JP2006016230A - Quartz crystal thin film - Google Patents

Quartz crystal thin film Download PDF

Info

Publication number
JP2006016230A
JP2006016230A JP2004194055A JP2004194055A JP2006016230A JP 2006016230 A JP2006016230 A JP 2006016230A JP 2004194055 A JP2004194055 A JP 2004194055A JP 2004194055 A JP2004194055 A JP 2004194055A JP 2006016230 A JP2006016230 A JP 2006016230A
Authority
JP
Japan
Prior art keywords
thin film
angle
birefringent plate
quartz
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004194055A
Other languages
Japanese (ja)
Inventor
Kotaro Wakabayashi
小太郎 若林
Hiroshi Yokogawa
弘 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004194055A priority Critical patent/JP2006016230A/en
Publication of JP2006016230A publication Critical patent/JP2006016230A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique of simply measuring, in a quartz thin film birefringent plate epitaxially grown at atmospheric pressure on a substrate such as one made of a single crystal such as sapphire, silicon, or gallium arsenide (GaAs) or of an amorphous material such as quartz glass, set in an electric furnace, the angle θ between the optic axis and the normal of the plate and the angle α between the projection line of the optic axis on the plate and the reference edge of the contour by determining the phase difference of the plate optically without using X-ray diffraction and calculating the angles from the phase difference and the thickness t of the plate. <P>SOLUTION: In the epitaxially grown quartz crystal thin film of birefringent plate of a thickness of 0.3 mm or thinner, the angle θ between the normal (growth direction) and the optic axis of the plate and the angle α between the projection line of the optic axis on the plate and the reference edge of the contour can be simply determined by calculation from the phase difference measured optically without using X-ray diffraction and the thickness t of the plate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水晶薄膜の育成後に薄膜の法線(育成方向)と水晶薄膜の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを求めた水晶薄膜に関する。   In the present invention, after the growth of the quartz thin film, the angle θ formed between the normal line (growth direction) of the thin film and the optical axis of the quartz thin film, and the angle α formed between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the outer shape It relates to the obtained crystal thin film.

気相法を用いて育成した水晶薄膜複屈折板は、育成後、サファイア、シリコン、ガリウム砒素(GaAs)等の単結晶または石英ガラス等の非晶質から成る基板等から剥離し、デジタルスチルカメラおよびデジタルビデオカメラに使用される光学ローパスフィルタ用水晶複屈折板として用いることが出来る。   The crystal thin film birefringent plate grown using the vapor phase method is peeled off from a single crystal such as sapphire, silicon, gallium arsenide (GaAs), or an amorphous substrate such as quartz glass after the growth, and a digital still camera It can also be used as a quartz crystal birefringent plate for an optical low-pass filter used in a digital video camera.

光学ローパスフィルタ用水晶複屈折板は、光学軸と水晶複屈折板の法線のなす角度θと板厚により光線の分離幅が決定される。CCDの画素ピッチに水晶複屈折板の光線分離幅をほぼ合わせることにより、モアレ状の擬似信号の発生を大幅の改善するものである。   In the optical low-pass filter crystal birefringent plate, the beam separation width is determined by the angle θ formed by the optical axis and the normal line of the crystal birefringent plate and the plate thickness. By substantially matching the beam separation width of the quartz crystal birefringent plate with the pixel pitch of the CCD, the generation of moiré-like pseudo signals is greatly improved.

デジタルスチルカメラ及びデジタルビデオカメラに使用されるCCDの高画素化にともない、CCDの画素ピッチが狭くなってきている。 高画素用水晶複屈折板の板厚みは、一般的に0.3mm以下であり、従来の製造方法は水熱合成法で人工水晶を育成し、育成後の人工水晶を切断、外形整形、ラッピング及びポリッシングを行うことで光学ローパスフィルタ用水晶複屈折板を製作していた。   With the increase in the number of pixels of CCDs used in digital still cameras and digital video cameras, the pixel pitch of CCDs is becoming narrower. The thickness of the crystal birefringent plate for high pixels is generally 0.3 mm or less, and the conventional manufacturing method is to grow an artificial crystal by a hydrothermal synthesis method, and then cut, shape, and wrap the artificial quartz after the growth. And a quartz crystal birefringent plate for an optical low-pass filter was manufactured by polishing.

しかし、前述の製造工程では工程数が多く、また高画素CCD用水晶複屈折板の厚みが0.3mm以下と薄いため、特にラッピング及びポリッシング工程での歩留まりが悪かった。   However, in the above-described manufacturing process, the number of processes is large, and the thickness of the crystal birefringent plate for high pixel CCD is as thin as 0.3 mm or less, so the yield in the lapping and polishing process is particularly bad.

そこで、水晶複屈折板の板厚が0.3mm以下である場合、特開2002−80296に示されているような水晶薄膜の製造方法で水晶薄膜複屈折板を製造することにより、厚みが0.3mm以下の水晶薄膜複屈折板を歩留まりよく製造できる。   Therefore, when the thickness of the quartz birefringent plate is 0.3 mm or less, the thickness of the quartz birefringent plate is reduced to 0 by manufacturing the quartz thin film birefringent plate by the method for producing a quartz thin film as disclosed in JP-A-2002-80296. A crystal thin film birefringent plate having a thickness of 3 mm or less can be produced with a high yield.

気相法でサファイア、シリコン、ガリウム砒素(GaAs)等の単結晶または石英ガラス等の非晶質から成る基板等に水晶薄膜を育成した後、育成面が設計通りの結晶面になっているかは、特開2002−80296で示されているようにX線回折を利用して確認する手法が用いられている。言い換えると光学軸と水晶薄膜複屈折板の法線のなす角度θと光学軸の水晶薄膜複屈折板のへ投影線と外形の基準辺のなす角度αが設計通りなっているかは、X線回折を利用し確認している。   After growing a quartz thin film on a substrate made of a single crystal such as sapphire, silicon, gallium arsenide (GaAs) or an amorphous material such as quartz glass by the vapor phase method, whether the growth surface is the designed crystal surface As disclosed in JP-A-2002-80296, a method of confirming using X-ray diffraction is used. In other words, whether the angle θ formed between the optical axis and the normal line of the quartz thin film birefringent plate and the angle α formed between the projection line of the optical axis and the crystal thin film birefringent plate on the reference side of the external shape are as designed. Confirm using.

しかし、X線回折を利用し薄膜の法線(成長方向)と水晶薄膜の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを測定するには、水晶複屈折板の向きを変えて二回測定する必要があり、時間がかかるという問題があった。図1にX線回折による測定の光学系の略図、図3に水晶薄膜複屈折板の角度θと光学軸の水晶薄膜複屈折板のへ投影線と外形の基準辺のなす角度αの関係図を示す。   However, X-ray diffraction is used to measure the angle θ between the normal (growth direction) of the thin film and the optical axis of the quartz thin film, and the angle α between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the external shape. In order to do this, it is necessary to change the direction of the quartz birefringent plate and perform measurement twice, which is problematic. FIG. 1 is a schematic diagram of an optical system for measurement by X-ray diffraction, and FIG. 3 is a relationship diagram between an angle θ of a quartz thin film birefringent plate and an angle α formed by the projection line of the optical thin film birefringent plate and the reference side of the outer shape. Indicates.

このような問題に対応するため、気相法を用いて育成した水晶薄膜複屈折板の光学軸と水晶薄膜複屈折板の法線のなす角度θを、X線回折を使用せず、光学的に水晶複屈折板の位相差を求め、この位相差と水晶薄膜複屈折板の板厚tより求める。位相差を求める方法は回転検光子法を用いると、位相差を求めると同時に光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを求められる。
特開2002−80296号公報 特開2003−289236号公報
In order to deal with such problems, the angle θ formed by the optical axis of the quartz thin film birefringent plate grown using the vapor phase method and the normal of the quartz thin film birefringent plate is optically measured without using X-ray diffraction. Then, the phase difference of the quartz birefringent plate is obtained, and the phase difference and the thickness t of the quartz thin film birefringent plate are obtained. When the rotational analyzer method is used as a method for obtaining the phase difference, the angle α formed between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the outer shape can be obtained at the same time as obtaining the phase difference.
JP 2002-80296 A JP 2003-289236 A

なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。   The applicant has not found any prior art documents related to the present invention other than the prior art documents specified by the prior art document information described above by the time of filing of the present application.

本発明は、以上のような技術的背景の下でなされたものであり、したがってその目的は、図3に示されるような大気圧下での水晶薄膜複屈折板の育成において、電気炉内に載置されたサファイア、シリコン、ガリウム砒素(GaAs)等の単結晶または石英ガラス等の非晶質から成る基板等上に気相法を用いて育成した水晶薄膜複屈折板の光学軸と水晶薄膜複屈折板の法線のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを、X解回折を用いず、水晶薄膜複屈折板の光学的な位相差を求め、この位相差と水晶薄膜複屈折板の板厚tより求める手法を提供することである。   The present invention has been made under the technical background as described above. Therefore, the object of the present invention is to provide a quartz thin film birefringent plate under atmospheric pressure as shown in FIG. Optical axis and crystal thin film of quartz thin film birefringent plate grown by vapor phase method on a substrate made of single crystal such as sapphire, silicon, gallium arsenide (GaAs) or amorphous such as quartz glass The angle θ formed between the normal line of the birefringent plate and the angle α formed between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the outer shape is determined using the optical resolution of the quartz thin film birefringent plate without using X-resolution diffraction. It is to provide a method for obtaining a phase difference and obtaining the phase difference from the thickness t of the crystal thin film birefringent plate.

なお、水晶薄膜複屈折板の光学的位相差は育成後に測定しても良いが、育成中に光学的位相差を測定してもよい。   The optical phase difference of the quartz thin film birefringent plate may be measured after the growth, but the optical phase difference may be measured during the growth.

上記の目的を達成するために、本発明は、気相法を用いて育成した厚み0.3mm以下の水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを、X線回折を利用せず、光学的な位相差と水晶薄膜複屈折板の板厚tを測定し計算することより、角度θと角度αを求めることが出来る。   In order to achieve the above object, the present invention forms the normal (growth direction) of a quartz thin film birefringent plate having a thickness of 0.3 mm or less grown using a vapor phase method and the optical axis of the quartz thin film birefringent plate. The angle α between the angle θ and the projection line of the optical axis onto the quartz thin film birefringent plate and the reference side of the outer shape is set to the optical phase difference and the thickness t of the quartz thin film birefringent plate without using X-ray diffraction. By measuring and calculating, the angle θ and the angle α can be obtained.

薄膜育成後の水晶薄膜複屈折板をサファイア、シリコン、ガリウム砒素(GaAs)等の単結晶または石英ガラス等の非晶質から成る基板等から剥がした後の厚みtとし、水晶薄膜複屈折板を図1に示す位相差測定器の光学系により、回転検光子法により光学的な位相差Γを測定する。そして、位相差Γと水晶薄膜複屈折板の厚みtより水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを求める。次に具体的な角度θと角度αの求め方を示す。ただし、入射角度は0°とした。しかし、斜入射光を使用し位相差を測定しても良い。   The crystal thin film birefringent plate after the thin film growth is defined as a thickness t after being peeled off from a single crystal such as sapphire, silicon, gallium arsenide (GaAs) or an amorphous substrate such as quartz glass. The optical phase difference Γ is measured by the rotation analyzer method with the optical system of the phase difference measuring device shown in FIG. Then, from the phase difference Γ and the thickness t of the quartz thin film birefringent plate, the angle θ between the normal (growth direction) of the quartz thin film birefringent plate and the optical axis of the quartz thin film birefringent plate and the quartz thin film birefringent plate of the optical axis. The angle α formed by the projection line and the reference side of the outer shape is obtained. Next, how to obtain a specific angle θ and angle α will be described. However, the incident angle was 0 °. However, the phase difference may be measured using obliquely incident light.

光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度をαと検光子の回転角度をβとすると、分光器を出た光が偏光子、水晶薄膜複屈折板、検光子を通過した光強度Iは次式で表せる。
I=0.5+0.5・sin4α・sin(Γ/2)・cos2β+0.5・(1−2・sin(Γ/2)・cos2α)・sin2β −−−(1)式
ただし、偏光子の角度は45°とした。
回転検光子法により得られた検光子角度毎の光強度と(1)式よりフーリエ変換することにより、位相差Γと水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αが求まる。
If the angle between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the outline is α and the rotation angle of the analyzer is β, the light emitted from the spectroscope is the polarizer, the quartz thin film birefringent plate, the detector. The light intensity I passing through the photon can be expressed by the following equation.
I = 0.5 + 0.5 · sin 4α · sin 2 (Γ / 2) · cos 2β + 0.5 · (1-2 · sin 2 (Γ / 2) · cos 2α) · sin 2β Equation (1) where the polarizer The angle was 45 °.
The light intensity at each analyzer angle obtained by the rotation analyzer method and the Fourier transform from the equation (1), the angle α formed by the phase difference Γ, the projection line on the quartz thin film birefringent plate, and the reference side of the outer shape is obtained. I want.

また、水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θはほぼ45°であるため、位相差Γは旋光性の影響は無視でき、次式で表せる。
Γ=(2π/λ)・(ne’−no)・t −−−−(2)式
ne’は光学軸からある角度θでの異常光線の屈折率、noは常光線の屈折率、λは位相差測定器の光源の波長である。
In addition, since the angle θ between the normal line (growth direction) of the quartz thin film birefringent plate and the optical axis of the quartz thin film birefringent plate is about 45 °, the phase difference Γ can be ignored by the optical rotation. I can express.
Γ = (2π / λ) · (ne′−no) · t −−−− (2) where ne ′ is the refractive index of extraordinary rays at an angle θ from the optical axis, no is the refractive index of ordinary rays, λ Is the wavelength of the light source of the phase difference measuring device.

また、ne’は次式で表せる。
ne’=(no・ne)/(no・sinθ+ne・cosθ)1/2 −−−−(3)式
neは光学軸方向の異常光線の屈折率である。
Ne ′ can be expressed by the following equation.
ne ′ = (no · ne) / (no 2 · sin 2 θ + ne 2 · cos 2 θ) 1/2 −−−− (3) Equation ne is the refractive index of extraordinary rays in the optical axis direction.

(2)及び(3)式より(5)式が求まり、位相差Γ′、測定波長λ及び板厚みtより、水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θが求まる。なお、ここで示した位相差Γ′は水晶薄膜複屈折板の実位相差であり、回転検光子法で求められた位相差Γとは異なる可能性がある。実位相差Γ′は、板厚tを考慮すると、水晶薄膜複屈折板の次数Nが分かり、次の式より実位相差Γ′が求まる。また、測定波長を二波長以上とすれば、光学的な位相差の波長依存性より、次数Nが分かる。(Nは整数である)
Γ’=±Γ+360N −−−−(4)式
θ=|sin−1(ne・Γ’・λ・(4・no・π・t+Γ’・λ)/((ne−no)(2・no・π・t+Γ’・λ)))1/2| −−−−(5)式
From Equations (2) and (3), Equation (5) is obtained. From the phase difference Γ ′, the measurement wavelength λ, and the plate thickness t, the normal (growth direction) of the quartz thin film birefringent plate and the optics of the quartz thin film birefringent plate are obtained. The angle θ formed by the axes is obtained. The phase difference Γ ′ shown here is the actual phase difference of the quartz thin film birefringent plate, and may be different from the phase difference Γ obtained by the rotational analyzer method. In consideration of the plate thickness t, the actual phase difference Γ ′ is obtained from the order N of the quartz thin film birefringent plate, and the actual phase difference Γ ′ is obtained from the following equation. If the measurement wavelength is two or more wavelengths, the order N can be determined from the wavelength dependence of the optical phase difference. (N is an integer)
Γ ′ = ± Γ + 360N −−−− (4) θ = | sin −1 (ne 2 · Γ ′ · λ · (4 · no · π · t + Γ ′ · λ) / ((ne 2 −no 2 ) ( 2 · no · π · t + Γ ′ · λ) 2 )) 1/2 | −−−− (5)

なお、(2)式から明らかなように、厚みtが大きいと光源の波長ズレの影響が光学的な位相差の値に影響を与えるため、水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θを正確に求められなくなる可能性がある。   As apparent from the equation (2), when the thickness t is large, the influence of the wavelength shift of the light source affects the value of the optical phase difference, so the normal line (growth direction) of the quartz thin film birefringent plate and There is a possibility that the angle θ formed by the optical axis of the quartz thin film birefringent plate cannot be obtained accurately.

したがって、本発明の実施に適した板厚みは0.3mm以下である。ただし、角度θがほぼ45°の時である。   Therefore, the plate thickness suitable for the implementation of the present invention is 0.3 mm or less. However, this is when the angle θ is approximately 45 °.

本発明の水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを求める手法により、X線回折を用いず、簡便に素早く角度θと角度αを求めることが出来る。   The angle θ formed between the normal line (growth direction) of the quartz thin film birefringent plate of the present invention and the optical axis of the quartz thin film birefringent plate, and the angle α formed between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the outer shape By using this method, the angle θ and the angle α can be easily and quickly obtained without using X-ray diffraction.

また、薄膜成長中に光学的な位相差を測定することにより、角度θと角度αを求めることが出来、良否の判定を素早く行える。なお、育成中の薄膜の厚みは実験で得られた育成レート(単位時間当たりの厚み)を用いて求めればよい。また、(5)式で角度θを計算する場合、neとnoは育成中の温度での値を用いればよい。また、(4)式より、育成直後、例えば位相差が90°(次数0)程度の厚みで、光学的な位相差を測定すると計算が簡単になる。   In addition, by measuring the optical phase difference during the growth of the thin film, the angle θ and the angle α can be obtained, and the quality can be determined quickly. In addition, what is necessary is just to obtain | require the thickness of the thin film under growth using the growth rate (thickness per unit time) obtained by experiment. Moreover, when calculating angle (theta) by (5) Formula, what is necessary is just to use the value in the temperature during growth for ne and no. Further, from the equation (4), immediately after the growth, for example, when the optical phase difference is measured with a thickness of about 90 ° (order 0), the calculation is simplified.

以下に図面を参照しながら本発明の実施の一形態について説明する。図1に示すのは、本発明の水晶薄膜複屈折板の位相差測定を回転検光子法で行う概念を示した図である。光源としては水銀ランプ、タングステンランプなどが用いられ、グレーティングで単色光を取り出す分光器とある特定方向の電気ベクトルのみ透過させる機能を持つ偏光子とある特定方向の電気ベクトルのみ透過させる機能を持つ回転検光子と光量検出器で位相差測定器は構成される。図1では紙面の下方から上方に向かって光源を当てることで、本概念図の中心に位置する水晶薄膜複屈折板の位相測定を行うことができる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a concept of performing phase difference measurement of the quartz thin film birefringent plate according to the present invention by a rotating analyzer method. A mercury lamp, tungsten lamp, or the like is used as the light source. A spectroscope that extracts monochromatic light with a grating, a polarizer that has a function of transmitting only an electric vector in a specific direction, and a rotation that has a function of transmitting only an electric vector in a specific direction. The phase difference measuring device is composed of the analyzer and the light amount detector. In FIG. 1, the phase of the quartz thin film birefringent plate located at the center of the conceptual diagram can be measured by applying a light source from the bottom to the top of the drawing.

この場合本発明の特徴である、光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度をαと検光子の回転角度をβとすると、分光器を出た光が偏光子、水
晶薄膜複屈折板、検光子を通過した光強度Iは次式で表せる。
I=0.5+0.5・sin4α・sin(Γ/2)・cos2β+0.5・(1−2・sin(Γ/2)・cos2α)・sin2β −−−(1)式
ただし、偏光子の角度は45°とした。
回転検光子法により得られた検光子角度毎の光強度と(1)式よりフーリエ変換することにより、位相差Γと水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αが求まる。
In this case, the characteristic feature of the present invention is that the angle formed between the projection line of the optical axis on the quartz thin film birefringent plate and the reference side of the outer shape is α and the rotation angle of the analyzer is β. The light intensity I having passed through the optical element, the quartz thin film birefringent plate, and the analyzer can be expressed by the following equation.
I = 0.5 + 0.5 · sin 4α · sin 2 (Γ / 2) · cos 2β + 0.5 · (1-2 · sin 2 (Γ / 2) · cos 2α) · sin 2β Equation (1) where polarizer The angle was 45 °.
The light intensity at each analyzer angle obtained by the rotation analyzer method and the Fourier transform from the equation (1), the angle α formed by the phase difference Γ, the projection line on the quartz thin film birefringent plate, and the reference side of the outer shape is obtained. I want.

また、水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θはほぼ45°であるため、位相差Γは旋光性の影響は無視でき、次式で表せる。
Γ=(2π/λ)・(ne’−no)・t −−−−(2)式
ne’は光学軸からある角度θでの異常光線の屈折率、noは常光線の屈折率、λは位相差測定器の光源の波長である。
In addition, since the angle θ between the normal line (growth direction) of the quartz thin film birefringent plate and the optical axis of the quartz thin film birefringent plate is about 45 °, the phase difference Γ can be ignored by the optical rotation. I can express.
Γ = (2π / λ) · (ne′−no) · t −−−− (2) where ne ′ is the refractive index of extraordinary rays at an angle θ from the optical axis, no is the refractive index of ordinary rays, λ Is the wavelength of the light source of the phase difference measuring device.

また、ne’は次式で表せる。
ne’=(no・ne)/(no・sinθ+ne・cosθ)1/2 −−−−(3)式
neは光学軸方向の異常光線の屈折率である。
Ne ′ can be expressed by the following equation.
ne ′ = (no · ne) / (no 2 · sin 2 θ + ne 2 · cos 2 θ) 1/2 −−−− (3) Equation ne is the refractive index of extraordinary rays in the optical axis direction.

(2)及び(3)式より(5)式が求まり、位相差Γ′、測定波長λ及び板厚みtより、水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θが求まる。なお、ここで示した位相差Γ′は水晶薄膜複屈折板の実位相差であり、回転検光子法で求められた位相差Γとは異なる可能性がある。実位相差Γ′は、板厚tを考慮すると、水晶薄膜複屈折板の次数Nが分かり、次の式より実位相差Γ′が求まる。また、測定波長を二波長以上とすれば、光学的な位相差の波長依存性より、次数Nが分かる。(Nは整数である)
Γ’=±Γ+360N −−−−(4)式
θ=|sin−1(ne・Γ’・λ・(4・no・π・t+Γ’・λ)/((ne−no)(2・no・π・t+Γ’・λ)1/2| −−−−(5)式
以上の理論式で算出される結果により検光子を回転させた時の光量(光強度)を読み取り、この値と(1)式よりフーリエ変換することにより、位相差Γと角度αを求めることができる。
From Equations (2) and (3), Equation (5) is obtained. From the phase difference Γ ′, the measurement wavelength λ, and the plate thickness t, the normal (growth direction) of the quartz thin film birefringent plate and the optics of the quartz thin film birefringent plate are obtained. The angle θ formed by the axes is obtained. The phase difference Γ ′ shown here is the actual phase difference of the quartz thin film birefringent plate, and may be different from the phase difference Γ obtained by the rotational analyzer method. In consideration of the plate thickness t, the actual phase difference Γ ′ is obtained from the order N of the quartz thin film birefringent plate, and the actual phase difference Γ ′ is obtained from the following equation. If the measurement wavelength is two or more wavelengths, the order N can be determined from the wavelength dependence of the optical phase difference. (N is an integer)
Γ ′ = ± Γ + 360N −−−− (4) θ = | sin −1 (ne 2 · Γ ′ · λ · (4 · no · π · t + Γ ′ · λ) / ((ne 2 −no 2 ) ( 2 · no · π · t + Γ '· λ) 2 ) 1/2 | Reads the light intensity (light intensity) when the analyzer is rotated based on the result calculated by the theoretical formula above (5). The phase difference Γ and the angle α can be obtained by performing Fourier transform from this value and the equation (1).

図2は水晶薄膜複屈折板の一製造方法を示す装置の概念図で、水晶薄膜2のエピタキシャル成長を内部に載置されたサファイヤ、シリコン、またはガリウム砒素(GaAs)等の基板1上に行うための装置の概略を模式図で描画したものである。   FIG. 2 is a conceptual diagram of an apparatus showing a method of manufacturing a quartz thin film birefringent plate, in order to perform epitaxial growth of the quartz thin film 2 on a substrate 1 made of sapphire, silicon, gallium arsenide (GaAs) or the like. The outline of this apparatus is drawn with a schematic diagram.

図3は本発明の水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを求めるためのサンプルである水晶薄膜複屈折板を示す図である。図3(a)は主面を上面図として描画したものであり、図3(b)は側面を上面図として描画したものである。   FIG. 3 shows the angle θ between the normal line (growth direction) of the quartz thin film birefringent plate of the present invention, the optical axis of the quartz thin film birefringent plate, the projection line of the optical axis to the quartz thin film birefringent plate, and the reference side of the outer shape. It is a figure which shows the quartz-crystal thin film birefringent plate which is a sample for calculating | requiring the angle (alpha) to make. FIG. 3A shows the main surface as a top view, and FIG. 3B shows the side as a top view.

図4は従来から用いられているX線を用いた測角方法を示す概念図である。図4(a)は側面に対してX線を照射して測定する場合を示し、図4(b)は主面に対してX線を照射して測定する場合を描画したものである。この従来の測定方法は、一般にはX線ディフラクタと呼ばれ、X線源(点または線状)から放射されたX線は試料の手前に配置したスリットで方向付けされ試料に入射する。通常X線管はCu管球が用いられ、放射されるX線は連続X線成分と際だって強い強度をもつ幅の狭い特性のX線成分からなっている。   FIG. 4 is a conceptual diagram showing a conventional angle measuring method using X-rays. FIG. 4A shows a case where measurement is performed by irradiating the side surface with X-rays, and FIG. 4B shows a case where measurement is performed by irradiating the main surface with X-rays. This conventional measurement method is generally called an X-ray diffractor, and X-rays radiated from an X-ray source (dot or line) are directed by a slit disposed in front of the sample and enter the sample. Usually, a Cu tube is used as the X-ray tube, and the emitted X-ray is composed of a continuous X-ray component and an X-ray component having a narrow characteristic with an extremely strong intensity.

試料片は紙面に垂直な回転軸のまわりで回転でき、結晶表面に対するX線の入射角ωを読みとる(ゴニオメータ)もので、X線の入射方向が試料の格子面に対してブラッグ角θになったとき回析条件が満足され、入射X線に対して2θ方向にX線が回折されこの2θ角を回析角と呼び、回析角にはX線の検出器が配置され、回析X角強度をメータの振れにより読みとるのが、従来から取られている測角方法の代表例である。   The sample piece can be rotated around a rotation axis perpendicular to the paper surface, and the X-ray incident angle ω with respect to the crystal surface is read (goniometer). The X-ray incident direction becomes the Bragg angle θ with respect to the lattice plane of the sample. Diffraction conditions are satisfied, X-rays are diffracted in the 2θ direction with respect to incident X-rays, and this 2θ angle is referred to as a diffraction angle. An X-ray detector is disposed at the diffraction angle. Reading the angular intensity with the shake of the meter is a typical example of a conventional angle measuring method.

図1は本発明の概念を示す水晶薄膜複屈折板の位相差測定のブロック図で、回転検光子法で行うことを示した図である。FIG. 1 is a block diagram of phase difference measurement of a quartz thin film birefringent plate showing the concept of the present invention, and is a diagram showing that the rotation analyzer method is used. 水晶薄膜を形成する一手法を示す概念図である。It is a conceptual diagram which shows one method of forming a crystal thin film. 図4は本発明の水晶薄膜複屈折板の法線(成長方向)と水晶薄膜複屈折板の光学軸のなす角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを求めるためのサンプルである水晶薄膜複屈折板を示す図である。FIG. 4 shows the angle θ between the normal line (growth direction) of the quartz thin film birefringent plate of the present invention, the optical axis of the quartz thin film birefringent plate, the projection line of the optical axis to the quartz thin film birefringent plate and the reference side of the outer shape. It is a figure which shows the quartz-crystal thin film birefringent plate which is a sample for calculating | requiring the angle (alpha) to make. 従来から用いられているX線測角を示す概念図である。It is a conceptual diagram which shows the X-ray angle measurement conventionally used.

Claims (1)

気相法でサファイア、シリコン、ガリウム砒素(GaAs)等の単結晶または石英ガラス等の非晶質から成る基板上に水晶薄膜を成長させることにより製造する水晶薄膜において、
薄膜の法線(成長方向)と水晶薄膜の光学軸のなす角度θがほぼ45°である水晶薄膜複屈折板の角度θと光学軸の水晶薄膜複屈折板への投影線と外形の基準辺のなす角度αを、透過光を使用し育成後の水晶薄膜複屈折板の光学的な位相差と厚みtを測定し計算することにより、水晶薄膜の法線(成長方向)と水晶薄膜の光学軸のなす角度θを次式により算出することを特徴とする水晶薄膜。
θ=|sin−1(ne・Γ’・λ・(4・no・π・t+Γ’・λ)/((ne−no)(2・no・π・t+Γ’・λ)))1/2
但し、
ne:光学軸からある角度θでの異常光線の屈折率
Γ’:水晶薄膜複屈折板の実位相差
λ:位相差測定器の光源の波長
no:常光線の屈折率
t:水晶薄膜複屈折板の板厚
In a crystal thin film manufactured by growing a crystal thin film on a substrate made of a single crystal such as sapphire, silicon, gallium arsenide (GaAs) or an amorphous material such as quartz glass by a vapor phase method,
The angle θ between the normal line (growth direction) of the thin film and the optical axis of the quartz thin film is approximately 45 °. The angle θ of the quartz thin film birefringent plate and the projection line of the optical axis to the quartz thin film birefringent plate and the reference side of the outer shape. Is calculated by measuring the optical phase difference and thickness t of the crystal birefringent plate after growth using transmitted light, and calculating the normal (growth direction) of the crystal thin film and the optical properties of the crystal thin film. A quartz crystal thin film characterized in that an angle θ formed by an axis is calculated by the following equation.
θ = | sin −1 (ne 2 · Γ ′ · λ · (4 · no · π · t + Γ ′ · λ) / ((ne 2 −no 2 ) (2 · no · π · t + Γ ′ · λ) 2 ) ) 1/2 |
However,
ne: Refractive index of extraordinary light at an angle θ from the optical axis Γ ′: Actual phase difference of crystal thin film birefringent plate λ: Wavelength of light source of phase difference measuring device no: Refractive index of ordinary light t: Crystal thin film birefringence Board thickness
JP2004194055A 2004-06-30 2004-06-30 Quartz crystal thin film Pending JP2006016230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194055A JP2006016230A (en) 2004-06-30 2004-06-30 Quartz crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194055A JP2006016230A (en) 2004-06-30 2004-06-30 Quartz crystal thin film

Publications (1)

Publication Number Publication Date
JP2006016230A true JP2006016230A (en) 2006-01-19

Family

ID=35790815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194055A Pending JP2006016230A (en) 2004-06-30 2004-06-30 Quartz crystal thin film

Country Status (1)

Country Link
JP (1) JP2006016230A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US10324496B2 (en) 2013-12-11 2019-06-18 Apple Inc. Cover glass arrangement for an electronic device
US10386889B2 (en) 2013-12-11 2019-08-20 Apple Inc. Cover glass for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US9461357B2 (en) 2014-02-12 2016-10-04 Apple Inc. Antenna on sapphire structure
US9692113B2 (en) 2014-02-12 2017-06-27 Apple Inc. Antenna on sapphire structure
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components

Similar Documents

Publication Publication Date Title
EP0426866B1 (en) Projection/exposure device and projection/exposure method
JP6520951B2 (en) Birefringence measuring apparatus and birefringence measuring method
US7251029B2 (en) Birefringence measurement apparatus, strain remover, polarimeter and exposure apparatus
TWI537685B (en) Arrangement for and method of characterising the polarisation properties of an optical system
JP2006308550A (en) Spectroscopic polarimetry
JP2007263593A (en) Measuring instrument for phase difference and optical axis direction
JP2006016230A (en) Quartz crystal thin film
JP5140409B2 (en) Polarimeter, measurement system
Capelle et al. Polarimetric analysis of stress anisotropy in nanomechanical silicon nitride resonators
KR100612173B1 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP2009168795A (en) Polarization detecting device, polarization detecting element, and polarization detecting method
Jenichen et al. Double crystal topography compensating for the strain in processed samples
JP5041508B2 (en) Optical characteristic measuring apparatus and method
De Martino et al. Mueller polarimetry in the back focal plane
Yao et al. Three-dimensional curving of crystal planes in wide bandgap semiconductor wafers visualized using a laboratory X-ray diffractometer
JPH11211422A (en) Device and method for measuring line width
JP2006179660A (en) Method and device for polarization measurement, and method and device for exposure
JP2006258594A (en) Automatic double refraction measuring instrument and double refraction measuring method using it
JP2005257508A (en) Double refraction characteristic measuring device and double refraction characteristic measuring method
JP2015115329A (en) Imaging element and imaging apparatus comprising the same
Wang et al. Measuring stress birefringence in small Si samples
Wang et al. Measuring stress in Si ingots using linear birefringence
JP2010271279A (en) Measuring apparatus and measurement method
JP2723734B2 (en) Single crystal for collimator
Shi et al. At-wavelength characterization of X-ray wavefronts in Bragg diffraction from crystals