JPS5969984A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS5969984A
JPS5969984A JP18072382A JP18072382A JPS5969984A JP S5969984 A JPS5969984 A JP S5969984A JP 18072382 A JP18072382 A JP 18072382A JP 18072382 A JP18072382 A JP 18072382A JP S5969984 A JPS5969984 A JP S5969984A
Authority
JP
Japan
Prior art keywords
layer
groove
active layer
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18072382A
Other languages
Japanese (ja)
Inventor
Takeshi Hamada
健 浜田
Kunio Ito
国雄 伊藤
Masaru Wada
優 和田
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18072382A priority Critical patent/JPS5969984A/en
Publication of JPS5969984A publication Critical patent/JPS5969984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture the titled laser device with a crescent-shaped active layer formed on a grooved substrate by a method wherein various layers including an active layer are formed on a substrate with a devetail groove the depth of which fluctuates discontinuously while the lower surface of the active layer above the groove is formed into a convex crescent-shape. CONSTITUTION:A first N type clad layer 2, a second active layer 3, a third P type clad layer 4 and a fourth current limiting layer 5 are continuously grown on an N type substrate 1. A dovetail groove is formed on the substrate 1 either by an etching before the growth or by utlizing both the etching before the growth and the melt-back in case of the growth. The active layer 3 thus formed on the groove is formed into crescent-shape by means of adjusting the growing time of the first clad layer 2. After growing the fourth current limiting layer 5, a P type impurity is selectively diffused into stripe type to make the diffused front reach the third clad layer 4. After removing a diffusion preventing film 17 grown on the crystal surface for the selective diffusion, a P side ohmic electrode 6 may be formed while N side ohmic electrode 7 may be formed likewise on the substrate side.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ装置およびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device and a method for manufacturing the same.

従来例の構成とその問題点 近年、DADや光デイスクファイルなどへの情報の1込
み、読み出し用の光源として、あるいは光通信用の光源
として低しきい値で基本横モード発振する半導体レーザ
が要求されている。これを実現するだめには、半導体レ
ーザの断面において活性層に平行な方向に屈折率の分布
をつけることが有効な手段であり、これに対応して、様
々な構造の屈折率導波形半導体レーザが発表されている
Conventional configurations and their problems In recent years, there has been a demand for semiconductor lasers that oscillate in fundamental transverse mode at a low threshold as light sources for loading and reading information into DADs, optical disk files, etc., or as light sources for optical communications. has been done. An effective way to achieve this is to create a refractive index distribution in the cross section of the semiconductor laser in a direction parallel to the active layer. has been announced.

第1図(a) 、 (b)にそれぞれ従来の半導体レー
ザの断面図を示す。第1図(a)(はCS P (Ch
anneled −3ubstrate −Plana
r) v−ザと呼ばれるもので、1はn型GaAs基板
、2はn型Ga 1x A l x A sクラ11層
、3はノンドープGa、’  、A、dyAs活性層、
4はP型Ga1−xA1xASクラッド層、5はn型G
aAs電流制限層、6はP側オーミック電極用金属膜、
7ばn側オーミック電極用金属膜、8は亜鉛拡散領域で
ある。同レーザは、基板1上に溝を設けることにより、
活性層3からクラッド層2゜4に漏れ出しだ光に対して
溝の内側と外側とて実動的な屈折率差をつけ光をとじ込
めようとするものである。
FIGS. 1(a) and 1(b) each show a cross-sectional view of a conventional semiconductor laser. Figure 1(a) (is CS P (Ch
anneled -3ubstrate -Plana
r) What is called a v-za, 1 is an n-type GaAs substrate, 2 is an n-type Ga1xAlxAs 11 layer, 3 is a non-doped Ga, ', A, dyAs active layer,
4 is a P-type Ga1-xA1xAS cladding layer, 5 is an n-type G
aAs current limiting layer, 6 a metal film for the P-side ohmic electrode,
7 is a metal film for an ohmic electrode on the n-side, and 8 is a zinc diffusion region. By providing a groove on the substrate 1, the laser
This is intended to trap light leaking from the active layer 3 into the cladding layer 2.degree. by creating a dynamic refractive index difference between the inside and outside of the groove.

また、第1図(b)はB C(Buried Cres
cent)レーザと呼ばれるもので、7はn 1ill
オーミツク電極用金属膜、8は亜鉛拡散領域、9はn型
InP基5板、10はn型IHGaAsP層、11ばP
型InP層、12はn型InPクラット層、13はノン
ドープInGaAsP活性層、13′は三日月形のノン
ドープInGaAsP活性層、14ばP型InPクラッ
ド層、15はn型11GaAsP電流制限層、16はカ
ドミウム拡散領域である。同レーザは、三日月形の活性
層13′を埋め込むことにより、その活性層の形状によ
り、光の横方向への閉じ込めを行なおうとするものであ
る。
In addition, FIG. 1(b) shows B C (Buried Cres
cent) is called a laser, and 7 is n 1ill
Metal film for ohmic electrode, 8 is a zinc diffusion region, 9 is an n-type InP substrate 5, 10 is an n-type IHGaAsP layer, 11 is a P
12 is an n-type InP cladding layer, 13 is a non-doped InGaAsP active layer, 13' is a crescent-shaped non-doped InGaAsP active layer, 14 is a p-type InP cladding layer, 15 is an n-type 11GaAsP current limiting layer, 16 is cadmium This is a diffusion area. This laser attempts to confine light in the lateral direction by embedding a crescent-shaped active layer 13' due to the shape of the active layer.

しかし、上記aspレーザでは横方向につけだ実効的な
屈折率差が小さいために、光やキャリアに対して十分な
閉じ込めが行なわれない恐れがある。また上記Beレー
ザは、活性層を2回成長させる等の工程を要するために
、作製に手間がかかシ、コスト的にも不利である。
However, in the above-mentioned asp laser, since the effective refractive index difference in the lateral direction is small, there is a possibility that light and carriers may not be sufficiently confined. Furthermore, since the Be laser requires steps such as growing the active layer twice, it is labor intensive to manufacture and is disadvantageous in terms of cost.

本発明は、上記従来の欠点を除去し、??#伺基板上に
三日月形の活性層か形成された新しい構造の半導体レー
ザおよびその製造方法を提供することを目的とする。
The present invention eliminates the above-mentioned conventional drawbacks and ? ? The object of the present invention is to provide a semiconductor laser with a new structure in which a crescent-shaped active layer is formed on a substrate, and a method for manufacturing the same.

発明の構成 すなわち、本発明の半導体レーザ装置は、深さが不連続
的に変化するダブテイル形の溝が形成された基板の上に
、活性層を含む各層が形成されるとともに、前記溝の上
部の前記活性層が、下方に凸の三日月形をなしているこ
とを特徴とするものである。
In other words, in the semiconductor laser device of the present invention, each layer including the active layer is formed on a substrate in which a dovetail groove whose depth changes discontinuously is formed, and the upper part of the groove is formed on the substrate. The active layer is characterized in that it has a downwardly convex crescent shape.

さらに、本発明の半導体レーザ装置の製造方法は、半導
体基板の表面に溝を形成する工程と、前記半導体基板の
表面に、活性層を含む各層をエピタキシャル成長させて
、前記溝を深さが不連続に変化するダブテイル形に変形
し、前記活性層が前記ダブテイル形の溝の上部で、下方
に凸の三日月形になるようにする工程とを含むことを特
徴とするものである。
Furthermore, the method for manufacturing a semiconductor laser device of the present invention includes a step of forming a groove on the surface of a semiconductor substrate, and epitaxially growing each layer including an active layer on the surface of the semiconductor substrate, so that the groove has a discontinuous depth. The active layer deforms into a dovetail shape that changes into a dovetail shape, and the active layer forms a downwardly convex crescent shape above the dovetail groove.

実施例の説明 n型基板1上に第2図F&)に示すように第1層n型ク
ラッド層2、第2層活性層3、第1層n型クラッド層4
、第4層電流制限層5を連続成長させる。基板上には図
に示すようなタブテイル形の溝は成長前のエツチング、
あるいは、成長前のエツチングと成長時のタルトバック
との併用によって形成される。このような溝の上に形成
された活性層は、第1層クラッド層2の成長時間を調節
することにより、図に示すような三日月形となる。第4
層電流制限層5まで成長させた後、p型不純物をストラ
イプ状に選択拡散し、拡散フロントが第3層クラッド層
4に達するようにする(第2図(b))選択拡散のため
に結晶表面に付けた拡散防止膜17を除去した後、p側
オーミック電極6を形成する。
DESCRIPTION OF THE EMBODIMENTS On an n-type substrate 1, as shown in FIG.
, the fourth layer current limiting layer 5 is continuously grown. The tabtail-shaped grooves shown in the figure are formed on the substrate by etching before growth.
Alternatively, it is formed by a combination of etching before growth and tartback during growth. The active layer formed on such a groove has a crescent shape as shown in the figure by adjusting the growth time of the first cladding layer 2. Fourth
After growing up to the layer current limiting layer 5, the p-type impurity is selectively diffused in a stripe pattern so that the diffusion front reaches the third cladding layer 4 (Fig. 2(b)). After removing the diffusion prevention film 17 attached to the surface, the p-side ohmic electrode 6 is formed.

又、基板側にn側オーミック電極7を形成し、第2図(
C1のように作製する。
In addition, an n-side ohmic electrode 7 is formed on the substrate side, as shown in FIG.
Produce as in C1.

この構造の半導体レーザは、レーザ光及びキャリアの閉
じ込めに有効な三日月形の活性層を1回だけの成長で形
成することができ、従来の2回成長を用いるものに比べ
て工vi、数が大幅に少なくてすみ、またそれだけ高い
歩留が期待できるので、コスト的にも大変有利である。
In a semiconductor laser with this structure, a crescent-shaped active layer, which is effective for confining laser light and carriers, can be formed in only one growth process, which requires less work and number than the conventional two-step growth method. It is very advantageous in terms of cost since it requires much less and a higher yield can be expected.

1だ溝の形状をダブテイル形にしたことにより、三1」
月の活性層を再現性よく形成することができるのも、こ
の構造の特徴の一つである。
By making the shape of the groove into a dovetail shape, 31"
One of the features of this structure is that it is possible to form the moon's active layer with good reproducibility.

以下にGaAs−4aA、gAs系で液相エピタキシャ
ル法により構成した本発明のレーザの実施例をさらに具
体的に示す。
Examples of the laser of the present invention constructed by the liquid phase epitaxial method using GaAs-4aA and gAs will be described in more detail below.

n型GaAs基板1の(1oo)面上に(01’+”)
方向に深さhか1.5μm1底部の幅Wが5μmの第3
図のような形状のnltをエツチングにより形成する。
(01'+") on the (1oo) plane of the n-type GaAs substrate 1
The third layer has a depth h or 1.5 μm in the direction, and a width W at the bottom of 5 μm.
An NLT having the shape shown in the figure is formed by etching.

溝を設けた基板1の面上に第4層n型GaAs5(J 
o、s5A Sクラッド層2を溝部外側の基板平”3部
テ約0.2μm %第2層ノンドープ” 0.95 A
(10,05As活性層3を溝部中央部で約0.1μm
、第3層 p型Ga065A# 0.35 Asクラッ
ド層4を約1゜5μm、第4層n型GaAs5を約0.
5μmの厚さに連続成長を行なう(第2図(a))。成
長を790 ’Cの一定温度から5 ’Cの過冷却をつ
けて行永うと、溝の形状はメルトバックにより第2図(
a) 、 (b)に示すようなダブテイル形に変化し、
溝上部の幅は約7μmとなる。また溝の上部の活性層は
図のような三日月形となる。次に成長表面に813N4
膜17を付け、基板の溝の上部にストライプ状窓を形成
し、そこへ選択拡散を行ない、拡散フロントが第3層p
型Gao6sAn o55Asクラッド層4に達するよ
うにする(第2図(b))。その後、表面のS i3N
4膜17を除去し、p側電極用金属を蒸着し、合金処理
を行なってp側オーミック電極6を形成する。基板側に
はn側電極用金属を蒸着し、合金処理を行なってn側オ
ーミック電極7を形成する(第2図(C))。
A fourth layer of n-type GaAs (J
o, s5A S cladding layer 2 is placed on the substrate flattened portion outside the groove portion approximately 0.2 μm % 2nd layer non-doped 0.95 A
(The thickness of the 10,05As active layer 3 at the center of the groove is approximately 0.1 μm.
, the third layer p-type Ga065A#0.35 As cladding layer 4 has a thickness of about 1.5 μm, and the fourth layer n-type GaAs 5 has a thickness of about 0.35 μm.
Continuous growth is performed to a thickness of 5 μm (FIG. 2(a)). When growth is continued from a constant temperature of 790'C with supercooling of 5'C, the shape of the groove changes to that shown in Figure 2 (Fig. 2) due to meltback.
It changes into a dovetail shape as shown in a) and (b),
The width of the upper part of the groove is approximately 7 μm. The active layer above the groove has a crescent shape as shown in the figure. Next, 813N4 is applied to the growth surface.
A film 17 is applied, a striped window is formed on the top of the groove of the substrate, and selective diffusion is performed there, so that the diffusion front is in the third layer p.
It is made to reach the Gao6sAno55As cladding layer 4 (FIG. 2(b)). After that, Si3N on the surface
4 film 17 is removed, p-side electrode metal is deposited, and alloying is performed to form p-side ohmic electrode 6. A metal for the n-side electrode is deposited on the substrate side and alloyed to form the n-side ohmic electrode 7 (FIG. 2(C)).

このようにして作製した半導体ウェハーをへき開し、S
1ブロツクに載置して半導体レーザを完成する0 上記のような製造方法を用いた、構造のレーザにより、
しきい値約50mA、光出力40mWの基本横モード発
振を得ることができた。
The semiconductor wafer produced in this way is cleaved and S
Complete the semiconductor laser by placing it on one block.0 With the laser structure using the manufacturing method described above,
Fundamental transverse mode oscillation with a threshold of about 50 mA and an optical output of 40 mW could be obtained.

発明の詳細 な説明したように本発明の半導体レーザ装置遣方法は活
性層を1回だけの成長で容易に形成できるため製造工程
力峰i、j単であるという効果がある。
As described in detail, the method for fabricating a semiconductor laser device of the present invention has the advantage that the active layer can be easily formed by only one growth, so that the manufacturing process requires only a single peak i and j.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来のQ S P (G:hannel
ed −8ubstrate−Planar )  レ
ーザの断面図、第1図(blは従来のB C(Buri
ed Crescent)  レーザの断面図、第2図
(2L+ 、 (b) 、 (C)は本発明の一実砲例
の半導体レーザ装置の製造工程を示す1析面図、第3図
は同装置の製造に用いる基板の断面図である。 1−−−−・n’型G&AS基板、2−・・n型G a
 1xA 1xAsクラッド層、3・・ノンドープGa
t yA召yASt占性層、4・・・・・p型Ga I
 X A lx A sクラッド層、5・・・・・・n
型GaAs電流制限層、6・・・・・・p」11オーミ
ツク電極用金属膜、7・・・・・・n側オーミック電極
用金属膜、8・・・・・・亜鉛拡散領域、9・・・・・
n型InP基板、10・−=・n型InCraAsP層
、11−==p型InP層、12・・・・・・npIn
Pクラッド層、13・・・・・・ノンドープInGaA
s P活性層、14・・・・・p型InPクラッド層、
1 B−・−=−n型InGaAsP電流制限層、16
.、。 ・・・カドミウム拡散領域、17・・・・・・絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名36
9− 第 1 図 第3図
Figure 1 (a) shows the conventional Q S P (G: hannel
ed-8ubstrate-Planar) Cross-sectional view of the laser, Figure 1 (bl is the conventional B C (Buri
ed Crescent) A cross-sectional view of the laser, FIG. It is a sectional view of a substrate used for manufacturing. 1--n' type G&AS substrate, 2-... n-type Ga
1xA 1xAs cladding layer, 3...Non-doped Ga
t yA y ASt occupancy layer, 4...p-type Ga I
X A lx A s cladding layer, 5...n
type GaAs current limiting layer, 6...p'11 metal film for ohmic electrode, 7...metal film for n-side ohmic electrode, 8...zinc diffusion region, 9.・・・・・・
n-type InP substrate, 10...n-type InCraAsP layer, 11-==p-type InP layer, 12... npIn
P cladding layer, 13...non-doped InGaA
s P active layer, 14... p-type InP cladding layer,
1 B-・-=-n-type InGaAsP current limiting layer, 16
.. ,. ...Cadmium diffusion region, 17...Insulating film. Name of agent: Patent attorney Toshio Nakao and 1 other person36
9- Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)  深さが不連続的に変化するダブテイル形の溝
が形成された基板の上に、活性層を含む各層が形成され
るとともに、前記溝の上部の前記活性層が、下方に凸の
三日月形をなしていることを特徴とする半導体レーザ装
置。
(1) Each layer including an active layer is formed on a substrate in which a dovetail groove whose depth changes discontinuously is formed, and the active layer above the groove has a downwardly convex shape. A semiconductor laser device characterized by having a crescent shape.
(2)半導体基板の表面に溝を形成する工程と、前記半
導体基板の表面に、活性層を含む各層をエピタキシャル
成長させて、前記溝を深さか不連続に変化するダブテイ
ル形に変形し、前記活性層が前記グブテイル形の溝の上
部で、下方に凸
(2) forming a groove on the surface of the semiconductor substrate, epitaxially growing each layer including the active layer on the surface of the semiconductor substrate, deforming the groove into a dovetail shape whose depth changes discontinuously, and forming the groove on the surface of the semiconductor substrate; The layer is convex downward at the top of the gubtail-shaped groove.
JP18072382A 1982-10-14 1982-10-14 Semiconductor laser device and manufacture thereof Pending JPS5969984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18072382A JPS5969984A (en) 1982-10-14 1982-10-14 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18072382A JPS5969984A (en) 1982-10-14 1982-10-14 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5969984A true JPS5969984A (en) 1984-04-20

Family

ID=16088182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18072382A Pending JPS5969984A (en) 1982-10-14 1982-10-14 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5969984A (en)

Similar Documents

Publication Publication Date Title
JPS5969984A (en) Semiconductor laser device and manufacture thereof
JPS60102788A (en) Distributed feedback semiconductor laser
JPS61113293A (en) Semiconductor laser array device
JPH077232A (en) Optical semiconductor device
JPS5834988A (en) Manufacture of semiconductor laser
JPS59222984A (en) Semiconductor laser device
JPS5925399B2 (en) Manufacturing method of semiconductor laser
JPS596588A (en) Semiconductor laser
JPS6242592A (en) Semiconductor laser array device and manufacture of same
JPH02119285A (en) Manufacture of semiconductor laser
JPS6318874B2 (en)
JPH01259589A (en) Semiconductor laser element
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS59127889A (en) Semiconductor laser
JPH02105488A (en) Distributed feedback type semiconductor laser
JPS6320037B2 (en)
JPH0472394B2 (en)
JPS60189280A (en) Manufacture of semiconductor laser
JPS6117157B2 (en)
JPH0384985A (en) Variable wavelength semiconductor laser
JPH02254781A (en) Manufacture of semiconductor light emitting device
JPS63318189A (en) Manufacture of semiconductor laser
JPS6377185A (en) Manufacture of semiconductor laser
JPS58131787A (en) Semiconductor laser
JPS5897886A (en) Distribution reflection type semiconductor laser