JP7134427B2 - Crystal lattice plane distribution measurement method - Google Patents

Crystal lattice plane distribution measurement method Download PDF

Info

Publication number
JP7134427B2
JP7134427B2 JP2018083268A JP2018083268A JP7134427B2 JP 7134427 B2 JP7134427 B2 JP 7134427B2 JP 2018083268 A JP2018083268 A JP 2018083268A JP 2018083268 A JP2018083268 A JP 2018083268A JP 7134427 B2 JP7134427 B2 JP 7134427B2
Authority
JP
Japan
Prior art keywords
plane
crystal lattice
sample
lattice plane
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083268A
Other languages
Japanese (ja)
Other versions
JP2019190965A (en
Inventor
修身 坂田
ジェミョン キム
オッキュン ソ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2018083268A priority Critical patent/JP7134427B2/en
Publication of JP2019190965A publication Critical patent/JP2019190965A/en
Application granted granted Critical
Publication of JP7134427B2 publication Critical patent/JP7134427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、結晶格子面分布測定方法に関し、特に50μm以下というような高い空間分解能をもって結晶格子面分布を測定する結晶格子面分布測定方法に係る。 The present invention relates to a crystal lattice plane distribution measuring method, and more particularly to a crystal lattice plane distribution measuring method for measuring a crystal lattice plane distribution with a high spatial resolution of 50 μm or less.

半導体結晶の格子歪や欠陥などの結晶性は、製品となる半導体デバイスの特性に影響を及ぼす。例えば、格子歪がGaNのバンドギャップを変化させ、デバイスの特性に影響を及ぼすことが報告されている(非特許文献1,2参照)。半導体デバイス製造の分野では、デバイスが微細化されるにつれ、転位や欠陥を観察し、その結果を結晶製造にフィードバックして結晶を高品質にすることが産業上非常に重要である。 The crystallinity of semiconductor crystals, such as lattice strain and defects, affects the characteristics of semiconductor devices that are products. For example, it has been reported that lattice strain changes the bandgap of GaN and affects device characteristics (see Non-Patent Documents 1 and 2). In the field of semiconductor device manufacturing, as devices are miniaturized, it is industrially very important to observe dislocations and defects and feed back the results to crystal manufacturing to improve the quality of crystals.

結晶の完全性を観察する方法として、X線回折顕微法、あるいはX線回折トポグラフ(XRDT)法と総称される方法がある(非特許文献3参照)。この方法は、Berg-Barrett法、Lang法、Laue法などにさらに分類される。X線源としてシンクロトロン放射光(シンクロトロンX線)が利用される以前から、実験室のX線源によってこれらの方法はよく使われている。これらの方法は、転位や欠陥による回折X線強度のコントラストを数μmの分解能で記録したり、転位のバーガースベクトルの方向を決定したりできる。
また、実験室のX線源を用いて、結晶方位の面内分布を測定する試みもなされている(特許文献1参照)
As a method for observing crystal perfection, there is a method collectively called an X-ray diffraction microscopic method or an X-ray diffraction topography (XRDT) method (see Non-Patent Document 3). This method is further classified into the Berg-Barrett method, the Lang method, the Laue method, and others. These methods are commonly used by laboratory X-ray sources even before the use of synchrotron radiation (synchrotron X-rays) as an X-ray source. These methods can record the contrast of diffracted X-ray intensity due to dislocations and defects with a resolution of several μm, and determine the direction of the Burgers vector of dislocations.
An attempt has also been made to measure the in-plane distribution of crystal orientation using an X-ray source in a laboratory (see Patent Document 1).

シンクロトロンX線を用いたXRDT法の開発により、1980年以降は、格子面間隔の分布や格子面の曲率が評価された(非特許文献4参照)。そして、XRDT法をレーザー走査法と組み合わせることにより、残留応力を含む曲率情報を理解することができた(非特許文献5参照)。例えば、X線回折により観察された4H-SiC4基板の格子面曲げに関する最近の報告では、基板の形状と曲率が示されている(非特許文献6参照)。 With the development of the XRDT method using synchrotron X-rays, the distribution of lattice spacings and the curvature of lattice planes have been evaluated since 1980 (see Non-Patent Document 4). By combining the XRDT method with the laser scanning method, it was possible to understand curvature information including residual stress (see Non-Patent Document 5). For example, a recent report on lattice plane bending of 4H--SiC4 substrates observed by X-ray diffraction indicates the shape and curvature of the substrate (see Non-Patent Document 6).

特開平2-266249号公報JP-A-2-266249

J.Appl.Phys.,vol.74,p.6734(1993)J. Appl. Phys. , vol. 74, p. 6734 (1993) Phys.Rev.B:Condens.Matter,vol.54,p.17745(1996)Phys. Rev. B: Condens. Matter, vol. 54, p. 17745 (1996) 日本結晶学会誌,vol.13,p.358(1971)Journal of the Crystallographic Society of Japan, vol. 13, p. 358 (1971) J.Appl.Phys.,vol.51,p.6224(1980)J. Appl. Phys. , vol. 51, p. 6224 (1980) Thin Solid Films,vol.415,p.p.21-31(2002)Thin Solid Films, vol. 415, p. p. 21-31 (2002) Cryst,Eng.Comm.,vol.19,p.3844(2017)Cryst, Eng. Comm. , vol. 19, p. 3844 (2017)

背景のところで述べたような従来の結晶格子面方向分布測定法は、主に結晶格子面の観点での試料の曲率などある意味巨視的な性質を求めることを目的としており、空間分解能は高いものではなかった。このため、高い空間分解能をもって試料の結晶格子面方位のばらつき分布を測定する方法には適していなかった。
本発明は、このような背景の下、結晶構造を有する試料の結晶格子面方向分布を50μmというような高い空間分解能をもち、かつ高速に測定する方法を提供することを目的とする。
The conventional crystal lattice plane orientation distribution measurement method described in the background is mainly aimed at obtaining macroscopic properties in a sense such as the curvature of the sample from the viewpoint of the crystal lattice plane, and the spatial resolution is high. It wasn't. Therefore, it is not suitable for measuring the variation distribution of the crystal lattice plane orientation of a sample with high spatial resolution.
SUMMARY OF THE INVENTION Under such circumstances, an object of the present invention is to provide a high-speed method for measuring the crystal lattice plane orientation distribution of a sample having a crystal structure with a high spatial resolution of 50 μm.

本発明の構成を下記に示す。
(構成1)
結晶構造を有する試料の結晶格子面方向分布を測定する結晶格子面方向分布測定方法において、
単色で平行なX線を、前記試料の結晶軸の方向に沿った2以上の方位から前記2以上の方位毎に、入射角を複数変えて前記試料の面内各部に照射するX線照射工程と、
前記試料からの前記X線のブラッグ反射光を前記面内各部に対応して検出して、前記2以上の方位毎にブラッグ反射X線強度を前記面内各部に対応して測定するブラッグ反射X線強度測定工程と、
ブラッグ反射X線の反射強度を極大にする入射角度を、前記2以上の方位および前記面内各部毎に求める入射角度算出工程と、
前記2以上の方位および前記面内各部毎に求めた入射角度から、前記面内各部毎の結晶格子面方向を計算する結晶格子面方向計算工程と、を有する結晶格子面方向分布測定方法。
(構成2)
前記方位の数は2である、構成1記載の結晶格子面方向分布測定方法。
(構成3)
前記面内各部に対する結晶格子面方向分布の平均方向に対して前記面内各部の結晶格子面方向を投影し、結晶格子面方向分布の平均方向に対する前記面内各部の結晶格子面方向の差分を求め、前記差分の前記面内の分布をベクトル表示する、構成1または2記載の結晶格子面方向分布測定方法。
(構成4)
前記X線は波長0.01nm以上0.25nm以下の単色、平行な放射光である、構成1から3の何れか1である結晶格子面方向分布測定方法。
The configuration of the present invention is shown below.
(Configuration 1)
In a crystal lattice plane orientation distribution measuring method for measuring the crystal lattice plane orientation distribution of a sample having a crystal structure,
an X-ray irradiation step of irradiating each in-plane portion of the sample with a monochromatic parallel X-ray with a plurality of different incident angles for each of the two or more azimuths along the direction of the crystal axis of the sample. When,
Bragg reflection X for detecting the Bragg reflected light of the X-rays from the sample corresponding to each in-plane portion and measuring the Bragg reflected X-ray intensity in each of the two or more azimuths corresponding to each in-plane portion a line strength measurement step;
an incident angle calculating step of obtaining an incident angle that maximizes the reflection intensity of the Bragg-reflected X-ray for each of the two or more azimuths and each portion in the plane;
a crystal lattice plane orientation calculation step of calculating the crystal lattice plane orientation for each in-plane portion from the two or more orientations and the incident angle obtained for each in-plane portion.
(Configuration 2)
The crystal lattice plane orientation distribution measuring method according to configuration 1, wherein the number of orientations is two.
(Composition 3)
The crystal lattice plane direction of each in-plane portion is projected against the average direction of the crystal lattice plane direction distribution for each in-plane portion, and the difference in the crystal lattice plane direction of each in-plane portion with respect to the average direction of the crystal lattice plane direction distribution is calculated. 3. The crystal lattice plane orientation distribution measuring method according to configuration 1 or 2, wherein the in-plane distribution of the difference is obtained and vector-displayed.
(Composition 4)
4. The crystal lattice plane orientation distribution measuring method according to any one of configurations 1 to 3, wherein the X-ray is monochromatic parallel radiation with a wavelength of 0.01 nm or more and 0.25 nm or less.

本発明によれば、結晶構造を有する試料の結晶格子面方向分布を50μm以下の分解能で、かつ高速に測定する方法を提供することが可能になる。 According to the present invention, it is possible to provide a method for measuring the crystal lattice plane direction distribution of a sample having a crystal structure at a resolution of 50 μm or less at high speed.

本発明の概念を見取り図で示した説明図。An explanatory view showing a concept of the present invention in a schematic diagram. 入射X線とブラッグ反射X線との関係を示す説明図。FIG. 4 is an explanatory diagram showing the relationship between incident X-rays and Bragg-reflected X-rays; X線の入射角θをパラメータにしたときのブラッグ反射光強度の試料面内分布図。FIG. 3 is a sample in-plane distribution diagram of Bragg reflected light intensity when the incident angle θ k of X-rays is used as a parameter. 結晶方位面法線のx成分qおよびy成分qの試料面内分布図。In-plane distribution diagram of x -component qx and y -component qy of the crystal orientation plane normal. 理想的な(00・1)面に投影した結晶格子面法線の投影像の試料面内分布図。Fig. 2 is a sample in-plane distribution diagram of a projection image of a crystal lattice plane normal projected onto an ideal (00.1) plane. 結晶格子面の法線の傾き分布図。The inclination distribution diagram of the normal to the crystal lattice plane. 結晶面形状の断面模式図。The cross-sectional schematic diagram of a crystal plane shape. 実施例の座標系の説明図。Explanatory drawing of the coordinate system of an Example.

以下本発明を実施するための形態を、図面を参照しながら説明する。
<本発明の測定方法の概要>
結晶構造を有する試料に、その結晶軸に沿った方位(第1の方位)から、その試料への入射角を複数変えてX線を照射する。そして、その試料からのブラッグ反射光の強度をフラットパネル検出器、CMOSアレーセンサー、CCDアレーセンサーなどのめ2次元X線検出器で測定して、いわゆるロッキング曲線を得る。第1の方位を結晶軸に沿った方位とすることで、測定精度を向上させることができる。
ここで、測定に用いるX線は、測定精度を高めるため、単色で平行なX線であることが好ましい。特に、X線の強度を高くすることができる放射光(シンクロトロンX線)はより好ましい。X線の波長としては、0.01nm以上0.25nm以下が好ましく、単色性が高いほど(波長分布が狭いほど)測定精度が向上する。
なお、試料の結晶完全性や用いられるX線の波長によって必要とされる入射X線の単色度と平行度は変わる。ここでの単色なX線は、X線の波長λの拡がりΔλがそのX線の中心波長をλaveとしたとき、Δλ/λaveが10-4の範囲に収まるX線のことであり、また、ここでの平行なX線は、そのX線の広がり角が30arcsecの範囲に収まるX線のことをいう。
A mode for carrying out the present invention will be described below with reference to the drawings.
<Outline of the measuring method of the present invention>
A sample having a crystalline structure is irradiated with X-rays from an orientation (first orientation) along the crystal axis while changing the incident angles to the sample. Then, the intensity of the Bragg reflected light from the sample is measured by a two-dimensional X-ray detector such as a flat panel detector, CMOS array sensor, CCD array sensor, etc. to obtain a so-called rocking curve. The measurement accuracy can be improved by setting the first orientation along the crystal axis.
Here, the X-rays used for the measurement are preferably monochromatic parallel X-rays in order to improve the measurement accuracy. In particular, synchrotron radiation (synchrotron X-rays), which can increase the intensity of X-rays, is more preferable. The wavelength of the X-ray is preferably 0.01 nm or more and 0.25 nm or less, and the higher the monochromaticity (the narrower the wavelength distribution), the higher the measurement accuracy.
The required monochromaticity and parallelism of the incident X-rays vary depending on the crystal perfection of the sample and the wavelength of the X-rays used. Here, the monochromatic X-rays are X-rays in which Δλ/λ ave falls within the range of 10 −4 when the spread Δλ of the wavelength λ of the X-rays is λ ave as the center wavelength of the X-rays, Also, the parallel X-rays here refer to X-rays whose divergence angle is within the range of 30 arcsec.

そして、試料表面の各部位からのhkl回折に対するロッキング曲線を記録し、そのピーク角度位置を得る。そして、試料表面全体から得られる平均角度ピーク位置からのはずれ角Δθをすべての部位に対して得る。すなわち、試料の面内の各場所において上記の測定を行い、Δθ(x,y)のデータを取得する。 A rocking curve for hkl diffraction from each site on the sample surface is then recorded to obtain its peak angular position. Then, the deviation angle Δθ 1 from the average angular peak position obtained from the entire sample surface is obtained for all sites. That is, the above measurement is performed at each location in the plane of the sample to obtain data of Δθ(x, y).

試料が単結晶の場合で試料表面がほぼ(00・1)面を例にすると、図1(a)に示すように、Δθ(x,y)は理想的な(00・1)面11の法線13と試料表面にほぼ平行な結晶格子面の各部位における局所的な法線方向10とのなす角と同じである。
ここで、x,yは試料表面内の場所を表し、図1(a)中の11は理想的な(00・1)面である。12は、各場所からの結晶格子面の法線を試料表面全体で平均した法線と回折を起こす入射X線が作る面で、ここでは平均的な(00・1)回折面Aと称す。14は、各場所(x,y)での結晶格子面の法線を平均的な(00・1)回折面Aに投影した像(写像)である。なお、(00・1)の表記に関しては、実施例で用いたGaN六方晶の場合の記載法に準じた。
Assuming that the sample is a single crystal and the sample surface is approximately the (00.1) plane, .DELTA..theta.(x,y) is the ideal (00.1) plane 11 as shown in FIG. It is the same as the angle formed by the normal 13 and the local normal direction 10 at each portion of the crystal lattice plane substantially parallel to the sample surface.
Here, x and y represent locations within the sample surface, and 11 in FIG. 1(a) is the ideal (00.1) plane. Reference numeral 12 denotes a plane formed by normals obtained by averaging the normals of crystal lattice planes from various locations over the entire sample surface and incident X-rays that cause diffraction, and is referred to as an average (00.1) diffraction plane A here. 14 is an image (map) obtained by projecting the normal to the crystal lattice plane at each location (x, y) onto the average (00.1) diffraction plane A. FIG. Note that the notation of (00·1) conforms to the notation method for hexagonal GaN used in the examples.

試料をその表面法線周りにφ回転して(方位角をφ変えて)同様な測定を繰り返し、図1(b)に示すように、第2の方位角でのΔχ(x,y)を評価する。
ここで、図1(b)中の22は、第2の方位角での測定での、各場所からの結晶面の法線を試料表面全体で平均した法線と回折を起こす入射X線が作る面、すなわち平均的な(00・1)回折面Bである。24は、各場所(x,y)での結晶格子面の法線を平均的な(00・1)回折面Bに投影した像(写像)である。
Rotate the sample φ around its surface normal (change the azimuth angle φ) and repeat the same measurement, and as shown in FIG. evaluate.
Here, 22 in FIG. 1(b) indicates that the normal of the crystal plane from each location is averaged over the entire sample surface and the incident X-ray that causes diffraction in the measurement at the second azimuth angle. The plane to be made, ie the average (00.1) diffraction plane B. 24 is an image (map) obtained by projecting the normal to the crystal lattice plane at each location (x, y) onto the average (00.1) diffraction plane B. FIG.

次に、得られたΔθ(x,y)とΔχ(x,y))を用い、試料上の各部位における試料表面にほぼ平行な結晶格子面の法線q(q(x,y),q(x,y),q(x,y))を、(式1)から求める。なお、第2の方位角も試料の結晶軸に沿った方位とすることが測定精度を向上させる上で好ましい。 Next, using the obtained Δθ(x, y) and Δχ(x, y)), the normal q(q x (x, y) , q y (x, y), q z (x, y)) are obtained from (Equation 1). It is preferable to set the second azimuth angle along the crystal axis of the sample in order to improve the measurement accuracy.

Figure 0007134427000001
Figure 0007134427000001

ここで、Rは座標変換の3行3列の行列(式2)である。 where R is a 3-by-3 matrix of coordinate transformations (equation 2).

Figure 0007134427000002
Figure 0007134427000002

その結果、結晶格子面の形状を試料表面の全面に渡り得ることができる。 As a result, the shape of the crystal lattice plane can be obtained over the entire surface of the sample.

なお、上記では、方位角を第1と第2の2つとした場合について述べたが、さらに第3、第4、・・・第n(nは整数)と、測定する方位をnに増やしてもよい。ここで、測定する方位の数は、最低2以上必要である。
測定する方位の数を増やすと、測定精度が向上するという効果がある。一方で、測定する方位の数が2の場合は、測定時間および計算に要する時間が短くなり、測定効率が良くなるという効果がある。
In the above description, the case where there are two azimuth angles, the first and the second, is described. good too. Here, the number of orientations to be measured must be at least two.
Increasing the number of azimuths to be measured has the effect of improving the measurement accuracy. On the other hand, when the number of azimuths to be measured is two, the measurement time and the time required for calculation are shortened, and the measurement efficiency is improved.

その後、第1および第2もしくはそれ以上の方位および試料面内各部毎に求めたはずれ角Δθ(x,y)、Δχ(x,y)から、試料面内各部毎の結晶格子面方向を計算する。
具体的には、試料面内各部に対する結晶格子面方向分布の平均方向に対して試料面内各部の結晶格子面方向を投影し、結晶格子面方向分布の平均方向に対する試料面内各部の結晶格子面方向の差分を求め、その差分の試料面内の分布をベクトル表示する。
Then, from the first, second or more orientations and the deviation angles Δθ (x, y) and Δχ (x, y) obtained for each portion in the plane of the sample, the crystal lattice plane direction for each portion in the plane of the sample is calculated. do.
Specifically, the crystal lattice plane direction of each portion of the sample plane is projected onto the average direction of the crystal lattice plane direction distribution of each portion of the sample plane, and the crystal lattice of each portion of the sample plane relative to the average direction of the crystal lattice plane direction distribution is calculated. A difference in the plane direction is obtained, and the distribution of the difference in the plane of the sample is displayed as a vector.

<本発明の空間分解能>
各部位の空間分解能は、用いる2次元X線検出器の画素の大きさΔpで決まる。
本発明は、試料表面からX線の消衰距離の範囲内を評価できる。その消衰距離は、入射X線の波長、試料、用いる回折指数に依存するが、数μmが代表的な値である。
試料表面上の隣り合うΔpの領域の格子定数差δdが、|δd/d|<Δp/(2L・tan(θ))を満足する場合に適用できる。
ここで、Lは試料とX線検出器との距離で定義されるカメラ長である。dは、hkl回折に関わる格子面間隔であり、θはブラッグ条件λ=2d・sin(θ)で入射X線の波長λとdとで関係づけられるブラッグ角である。
試料上の各部位における結晶格子面の法線qの試料表面全体で平均した法線からの外れ角Δψが、|Δψ|<Δp/Lについて観測可能である。
<Spatial resolution of the present invention>
The spatial resolution of each part is determined by the pixel size Δp of the two-dimensional X-ray detector used.
The present invention can evaluate within the range of X-ray extinction distance from the sample surface. The extinction distance depends on the wavelength of incident X-rays, the sample, and the diffraction index used, but is typically several micrometers.
It can be applied when the lattice constant difference δd between adjacent Δp regions on the sample surface satisfies |δd/d|<Δp/(2L·tan(θ B )).
Here, L is the camera length defined by the distance between the sample and the X-ray detector. d is the interplanar spacing involved in hkl diffraction, and θ B is the Bragg angle related by the wavelength λ of incident X-rays and d under the Bragg condition λ=2d·sin(θ B ).
The deviation angle Δψ from the normal q of the crystal lattice planes averaged over the entire sample surface at each site on the sample can be observed for |Δψ|<Δp/L.

後述のように、本発明の実施例では1画素の大きさ(サイズ)が50μm×50μmのX線検出器を用いた。したがって、この場合の空間分解能は50μmである。但し、これは一例であって、例えば画素サイズを20μm×20μmと小さくすることも可能である。
本発明の技術で測定可能な空間分解能は、正確には、1画素当たりの画素サイズと隣接画素間のピッチ(画素間ピッチ)に依存する。ここで、試料表面全体で平均した法線からの外れ角が大きく画素間ピッチを超えてX線が隣接の画素に入射した場合は、その隣接の画素に対応する試料上の場所の測定と区別がつかなくなることから、測定可能な外れ角が制限される。
As will be described later, in the embodiment of the present invention, an X-ray detector with a pixel size of 50 μm×50 μm was used. Therefore, the spatial resolution in this case is 50 μm. However, this is just an example, and it is also possible to reduce the pixel size to, for example, 20 μm×20 μm.
The spatial resolution measurable by the technique of the present invention precisely depends on the pixel size per pixel and the pitch between adjacent pixels (inter-pixel pitch). Here, if the deviation angle from the normal line averaged over the entire sample surface is large and the X-ray is incident on the adjacent pixel beyond the pixel pitch, the location on the sample corresponding to the adjacent pixel is measured and distinguished. This limits the measurable deviation angle.

一方で、画素サイズを小さくすると、測定可能な、試料表面全体で平均した法線からの外れ角は小さくなる。この問題を解決するには、カメラ長Lを短くすればよい。
したがって、実質的には、画素サイズと、配置が可能なカメラ長Lにより、最小の|Δψ|が規定される。後述の実施例のカメラ長Lは0.5mであった。本発明の技術は、X線検出器の画素サイズとカメラの配置の最適化により、観測できる|Δψ|をコントロールできる。
On the other hand, the smaller the pixel size, the smaller the measurable off-normal angle averaged over the sample surface. To solve this problem, the camera length L should be shortened.
Therefore, the minimum |Δψ| is substantially defined by the pixel size and the camera length L that can be arranged. The camera length L in Examples described later was 0.5 m. The technology of the present invention can control observable |Δψ| by optimizing the pixel size of the X-ray detector and the arrangement of the camera.

以下、実施例により本発明をさらに詳細に説明するが、当然のこととして、本発明は以下の実施例に限定されるものではなく、特許請求の範囲のみにより規定されるものであることに注意されたい。 The present invention will now be described in more detail with reference to examples, but it should be noted that the present invention is not limited to the following examples, but is defined only by the claims. want to be

(実施例1)
実施例1では、試料101(後述の図2参照)として、直径2インチのガリウム(00・1)窒素半導体ウエハに、GaNを厚さ1μm成長させ、さらにマグネシウムを添加したGaNを2μm成長させたものを用いた。その厚さは、330μmである。
そして、線源を大型放射光施設SPring-8の放射光として、試料表面全面に2個の(111)面の結晶を用いたシリコンモノクロメータからのほぼ単色平行なX線を照射し、(hk・l)結晶格子面から回折が生じるようX線の入射角θを調節した。なお、測定もSPring-8にて行った。
(Example 1)
In Example 1, as a sample 101 (see FIG. 2 described later), GaN was grown to a thickness of 1 μm on a gallium (00.1) nitrogen semiconductor wafer having a diameter of 2 inches, and magnesium-added GaN was grown to a thickness of 2 μm. used things. Its thickness is 330 μm.
Then, using the synchrotron radiation of the large synchrotron radiation facility SPring-8 as the radiation source, the entire surface of the sample is irradiated with almost monochromatic parallel X-rays from a silicon monochromator using two (111) plane crystals, and (hk l) The incident angle θ of X-rays was adjusted so that diffraction occurred from the crystal lattice plane. The measurement was also performed at SPring-8.

X線入射光とブラッグ反射X線の関係を図2に示す。
入射X線の波長は0.1284nmであり、11・4回折を励起した。入射X線と試料101の表面となす角は0.6°であった。(00・1)面と(11・4)面が39.1°の角度をなしているので、回折強度がもっとも大きくなる入射角0.6°(ブラッグ角θB)近傍で、入射角を25arcsecステップ変える毎に回折像を2次元X線検出器102で測定した。そのときに検出されたブラッグ反射光の試料面内分布の様子を、X線の入射角θをパラメータにして、図3に示す。
X線露光時間は0.5秒であった。用いたX線検出器102は、フラットパネル検出器(浜松ホトニクス製)であり、その画素サイズは50μm×50μm、ピクセル数は2368×2240であった。x方向は[11・0]と平行であり、y方向はそれに垂直である。[11・0]は平均的な回折面内にある。
次に、試料の表面法線周りに試料をφ=120°回転し(方位角を120°回転し)、同様な測定を繰り返した。測定時間は合計で32分30秒であった。
なお、実施例1における|δd/d|は6.0×10-5未満であり、|Δψ|は0.06°未満である。
Figure 2 shows the relationship between incident X-rays and Bragg-reflected X-rays.
The incident X-ray wavelength was 0.1284 nm and excited 11·4 diffraction. The angle between the incident X-ray and the surface of the sample 101 was 0.6°. Since the ( 00.1 ) plane and the (11.4) plane form an angle of 39.1°, the incident angle is changed to A diffraction image was measured by the two-dimensional X-ray detector 102 every time the step was changed by 25 arcsec. FIG. 3 shows the in-plane distribution of the Bragg reflected light detected at that time, using the X-ray incident angle θ k as a parameter.
The X-ray exposure time was 0.5 seconds. The X-ray detector 102 used was a flat panel detector (manufactured by Hamamatsu Photonics) with a pixel size of 50 μm×50 μm and 2368×2240 pixels. The x direction is parallel to [11.0] and the y direction is perpendicular to it. [11.0] is in the average diffraction plane.
The sample was then rotated φ=120° around the surface normal of the sample (rotating the azimuth angle by 120°) and similar measurements were repeated. The total measurement time was 32 minutes and 30 seconds.
|δd/d| in Example 1 is less than 6.0×10 −5 and |Δψ| is less than 0.06°.

次に、(式3)を用いて、試料上の各部位における試料表面にほぼ平行な結晶格子面の法線q(q(x,y),q(x,y),q(x,y))を決定した。測定されたq(x,y)、q(x,y)をそれぞれ図4(a)、(b)に示す。 Next, using (Formula 3), normal lines q(q x (x, y), q y (x, y), q z ( x, y)) were determined. The measured q x (x, y) and q y (x, y) are shown in FIGS. 4(a) and 4(b), respectively.

Figure 0007134427000003
Figure 0007134427000003

その法線qの理想的な(00・1)面上への投影を図5に矢印で表示した。
また、その法線qの傾き分布を解析した。その結果を図6に示す。また、結晶面の形状を求め、その模式的な形状を、x方向に関しては図7(a)に、y方向に関しては図7(b)にそれぞれ示した。なお、今回用いた座標系を図8に示す。
その結果、試料の結晶方位面の面内分布を50μmというような高い空間分解能をもって30分台という短い測定時間で計測できることが確認された。
The projection of the normal q onto the ideal (00.1) plane is indicated by an arrow in FIG.
Moreover, the inclination distribution of the normal q was analyzed. The results are shown in FIG. Further, the shape of the crystal plane was determined, and the schematic shape thereof is shown in FIG. 7(a) for the x direction and in FIG. 7(b) for the y direction. The coordinate system used this time is shown in FIG.
As a result, it was confirmed that the in-plane distribution of the crystal orientation plane of the sample can be measured with a high spatial resolution of 50 μm in a short measurement time of the order of 30 minutes.

本発明は、上述のように、試料の結晶方位面の面内分布を50μmというような高い空間分解能をもって30分台という短い測定時間で計測する方法である。これまでの結晶方位面の測定方法では、試料全体のそりや曲率といった巨視的な特性を把握するという観点であったが、本発明により各部での微視的な結晶方位面を測定でき、ばらつき分布を解析できる。
この測定方法を半導体基板、半導体デバイスなどに適用すれば、結晶方位面ばらつきがそれらに与える影響を関連付けることができ、また、より面内結晶方位ばらつきの少ない高品質な半導体基板、半導体デバイスなどを提供することが可能になる。このため、半導体をはじめとする産業分野で大いに利用される可能性がある。
As described above, the present invention is a method for measuring the in-plane distribution of the crystal orientation plane of a sample with a high spatial resolution of 50 μm in a short measurement time of the order of 30 minutes. Conventional methods for measuring crystal orientation planes have focused on grasping macroscopic characteristics such as warpage and curvature of the entire sample. Distribution can be analyzed.
If this measurement method is applied to semiconductor substrates, semiconductor devices, etc., it will be possible to correlate the effects of crystal orientation plane variations on them, and high-quality semiconductor substrates, semiconductor devices, etc. with less in-plane crystal orientation variations can be obtained. be able to provide. For this reason, there is a possibility that it will be widely used in industrial fields including semiconductors.

10:試料の結晶方位面の法線方向ベクトル
11:理想的な(00・1)面
12:平均的な(00・1)回折面A
13:理想的な(00・1)回折面の法線
14:平均的な(00・1)回折面Aへの投影像(写像)
22:平均的な(00・1)回折面B
24:平均的な(00・1)回折面Bへの投影像(写像)
101:試料
102:X線検出器(フラットパネル検出器)
10: Normal direction vector of the crystal orientation plane of the sample 11: Ideal (00.1) plane 12: Average (00.1) diffraction plane A
13: Normal to the ideal (00.1) diffraction plane 14: Projected image (mapping) onto the average (00.1) diffraction plane A
22: Average (00.1) diffraction plane B
24: Projected image (mapping) onto the average (00.1) diffraction plane B
101: Sample 102: X-ray detector (flat panel detector)

Claims (3)

結晶構造を有する試料の結晶格子面方向分布を測定する結晶格子面方向分布測定方法において、
平行な光速を有する指向性のX線を、前記試料の結晶軸の方向に沿った2以上の方位から前記2以上の方位毎に、入射角を複数変えて前記試料の面内各部に照射するX線照射工程と、
前記試料からの前記X線のブラッグ反射光を前記面内各部に対応して検出して、前記2以上の方位毎にブラッグ反射光強度を前記面内各部に対応して測定するブラッグ反射光強度測定工程と、
ブラッグ反射光の反射強度を極大にする入射角度を、前記2以上の方位および前記面内各部毎に求める入射角度算出工程と、
前記2以上の方位および前記面内各部毎に求めた入射角度から、前記面内各部毎の結晶格子面方向を計算する結晶格子面方向計算工程と、を有し、
前記面内各部に対する結晶格子面方向分布の平均方向に対して前記面内各部の結晶格子面方向を投影し、結晶格子面方向分布の平均方向に対する前記面内各部の結晶格子面方向の差分を求め、前記差分の前記面内の分布をベクトル表示する、結晶格子面方向分布測定方法。
In a crystal lattice plane orientation distribution measuring method for measuring the crystal lattice plane orientation distribution of a sample having a crystal structure,
Directional X-rays having a parallel speed of light are irradiated to each part in the plane of the sample with a plurality of different incident angles for each of the two or more azimuths along the direction of the crystal axis of the sample. an X-ray irradiation step;
The Bragg reflected light intensity of the X-rays from the sample is detected corresponding to each part in the plane, and the Bragg reflected light intensity is measured corresponding to each part in the plane for each of the two or more azimuths. a measuring step;
an incident angle calculating step of obtaining an incident angle that maximizes the reflection intensity of the Bragg reflected light for each of the two or more azimuths and each portion in the plane;
a crystal lattice plane direction calculation step of calculating the crystal lattice plane direction for each in-plane portion from the two or more orientations and the incident angle obtained for each in-plane portion ;
The crystal lattice plane direction of each in-plane portion is projected against the average direction of the crystal lattice plane direction distribution for each in-plane portion, and the difference in the crystal lattice plane direction of each in-plane portion with respect to the average direction of the crystal lattice plane direction distribution is calculated. A crystal lattice plane direction distribution measuring method, wherein the distribution of the difference in the plane is vector-displayed.
前記方位の数は2である、請求項1記載の結晶格子面方向分布測定方法。 2. The crystal lattice orientation distribution measuring method according to claim 1, wherein the number of orientations is two. 前記X線は波長0.01nm以上0.25nm以下の単色、平行な放射光である、請求項1または2に記載の結晶格子面方向分布測定方法。
3. The crystal lattice plane orientation distribution measuring method according to claim 1 , wherein said X-rays are monochromatic parallel radiation with a wavelength of 0.01 nm or more and 0.25 nm or less.
JP2018083268A 2018-04-24 2018-04-24 Crystal lattice plane distribution measurement method Active JP7134427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083268A JP7134427B2 (en) 2018-04-24 2018-04-24 Crystal lattice plane distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083268A JP7134427B2 (en) 2018-04-24 2018-04-24 Crystal lattice plane distribution measurement method

Publications (2)

Publication Number Publication Date
JP2019190965A JP2019190965A (en) 2019-10-31
JP7134427B2 true JP7134427B2 (en) 2022-09-12

Family

ID=68389923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083268A Active JP7134427B2 (en) 2018-04-24 2018-04-24 Crystal lattice plane distribution measurement method

Country Status (1)

Country Link
JP (1) JP7134427B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027746A1 (en) 2007-10-18 2010-02-04 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027746A1 (en) 2007-10-18 2010-02-04 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
志村孝功,放射光X線トポグラフィによる極薄ひずみSi層の結晶性評価,日本結晶学会誌,2012年,Vol.54,pp.47-53

Also Published As

Publication number Publication date
JP2019190965A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
TWI755409B (en) X-ray inspecting apparatus, x-ray thin film inspecting method and rocking curve measurement method
US7769135B2 (en) X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy
Lehmann et al. Laue scanner: A new method for determination of grain orientations and grain boundary types of multicrystalline silicon on a full wafer scale
Ailihumaer et al. Relationship between basal plane dislocation distribution and local basal plane bending in PVT-grown 4H-SiC crystals
CN104330427B (en) Measuring method of the c faces GaN material stress along c-axis distributed intelligence
Lider X-ray diffraction topography methods
JP3627381B2 (en) Single crystal thin film evaluation method
Lomov et al. High-resolution synchrotron diffraction study of porous buffer InP (001) layers
JP7134427B2 (en) Crystal lattice plane distribution measurement method
Domagała et al. Hybrid reciprocal lattice: application to layer stress determination in GaAlN/GaN (0001) systems with patterned substrates
Biermanns et al. Individual GaAs nanorods imaged by coherent X-ray diffraction
Ailihumaer et al. Synchrotron X-Ray Topography Study on the Relationship between Local Basal Plane Bending and Basal Plane Dislocations in PVT-Grown 4H-SiC Substrate Wafers
CN104316550A (en) Method for measuring information about distribution of stress of 6H-SiC material along surface normal
JP2009198281A (en) Structure analyzing method of crystal
Peng et al. Ray Tracing Simulation of Images of Dislocations and Inclusions on X-Ray Topographs of GaAs Epitaxial Wafers
Yamaguchi et al. Threading Screw Dislocations in 4H-SiC Wafer Observed by the Weak-Beam Method in Bragg-Case X-ray Topography
Pristovsek et al. X-ray characterisation of the basal stacking fault densities of (112 [combining macron] 2) GaN
JP5165498B2 (en) Crystal structure analysis method
Morelhao et al. Hybrid reciprocal space for X-ray diffraction in epitaxic layers
Zápražný et al. Nano-machining for advanced X-ray crystal optics
Yao et al. Three-dimensional curving of crystal planes in wide bandgap semiconductor wafers visualized using a laboratory X-ray diffractometer
Prokhorov et al. Characterization of single-crystal sapphire substrates by X-ray methods and atomic force microscopy
RU2442145C1 (en) Method for structural inspection of semiconductor multilayer structure (variants)
Berger et al. Strain profiling of AlInN/GaN distributed Bragg reflectors using in situ curvature measurements and ex situ X-ray diffraction
JP7164946B2 (en) Gallium nitride crystal substrate and method for evaluating crystal quality thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220823

R150 Certificate of patent or registration of utility model

Ref document number: 7134427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150