectiveness in the present invention was proved.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【発明の効果】以上のべたごとく、本発明のコリメータ
ー用単結晶は結晶欠陥が少なく、試料単結晶中の格子歪
を高感度で検出することを可能とするものである。As described above, the single crystal for collimator of the present invention has few crystal defects and enables the lattice strain in the sample single crystal to be detected with high sensitivity.
【図1】X線2結晶回折顕微法 (+n,−n)配置を
示す説明図である。FIG. 1 is an explanatory diagram showing an X-ray two-crystal diffraction microscopy (+n, −n) arrangement.
【図2】X線3結晶回折法 (+n,+n,−n)配置
を示す説明図である。FIG. 2 is an explanatory diagram showing an X-ray three-crystal diffraction method (+n, +n, −n) arrangement.
【図3】コリメーター用単結晶中の幾何学的配置を示す
説明図である。FIG. 3 is an explanatory diagram showing a geometrical arrangement in a single crystal for a collimator.
1,2 コリメーター用単結晶 3 試料単結晶 4 原子核乾板 5 X線ソース 6,7 スリット x 入射角 y 回折角 θb ブラッグ角 1,2 Collimator single crystal 3 Sample single crystal 4 Nuclear dry plate 5 X-ray source 6,7 Slit x Incident angle y Diffraction angle θb Bragg angle
Claims (3)
いて、下記式(1)で表される非対称因子bが1より小
となるように使用回折面から傾けた表面を有する基板単
結晶と、該基板単結晶の表面に成長させた該単結晶と同
質の材料からなる単結晶薄膜とを有することを特徴とす
るコリメーター用単結晶。 b=sin(x)/sin(y)・・・・・・・・・・(1) 〔上記式(1)において、xは単結晶表面への入射角、
yは回折角であり、ブラック回折角θbとはx+y=2
θbなる関係がある。〕1. A collimator for single crystal X-ray diffraction, and the substrate a single crystal having a surface asymmetric factor b represented by the following formula (1) is tilted from the use diffraction plane so that less than 1 , a single crystal for collimator and having a single-crystal thin film made of a single crystal of the same quality of the material grown on the surface of the substrate single crystal. b=sin(x)/sin(y) (1) [In the above formula (1), x is the angle of incidence on the single crystal surface,
y is a diffraction angle, and black diffraction angle θb is x+y=2
There is a relationship of θb. ]
射を起こす臨界角θcよりも大となるように選択し、b
>sin(θc)/sin(y)となるように使用回折
面から傾けた表面を有する基板単結晶と、該基板単結晶
の表面に成長させた該単結晶と同質の材料からなる単結
晶薄膜とを有することを特徴とする請求項1記載のコリ
メーター用単結晶。2. A minimum value of the incident angle x is selected so as to be larger than a critical angle θc at which the incident X-ray causes total reflection, and b
Diffraction used so that >sin(θc)/sin(y)
A substrate a single crystal having a surface inclined from the surface, for collimator according to claim 1, characterized in that it has a single-crystal thin film made of a substrate a single crystal single crystal of the same quality of the material grown on the surface of Single crystal.
り、該シリコン単結晶表面にエピタキシャル成長により
単結晶薄膜を成長させたことを特徴とする請求項1又は
2記載のコリメーター用単結晶。3. The single crystal for a collimator according to claim 1, wherein the substrate single crystal is a silicon single crystal, and a single crystal thin film is grown on the surface of the silicon single crystal by epitaxial growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35893491A JP2723734B2 (en) | 1991-12-27 | 1991-12-27 | Single crystal for collimator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35893491A JP2723734B2 (en) | 1991-12-27 | 1991-12-27 | Single crystal for collimator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05180995A JPH05180995A (en) | 1993-07-23 |
JP2723734B2 true JP2723734B2 (en) | 1998-03-09 |
Family
ID=18461875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35893491A Expired - Lifetime JP2723734B2 (en) | 1991-12-27 | 1991-12-27 | Single crystal for collimator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2723734B2 (en) |
-
1991
- 1991-12-27 JP JP35893491A patent/JP2723734B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05180995A (en) | 1993-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raghothamachar et al. | Defect analysis in crystals using X‐ray topography | |
WO2013190829A1 (en) | Polycrystalline silicon crystal orientation degree evaluation method, polycrystalline silicon rod selection method, polycrystalline silicon rod, polycrystalline silicon ingot, and polycrystalline silicon fabrication method | |
Saito | X-ray diffraction micrography on the twin structure of antiferromagnetic nickel oxide | |
Lider | X-ray diffraction topography methods | |
Moriya | Observation of micro-defects in as-grown and heat treated Si crystals by infrared laser scattering tomography | |
JPH0479996B2 (en) | ||
Kohra et al. | X-Ray Diffraction Topography Utilizing Double-Crystal Arrangement of (+,+) or Non-Parallel (+,-) Setting | |
Jenichen et al. | Double crystal topography compensating for the strain in processed samples | |
JP2723734B2 (en) | Single crystal for collimator | |
JP3627381B2 (en) | Single crystal thin film evaluation method | |
Halliwell | X-ray diffraction solutions to heteroepitaxial growth problems | |
Raghothamachar et al. | X-ray topography techniques for defect characterization of crystals | |
JP2006016230A (en) | Quartz crystal thin film | |
Journot et al. | Combining Borrmann and weak-beam diffraction images to study defects in a high-quality CdTe (Zn) crystal | |
Ishikawa | Synchrotron X-ray topographic studies on minute strain fields in as-grown silicon single crystals | |
Yao et al. | Three-dimensional curving of crystal planes in wide bandgap semiconductor wafers visualized using a laboratory X-ray diffractometer | |
Kutsukake et al. | Modification of local structure and its influence on electrical activity of near (310) σ5 grain boundary in bulk silicon | |
Ando | Observation of t‐Wall Domains in NiO Crystals with Differential Interference‐Contrast Microscopy | |
Ogawa | Dislocation lines in indium-doped GaAs crystals observed by infrared light scattering tomography of about 1 μm wavelength radiation | |
Bubáková et al. | Contrast in the dislocation images for the Bragg case | |
Vetter et al. | Synchrotron white-beam X-ray topography of ribonuclease S crystals | |
Kimura et al. | Observation of minute strain fields in a floating-zone-grown silicon crystal containing D defects by means of plane-wave X-ray topography | |
Lang et al. | A possible new route to precise lattice-parameter measurement of perfect crystals using the divergent-X-ray beam method | |
Kudo et al. | Plane‐Wave X‐Ray Topography Using Imaging Plates and Its Application to Characterization of Lattice Distortion in As‐Grown Silicon | |
JP7134427B2 (en) | Crystal lattice plane distribution measurement method |