JPH01259589A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH01259589A
JPH01259589A JP8767488A JP8767488A JPH01259589A JP H01259589 A JPH01259589 A JP H01259589A JP 8767488 A JP8767488 A JP 8767488A JP 8767488 A JP8767488 A JP 8767488A JP H01259589 A JPH01259589 A JP H01259589A
Authority
JP
Japan
Prior art keywords
layer
groove
resonator
sub
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8767488A
Other languages
Japanese (ja)
Inventor
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8767488A priority Critical patent/JPH01259589A/en
Publication of JPH01259589A publication Critical patent/JPH01259589A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a structure suitable for mass production by making an activated layer substantially flat at a region on a main groove near one end of a resonator and forming the thickness of the region near the end of the resonator thinner than that in the middle thereof. CONSTITUTION:An n-type GaAs layer which will serve as a current blocking layer 6 is grown on a p-type GaAs substrate 1. Then, V-shaped grooves are formed as a main stripe groove 2 and auxiliary stripe grooves 3 by means of photolithography and wet etching. On such a substrate, a first clad layer 5 composed of a p-type AlGaAs compound, an activated layer 4, a second clad layer 7 composed of an n-type AlGaAs compound, a cap layer 8 composed of an n-type GaAs compound to be made into electrodes and ohmic contacts are sequentially formed as laser operation layers. The thickness of the activated layer 4 on the main groove 2 is formed so that it can be thinner toward the ends of a resonator than the middle thereof. Accordingly, it is possible to prevent generation of defective thickness in the first clad layer, thereby improving the productivity of a high output semiconductor laser element.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体レーザ素子に係り、特に高出力動作の可
能な半導体レーザ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor laser device, and particularly to a semiconductor laser device capable of high output operation.

(従来の技術) 従来より、半導体レーザ素子の高出力化において、光パ
ワーの集中による共振器端面の劇的な破壊(C,0,D
:Catastrophle 0ptical Dam
age)を防止するため、活性層の層厚を薄くし、この
活性層に隣接するクラッド層に光をしみださせることに
より、活性層内の光密度を減少させ、CODレベルを高
める構造の半導体レーザ素子が知られている。
(Prior art) Conventionally, in order to increase the output power of semiconductor laser devices, dramatic destruction of the cavity facets (C, 0, D
:Catastrophe 0ptical Dam
In order to prevent this, the thickness of the active layer is reduced and light seeps into the cladding layer adjacent to the active layer, thereby reducing the optical density within the active layer and increasing the COD level. Laser elements are known.

ところが、AJ2GaAs系ダブルへテロ構造のレーザ
素子の場合には、活性層厚がおよそ0.05μm以下に
なると、必要な駆動電流が増大する傾向があり、これは
、例えば現実の結晶成長技術の制約により、活性層とこ
れに接するクラッド層との界面が平坦でないために生じ
る光の散乱損失の増大などに起因する。
However, in the case of an AJ2GaAs-based double heterostructure laser element, when the active layer thickness becomes approximately 0.05 μm or less, the required driving current tends to increase, and this is, for example, a constraint on actual crystal growth technology. This is due to an increase in light scattering loss caused by the uneven interface between the active layer and the cladding layer in contact with it.

そこで、共振器中央付近では活性層厚を0.05μm程
度あるいはそれ以上の厚みとし、共振器端面近傍のみが
共振器中央部に較べて薄い活性層となるように構成する
ことで、活性層内の光密度を下げ、共振器端面の破壊を
防ぐ構造が一般的に知られている。
Therefore, by setting the active layer thickness to about 0.05 μm or more near the center of the resonator, and configuring the active layer only near the end faces of the resonator to be thinner than the center of the resonator, it is possible to A structure that lowers the optical density of the resonator and prevents destruction of the resonator end face is generally known.

さらに、このような構造とすることにより、共振器端面
近傍の活性層の薄い領域では、光密度が下がると共に、
共振器中央部の活性層の厚い部分と比較して注入される
キャリア密度が高くなるため、利得スペクトルが短波長
側にシフトし、共振器中央部で発生した光に対してわず
かに透明になる、いわゆるウィンドウ効果により、いっ
そう、C,O,Dレベルが高まる効果が期待できる。
Furthermore, with such a structure, the optical density decreases in the thin region of the active layer near the cavity end face, and
Compared to the thicker part of the active layer in the center of the cavity, the injected carrier density is higher, so the gain spectrum shifts to shorter wavelengths, making it slightly transparent to the light generated in the center of the cavity. The so-called window effect can be expected to further increase the C, O, and D levels.

このように、共振器端面付近の活性層の層厚を共振器中
央部付近の層厚に比較して薄くする構造を、内部ストラ
イプ構造の半導体レーザにおいて実現する場合、第3図
の断面図に示されるように、基板結晶1の共振器端面近
傍に相当する部分において、発光に寄与する主ストライ
プ溝2の両側に副溝3を設けることにより活性層4を副
溝3内で下方に湾曲させる構造が提案されている(特開
昭節etLo49e号公報)。
In this way, when realizing a structure in which the thickness of the active layer near the resonator end face is thinner than the layer thickness near the center of the resonator in a semiconductor laser with an internal stripe structure, the cross-sectional view shown in FIG. As shown, by providing sub-grooves 3 on both sides of the main stripe grooves 2 that contribute to light emission in a portion of the substrate crystal 1 corresponding to the vicinity of the cavity end face, the active layer 4 is curved downward within the sub-grooves 3. A structure has been proposed (Japanese Unexamined Patent Publication No. 49e).

この技術は、液相結晶成長の成長速度に関する以下の性
質を利用したものである。
This technique utilizes the following properties regarding the growth rate of liquid phase crystal growth.

■(100+結晶面上で成長速度は最も遅く、+111
+結晶面上で最も速い。
■(The growth rate is slowest on the 100+ crystal plane, +111
+ Fastest on the crystal plane.

■凹面上での成長速度〉平坦面上での成長速度〉凸面上
での成長速度の関係。
■Relationship between growth rate on a concave surface, growth rate on a flat surface, and growth rate on a convex surface.

上記関係から、第3図中において、副溝3間に形成され
た(100)面からなる第1クラッド5上面においてよ
りも、副溝3内の下方に湾曲した面上の活性層4の成長
速度がより速い。
From the above relationship, in FIG. 3, the active layer 4 grows on the downwardly curved surface in the sub-grooves 3, rather than on the upper surface of the first cladding 5 formed between the sub-grooves 3 and consisting of the (100) plane. Faster speed.

従って、副溝3内部では成長融液中のAsが早く消費さ
れ、該副溝3に向ってその周囲からAsの拡散が生じる
Therefore, As in the growth melt is quickly consumed inside the sub-groove 3, and As is diffused toward the sub-groove 3 from its surroundings.

この結果、副溝3の周囲のAsの拡散長の範囲では、A
sの濃度が低下し、活性層4の成長速度が抑えられるの
である。この機構から明らかなように、副溝3が深いほ
ど、成長速度抑制効果は強く、副溝3の断面積が大なる
程この効果は持続する。
As a result, in the range of As diffusion length around the sub-groove 3, A
The concentration of s is reduced, and the growth rate of the active layer 4 is suppressed. As is clear from this mechanism, the deeper the minor groove 3 is, the stronger the growth rate suppressing effect is, and the larger the cross-sectional area of the minor groove 3 is, the longer this effect lasts.

−この構造において、主溝2と副溝3の形状は以下の制
限をうける。
- In this structure, the shapes of the main groove 2 and the sub groove 3 are subject to the following restrictions.

(a)主溝2上で活性層4に平坦で、副溝3内に活性層
4が垂れ込むという条件より、 主溝断面積く副溝断面積である。
(a) Under the conditions that the active layer 4 is flat on the main groove 2 and the active layer 4 hangs down into the sub-groove 3, the cross-sectional area of the main groove is equal to the cross-sectional area of the sub-groove.

(b)強い成長速度抑制効果を得るためには、活性層4
を、より小さな曲率半径で湾曲させる。そのため副溝3
をより深く、より狭くする。
(b) In order to obtain a strong growth rate suppressing effect, the active layer 4
is curved with a smaller radius of curvature. Therefore, the minor groove 3
make it deeper and narrower.

上記(a)、(b)の条件より、 主溝深さ≦副溝法さ の関係となり、さらに主溝2には電流を流し、副溝3に
は電流を流さないという条件を満足させるために第3図
に示したような素子断面の構造が必然となる。
From the conditions (a) and (b) above, the relationship is that main groove depth ≦ minor groove depth, and in order to satisfy the condition that current flows in main groove 2 and does not flow in minor groove 3. In this case, the cross-sectional structure of the device as shown in FIG. 3 becomes inevitable.

このような構造を実現するためには、第4図(a)に示
すように、基板結晶1の副溝3に相当する位置に予め溝
3aを形成し、その後電流阻止層6を平坦かつ溝3a以
外の部分で0.5〜lμl程度の厚さとなるように成長
させる(第4図(b))。そして、主溝2および副溝3
を夫々形成することにより(第4図(c)) 、最終的
な基板が完成し、この基板上にレーザ動作層例えば、第
1クラッド層5、活性層4、第2クラッド層7、cap
層8を順次堆積する。
In order to realize such a structure, as shown in FIG. 4(a), a groove 3a is formed in advance at a position corresponding to the sub-groove 3 of the substrate crystal 1, and then the current blocking layer 6 is formed into a flat and grooved shape. It is grown to a thickness of about 0.5 to 1 .mu.l in areas other than 3a (FIG. 4(b)). Then, the main groove 2 and the sub groove 3
(FIG. 4(c)), a final substrate is completed, and laser operating layers such as the first cladding layer 5, the active layer 4, the second cladding layer 7, and the cap layer are formed on this substrate.
Layers 8 are deposited in sequence.

(発明が解決しようとする課題) しかしながら、厚さ1μm以下の電流阻止層を溝上で平
坦に成長させるためには、量産性に劣る液相作品成長法
に依らざるを得ず、また液相結晶成長法での膜厚制御は
気相成長法等に比べて劣るため、歩留りの低下も避けら
れず、量産性に問題があった。
(Problem to be Solved by the Invention) However, in order to grow a current blocking layer with a thickness of 1 μm or less flatly on a groove, it is necessary to rely on a liquid phase growth method which is inferior in mass production, and also requires liquid phase crystal growth. Since film thickness control using the growth method is inferior to that of vapor phase growth methods, etc., a decrease in yield is unavoidable, which poses a problem in mass production.

さらに、電流阻止層により一度埋込まれた溝に合わせて
、主溝および副溝の形成を行なうために2度マスク合わ
せ工程が必要で、工程数が多くなり歩留り低下を助長さ
せる原因となる。
Further, in order to form the main groove and the sub-groove in accordance with the groove once filled with the current blocking layer, a mask alignment step is required twice, which increases the number of steps and causes a reduction in yield.

また、完成した基板上にレーザ動作層のLPEを行なう
際、第1クラッド層が副溝の中で垂れ込む構造のため、
第5図に示すように副溝3の縁部3bで第1クラッド層
5がとぎれる不良が生じ得る。このとき電流阻止層6が
絶縁性結晶ではなく、p−n逆接合を利用している場合
には、電流リークの原因となり、これもまた歩留り低下
の原因となるという問題があった。
In addition, when performing LPE of the laser operating layer on the completed substrate, because the first cladding layer has a structure in which it hangs down in the sub-groove,
As shown in FIG. 5, a defect may occur in which the first cladding layer 5 is cut off at the edge 3b of the sub-groove 3. At this time, if the current blocking layer 6 is not made of an insulating crystal but uses a pn reverse junction, there is a problem in that it causes current leakage, which also causes a decrease in yield.

本発明は上述した問題点を解決するためになされたもの
で、製造歩留りを向上させ、量産性に適した構造の半導
体レーザ素子を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to improve manufacturing yield and provide a semiconductor laser device having a structure suitable for mass production.

[発明の構成] (課題を解決するための手段) 本発明の半導体レーザ素子は、f1001結晶面に略一
致する面の(1001結晶方向にストライプ状の主溝が
刻設された半導体基板と、この半導体基板上に形成され
た活性層を含むレーザ動作用結晶層とを有する半導体レ
ーザ素子において、前記活性層を、共振器端面近傍にお
ける前記主溝上の領域で略平板状に形成するとともに、
この主溝上の領域で他の領域よりも基板側に突出した形
状に形成し、共振器中央部領域の層厚よりも共振器端面
近傍における層厚が薄(なるように構成したことを特徴
とするものである。
[Structure of the Invention] (Means for Solving the Problems) A semiconductor laser element of the present invention includes a semiconductor substrate having a plane substantially coinciding with the f1001 crystal plane (in which a striped main groove is carved in the 1001 crystal direction; In this semiconductor laser device having a crystal layer for laser operation including an active layer formed on a semiconductor substrate, the active layer is formed in a substantially flat shape in a region above the main groove near the cavity end face, and
The region above the main groove is formed in a shape that protrudes toward the substrate side more than the other regions, and the layer thickness near the resonator end face is thinner than the layer thickness in the central region of the resonator. It is something to do.

(作 用) 副ストライプ溝の深さを電流阻止層厚よりも浅くするこ
とにより、電流阻止層形成前のフォトリソグラフィおよ
び溝エツチングの工程が不要となる。同時に、電流阻止
層は平坦な基板結晶上に成長するため、電流阻止層厚に
相当する 1μ丑程度の膜厚制御性と生産性に優れたM
OCVD等の方法を用いることが可能となる。さらに、
第1クラッド層は副溝内部に垂れ込まず、副溝上で斜面
を形成する構造のため、副溝の端で途切れる心配がなく
なった。活性層は副溝上の第1クラッド表面が形成する
斜面の上で成長速度が速いため、2つの斜面に挟まれた
主溝上からAsの拡散が起こり、その結果として主溝上
の活性層が薄膜化されて該活性層内の光密度の減少、さ
らにWindoν効果により共振器端面での光吸収が減
るため、高出力動作が可能となった。
(Function) By making the depth of the sub-stripe grooves shallower than the thickness of the current blocking layer, the steps of photolithography and groove etching before forming the current blocking layer become unnecessary. At the same time, since the current blocking layer is grown on a flat substrate crystal, M
It becomes possible to use methods such as OCVD. moreover,
Since the first cladding layer does not hang down into the sub-groove and forms a slope on the sub-groove, there is no need to worry about it being interrupted at the edge of the sub-groove. Since the active layer grows faster on the slope formed by the first cladding surface above the minor groove, As diffuses from above the main groove sandwiched between the two slopes, and as a result, the active layer on the main groove becomes thinner. As a result, the optical density within the active layer is reduced, and furthermore, the Windoν effect reduces optical absorption at the cavity end faces, making high-output operation possible.

(実施例) 以下、本発明の一実施例について図を参照して説明する
。尚、第3図と同一部分には同一符号を付して重複する
部分の説明を省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Incidentally, the same parts as in FIG. 3 are given the same reference numerals, and the explanation of the overlapping parts will be omitted.

第1図(a)は実施例のレーザ素子の共振器端面付近で
の断面図、第1図(b)は共振器中央部での断面図、第
2図は第1図の半導体レーザ素子の製造工程を説明する
ための図である。
FIG. 1(a) is a cross-sectional view of the laser device of the example near the cavity end face, FIG. 1(b) is a cross-sectional view of the central portion of the resonator, and FIG. 2 is a cross-sectional view of the semiconductor laser device of FIG. It is a figure for explaining a manufacturing process.

本例の半導体レーザ素子を製作するにあたっては、まず
平坦な+1001結晶面p型GaAs基板(Znドープ
:キャリア濃度lXl0  cab−’) 1上に、電
流阻止層6となる約1μmのn型GaAS層(Teドー
プ:  8xlOcm−’)を成長させ第2図(a)、
次にフォトリソグラフィーおよびウェットエツチング法
により、主ストライプ溝2として例えば幅3μm1深さ
1.3μmのV字型溝を形成する(第2図(b))。
To fabricate the semiconductor laser device of this example, first, on a flat +1001 crystal plane p-type GaAs substrate (Zn-doped: carrier concentration lXl0 cab-') 1, an n-type GaAs layer of about 1 μm, which will become the current blocking layer 6, is deposited. (Te doped: 8xlOcm-') was grown as shown in Fig. 2(a).
Next, a V-shaped groove having a width of 3 μm and a depth of 1.3 μm, for example, is formed as the main stripe groove 2 by photolithography and wet etching (FIG. 2(b)).

そして同様の手法で、幅10μ11深さ0.5μlの副
ストライプ溝3を形成する(第2図(C))。
Then, by the same method, a sub-stripe groove 3 having a width of 10 μl and a depth of 0.5 μl is formed (FIG. 2(C)).

このとき、副ストライプ溝3は電流阻止層6を貫通しな
いように形成するので、発光には寄与しない。
At this time, since the sub-stripe grooves 3 are formed so as not to penetrate the current blocking layer 6, they do not contribute to light emission.

尚、本実施例においては副溝3−副溝3間隔Wは20μ
mとしたが、副溝3の幅および間隔は、レーザ動作層、
特に第1クラッド層のLPE条件に応じて若干の調整を
要する。
In this embodiment, the sub-groove 3-sub-groove 3 interval W is 20μ.
m, but the width and interval of the sub-grooves 3 are determined by the laser operating layer,
In particular, some adjustment is required depending on the LPE conditions of the first cladding layer.

以上のパラメータを有する基板上に、レーザ動作層とし
てp型A f2   ’G aO,350,65As力
゛らなる第 1クラッド層5、p型AJ2   GaO,0580,
944As からなる活性層4、n型AJ2  Ga   AsがO
400,85 らなる第2クラッド層7、電極とオーミックコンタクト
をとるためのn型GaAsからなるCap層8を順次成
長させる。
On a substrate having the above parameters, a first cladding layer 5 consisting of p-type A f2 'GaO,350,65As, a p-type AJ2 GaO,0580,
Active layer 4 made of 944As, n-type AJ2 GaAs is O
A second cladding layer 7 made of 400,85 oxide and a cap layer 8 made of n-type GaAs for making ohmic contact with the electrode are grown in sequence.

ここで、特性上重要な第1クラッド層6、および活性層
4の厚さは、共振器中央部の利得項域で夫々0.25μ
ttr s 0.07μmであり、この値は共振器端面
近傍における断面図である第1図(a)中のtel、t
aaに各々はぼ一致する。
Here, the thicknesses of the first cladding layer 6 and the active layer 4, which are important in terms of characteristics, are each 0.25 μm in the gain term region at the center of the cavity.
ttr s is 0.07 μm, and this value is equal to tel, t in FIG. 1(a), which is a cross-sectional view near the cavity end face.
Each corresponds closely to aa.

これに対して共振器端面近傍では、同じく第1図中にお
いてt a 1 =0.04μm St c 2−0.
15μmであった。結果として端面付近で、 tcl >tC2、ta2 >taa >tatなる関
係が確認され、主溝2上の活性層4の厚さは共振器中央
部(第1図(b))と比較して、共振器端部の方が薄く
なる構造を実現できた。
On the other hand, in the vicinity of the resonator end face, t a 1 =0.04 μm St c 2-0.
It was 15 μm. As a result, the relationships tcl > tC2 and ta2 > taa > tat were confirmed near the end faces, and the thickness of the active layer 4 on the main groove 2 was as follows compared to the central part of the resonator (Fig. 1(b)). We were able to create a structure in which the ends of the resonator are thinner.

このようにして作製した多層構造ウェハに従来と同様の
方法によりp側およびn側電極を形成し、さらにへき開
によりレーザ発振用共振器を形成して個々のレーザ素子
に分割した。このレーザ素子は、端面コート無しで15
0a+W以上のCODレベルを記録し、従来の高出力型
レーザ素子と比較して1.5〜2倍の高出力動作が可能
となった。
P-side and n-side electrodes were formed on the thus produced multilayer structure wafer by a conventional method, and laser oscillation resonators were formed by cleavage and the wafer was divided into individual laser elements. This laser element has a diameter of 15 mm without end face coating.
A COD level of 0a+W or higher was recorded, and a high output operation of 1.5 to 2 times that of conventional high output laser elements was possible.

尚、本例では共振器中央部付近では副溝を形成していな
いが、共振器中央部付近で副溝−副溝間隔Wを広げる、
あるいは共振器中央部付近で副溝体積を小さくすること
によっても同等な効果を得られることは明らかである。
In this example, although no sub-groove is formed near the center of the resonator, the sub-groove-sub-groove interval W is widened near the center of the resonator.
Alternatively, it is clear that the same effect can be obtained by reducing the sub-groove volume near the center of the resonator.

また、上述実施例において副ストライプ溝は主ストライ
プ溝の左右一方のみに設けてもよく、左右それぞれに複
数本形成しても良い。また、GaA、eAs系以外の材
料により本構造を実現することも可能である。
Further, in the above-described embodiment, the sub-stripe grooves may be provided only on one side of the main stripe grooves, or a plurality of sub-stripe grooves may be formed on each of the left and right sides. Furthermore, it is also possible to realize this structure using materials other than GaA and eAs.

さらに溝形状についても7字型溝に限定するものではな
い。
Further, the groove shape is not limited to the 7-shaped groove.

[発明の効果] 以上説明したように本発明によれば、電流阻止層の結晶
成長の際に気相成長を用いることが可能な構造としたの
で、主ストライプ溝および副ストライプ溝形成プロセス
の簡略化、第1クラッド層の途切れ不良の発生防止が可
能となり、共振器端面付近で共振器中央部より薄い活性
層を有する高出力半導体レーザ素子の生産性が向上する
[Effects of the Invention] As explained above, according to the present invention, the structure is such that vapor phase growth can be used for crystal growth of the current blocking layer, which simplifies the process of forming the main stripe grooves and the substripe grooves. This makes it possible to prevent the occurrence of discontinuous defects in the first cladding layer, thereby improving the productivity of a high-power semiconductor laser device having an active layer that is thinner near the cavity end facets than at the cavity center.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例を示す半導体レーザ素
子の共振器端面付近断面図で、同図(b)は共振器中央
部断面図、第2図は第1図の半導体レーザ素子の基板製
作工程を示す図、第3図は従来の副溝によって主溝上の
活性層を薄くした構造の半導体レーザ素子の断面図、第
4図は第3図の従来の半導体レーザ素子の基板製作工程
を示す図、第5図は従来例における第1クラッド層の成
長不良を示す図である。 1・・・・・・基板結晶 2・・・・・・主溝 3・・・・・・副溝 4・・・・・・活性層 5・・・・・・第1クラッド層 6・・・・・・電流阻止層 7・・・・・・第2クラッド層 8・・・・・・cap層 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − (a) 第17 G3) (b) 第2図 7搗 5 、二二
FIG. 1(a) is a sectional view of the vicinity of the cavity end face of a semiconductor laser device showing an embodiment of the present invention, FIG. 1(b) is a sectional view of the central part of the cavity, and FIG. Figure 3 is a cross-sectional view of a semiconductor laser element with a structure in which the active layer on the main groove is thinned by a conventional sub-groove, and Figure 4 is a diagram showing the substrate manufacturing process of the element, and Figure 4 is the substrate of the conventional semiconductor laser element shown in Figure 3. FIG. 5, which is a diagram showing the manufacturing process, is a diagram showing a growth failure of the first cladding layer in a conventional example. 1...Substrate crystal 2...Main groove 3...Sub-groove 4...Active layer 5...First cladding layer 6... ...Current blocking layer 7...Second cladding layer 8...Cap layer Applicant: Toshiba Corporation Patent attorney Satoshi Suyama - (a) 17th G3) (b) Figure 2 7 5, 22

Claims (1)

【特許請求の範囲】 {100}結晶面に略一致する面の{100}結晶方向
にストライプ状の主溝が刻設された半導体基板と、この
半導体基板上に形成された活性層を含むレーザ動作用結
晶層とを有する半導体レーザ素子において、 前記活性層を、共振器端面近傍における前記主溝上の領
域で略平板状に形成するとともに、この主溝上の領域で
他の領域よりも基板側に突出した形状に形成し、共振器
中央部領域の層厚よりも共振器端面近傍における層厚が
薄くなるように構成したことを特徴とする半導体レーザ
素子。
[Claims] A laser including a semiconductor substrate in which a striped main groove is carved in the {100} crystal direction in a plane that substantially coincides with the {100} crystal plane, and an active layer formed on the semiconductor substrate. In a semiconductor laser device having a crystal layer for operation, the active layer is formed in a substantially flat shape in a region above the main groove near the cavity end face, and in a region above the main groove closer to the substrate than other regions. 1. A semiconductor laser device, characterized in that it is formed in a protruding shape and configured such that the layer thickness near the end face of the resonator is thinner than the layer thickness in the central region of the resonator.
JP8767488A 1988-04-09 1988-04-09 Semiconductor laser element Pending JPH01259589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8767488A JPH01259589A (en) 1988-04-09 1988-04-09 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8767488A JPH01259589A (en) 1988-04-09 1988-04-09 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH01259589A true JPH01259589A (en) 1989-10-17

Family

ID=13921490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8767488A Pending JPH01259589A (en) 1988-04-09 1988-04-09 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH01259589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395436A2 (en) * 1989-04-28 1990-10-31 Sharp Kabushiki Kaisha A semiconductor laser device, a semiconductor wafer, and a method for the production of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395436A2 (en) * 1989-04-28 1990-10-31 Sharp Kabushiki Kaisha A semiconductor laser device, a semiconductor wafer, and a method for the production of the same

Similar Documents

Publication Publication Date Title
JPS5940592A (en) Semiconductor laser element
US5524017A (en) Quantum well semiconductor laser
JPS60789A (en) Semiconductor laser device
JPH0474877B2 (en)
US4377865A (en) Semiconductor laser
JPH05327112A (en) Manufacture of semiconductor laser
JPH01259589A (en) Semiconductor laser element
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPS6037191A (en) Manufacture of semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPH0634426B2 (en) Method for manufacturing semiconductor laser device
JPH02119285A (en) Manufacture of semiconductor laser
JP2538258B2 (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JPS609187A (en) Semiconductor light-emitting device
JPH0680869B2 (en) Semiconductor laser device
JPS6353718B2 (en)
JPH0553316B2 (en)
JPH05129722A (en) Semiconductor laser
JPH0856051A (en) Semiconductor laser element
JPS6355996A (en) Semiconductor light emitting device
JPH02234486A (en) Semiconductor laser element
JPS6223189A (en) Semiconductor laser element