JPS60102788A - Distributed feedback semiconductor laser - Google Patents

Distributed feedback semiconductor laser

Info

Publication number
JPS60102788A
JPS60102788A JP21065183A JP21065183A JPS60102788A JP S60102788 A JPS60102788 A JP S60102788A JP 21065183 A JP21065183 A JP 21065183A JP 21065183 A JP21065183 A JP 21065183A JP S60102788 A JPS60102788 A JP S60102788A
Authority
JP
Japan
Prior art keywords
laser
active layer
refractive index
layer
parted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21065183A
Other languages
Japanese (ja)
Inventor
Katsuyuki Uko
宇高 勝之
Shigeyuki Akiba
重幸 秋葉
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP21065183A priority Critical patent/JPS60102788A/en
Publication of JPS60102788A publication Critical patent/JPS60102788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to realize a stable single-wavelength operation in the titled laser having an active layer and a roughness, which is made to periodically differ the refractive index of laser beams along the proceeding direction of the laser beams, by a method wherein a periodic variation is given to the laser gain by forming the roughness inclusive of the active layer in the structure of the laser. CONSTITUTION:A DFB laser is constituted in a structure, wherein an active layer 3 was parted by the periodic roughness of a diffraction grating 5. In the structure inclusive of the active layer 3 having been parted like this, when carriers at the P-N junction part were injected in the parted active layers 3 having the smallest forbidden band width, the laser gain, which can be seen in the longitudinal direction of the DFB laser, is made to periodically change, and the imaginary component of the refractive index also can be made to periodically change as well. As a result, in the spectrum of the DFB laser with a refractive index, whose imaginary component can be made to periodically change, the central mode coincides with the Bragg wavelength and the threshold values of other modes become ones higher than that of the central mode.

Description

【発明の詳細な説明】 本発明は分布帰還形半導体レーザの改善に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in distributed feedback semiconductor lasers.

分布帰還形半導体レーザ(以下rDFBレーザ」と略す
)は、高速変調時にも単一波長で動作し易いことから、
長距離で大容量の光フアイバ通信に用いる光源として期
待されている。従来のDFBレーザは図1(a)に示す
ごとく、基板1上で活性層3に隣接した導波路層2に周
期的な凹凸(回折格子5)が設けられ、周期的な凹凸に
よって与えられる屈折率変化が分布的な光の帰還を生じ
させ、レーザ発振を得ていた。なお、4はバッファ層で
ある。その際、屈折率変化の周期と該屈折率の平均値に
より決定されるブラッグ波長近傍の波長を有する光のみ
が選択的に帰還を受けるため、DFBレーザでは単一波
長動作が得られ易かった。
Distributed feedback semiconductor lasers (hereinafter abbreviated as rDFB lasers) can easily operate at a single wavelength even during high-speed modulation.
It is expected to be used as a light source for long-distance, high-capacity optical fiber communications. As shown in FIG. 1(a), in a conventional DFB laser, periodic unevenness (diffraction grating 5) is provided on a waveguide layer 2 adjacent to an active layer 3 on a substrate 1, and the refraction given by the periodic unevenness is The rate change caused distributed light feedback, resulting in laser oscillation. Note that 4 is a buffer layer. At this time, only light having a wavelength near the Bragg wavelength determined by the period of refractive index change and the average value of the refractive index is selectively fed back, so it is easy to obtain single wavelength operation with the DFB laser.

しかし、図1(a)に示すような従来のDFBレーザは
出力光を有効に取り出すために弁開面から成る端面6を
有しており、この端面6が回折格子5のどの部分に形成
されるかによって、図1(b)の破線で示す如く2波長
発振の可能性のあることが理論的に指摘され、また実験
的°にも確認されている。
However, the conventional DFB laser as shown in FIG. 1(a) has an end face 6 consisting of a valve opening face in order to effectively take out the output light. It has been theoretically pointed out that there is a possibility of two-wavelength oscillation as shown by the broken line in FIG. 1(b), and it has also been experimentally confirmed.

従って、安定な単一波長動作を得るためには、図1(b
)の実線で示したモードが得られる回折格子5の特定の
位置に端面を形成しなければならず、該回折格子の周期
が2000〜5ooo Xであることを考慮すると、通
常の骨間法により端面を形成したのでは再現性の良い単
一波長動作する素子を得ることは不可能に近い。寸だ、
エツチング等により端面を少しずつ削って最適な端面位
置を実現する方法も考えられるが、チップ作製後に削ら
なければならないため、素子本体や電極に損傷を与え有
効な方法ではない。
Therefore, in order to obtain stable single wavelength operation, it is necessary to
) The end face must be formed at a specific position of the diffraction grating 5 where the mode shown by the solid line can be obtained, and considering that the period of the diffraction grating is 2000 to 5 ooo By forming end faces, it is almost impossible to obtain a device that operates at a single wavelength with good reproducibility. It's a size.
Although it is possible to achieve the optimal position of the end face by scraping the end face little by little by etching, etc., this method is not effective as it would damage the element body and electrodes since the chip must be scraped off after the chip is fabricated.

本発明は、前述した従来技術の欠点に鑑みなされたもの
で、レーザ利得に周期的な変化を与える、ことにより、
安定な単一波長動作を可能ならしめたDFBレーザを提
供することを目的とする。
The present invention was made in view of the drawbacks of the prior art described above, and by periodically changing the laser gain,
An object of the present invention is to provide a DFB laser that enables stable single wavelength operation.

以下図面を用いて詳細に説明する。This will be explained in detail below using the drawings.

図2は本発明の一実施例で、長手方向(光の進行方向)
の断面図を示している。同図において、1はn型InP
基板、3は回折格子5の凹凸周期によって分断されたI
nGaAsP活性層、5は回折格子7は回折格子50周
期により分断されたp型InP層、8はp型InGaA
sP層もしくはp型InP層、9はp型InP層、】0
はInGa、AsP層、11および12は電極、13.
14お」:び】5は埋め込みInP層、16はZn拡散
領域である。なお、15はp型InP層9と同一の組成
を有している。
Figure 2 shows an embodiment of the present invention, in the longitudinal direction (direction of light travel).
A cross-sectional view of the is shown. In the same figure, 1 is n-type InP
The substrate 3 is divided by the concavo-convex period of the diffraction grating 5.
nGaAsP active layer, 5 is a diffraction grating 7 is a p-type InP layer divided by 50 periods of the diffraction grating, 8 is p-type InGaA
sP layer or p-type InP layer, 9 is p-type InP layer, ]0
are InGa and AsP layers, 11 and 12 are electrodes, 13.
14 is a buried InP layer, and 16 is a Zn diffusion region. Note that layer 15 has the same composition as p-type InP layer 9 .

図2から明らかなように、図1に示す従来のDFBレー
ザは単一の活性層3が長手方向に一様に平坦であったの
に対して、本発明では回折格子5の凹凸周期により活性
層3が分断された構造となっている。このように分断さ
れた活性層3の構造ではpn接合部でのキャリアは禁制
帯幅の一番小さい分断された活性層3に注入されるため
、DFBレーザの長手方向に見たレーザ利得が周期的に
変化し、屈折率の虚数部も周期的に変化させることがで
きる。尚、屈折率の虚数部の周期的な変化を有するDF
Bレーザのスペクトルは、図3の実線で示されるように
、中心モードがブラッグ波長に一致し、他のモードは中
心モードよりも高い閾値になることが理論によりすでに
明らかにされている。
As is clear from FIG. 2, in the conventional DFB laser shown in FIG. 1, the single active layer 3 was uniformly flat in the longitudinal direction, whereas in the present invention, the active layer 3 is It has a structure in which layer 3 is divided. In the structure of the active layer 3 divided in this way, carriers at the pn junction are injected into the divided active layer 3 having the smallest forbidden band width, so that the laser gain seen in the longitudinal direction of the DFB laser becomes periodic. The imaginary part of the refractive index can also be changed periodically. Note that DF with periodic changes in the imaginary part of the refractive index
In the spectrum of the B laser, as shown by the solid line in FIG. 3, theory has already clarified that the central mode coincides with the Bragg wavelength, and that the other modes have higher thresholds than the central mode.

従って、本発明では光の進行方向に沿って設けられた周
期的な凹凸により活性層3を分断し、レーザ利得を周期
的に変化させ、屈折率の虚数部が周期的に変化すること
を利用して、回折格子5の周期と平均の屈折率で決定さ
れるブラッグ波長での安定寿単−波長動作をするDFB
レーザを実現することかできる。また、InGaAsP
層80代りp型InP層を用いた場合は、DFB領域内
で屈折率実数部の周期的な変化も伴い、スペクトルは図
3の破線のように偏移するが、安定な単一波長動作が同
様に得られる。
Therefore, in the present invention, the active layer 3 is divided by periodic unevenness provided along the direction of light propagation, the laser gain is changed periodically, and the imaginary part of the refractive index changes periodically. The DFB has a stable lifetime at the Bragg wavelength determined by the period of the diffraction grating 5 and the average refractive index.
It is possible to realize a laser. Also, InGaAsP
When a p-type InP layer is used instead of layer 80, there is also a periodic change in the real part of the refractive index within the DFB region, and the spectrum shifts as shown by the broken line in Figure 3, but stable single wavelength operation is not possible. Similarly obtained.

本実施例の作製は従来のDFBレーザと同程度の容易さ
であり、埋め込み構造を想定すれば3回の結晶成長で作
製が可能である。すなわち、まず第1回目の成長でn型
InP基板1上にInGaAsP活性層3を500X%
 Ill型InP層7を500〜1000X順次成長す
る。このような均一薄膜の形成は、VPE法、MO−C
VD法、MBE法によって行なうことができる。次に、
干渉露光法とエツチングにより1次の回折格子を用いる
場合には、周期的2500 iの凹凸を形成する。この
際、回折格子5の深さは1000X程度となり、活性層
3とp型InP層7は分断される。第2回目の成長にお
いて、回折格子5上にp型InP層もしくはInGaA
sP導波路層8、p型InP層9を成長した後、埋め込
み加工を施し、第3回目の成長において、埋め込み成長
を行々う。こ 5− れらを成長後、DFB領域にZn拡散を施して電極を形
成することにより、素子が作製される。また、本実施例
では両端面の反射率を極力零に近づけた方がさらに安定
な単一波長動作が得られるために、窓構造(特願昭58
−140177号参照)を非励起領域の一例として設け
ている。
The fabrication of this example is as easy as that of a conventional DFB laser, and if a buried structure is assumed, fabrication can be performed with three crystal growths. That is, in the first growth, the InGaAsP active layer 3 is grown at 500X% on the n-type InP substrate 1.
Ill-type InP layers 7 are sequentially grown to a thickness of 500 to 1000×. Formation of such a uniform thin film is possible using VPE method, MO-C
This can be done by the VD method or the MBE method. next,
When a first-order diffraction grating is used by interference exposure and etching, periodic 2500 i irregularities are formed. At this time, the depth of the diffraction grating 5 is approximately 1000X, and the active layer 3 and the p-type InP layer 7 are separated. In the second growth, a p-type InP layer or an InGaA layer is formed on the diffraction grating 5.
After growing the sP waveguide layer 8 and the p-type InP layer 9, embedding processing is performed, and in the third growth, embedding growth is performed. 5- After growing these, an element is manufactured by performing Zn diffusion in the DFB region to form electrodes. In addition, in this embodiment, even more stable single-wavelength operation can be obtained by making the reflectance of both end faces as close to zero as possible.
-140177) is provided as an example of a non-excitation region.

次に本発明の他の実施例について述べる。Next, other embodiments of the present invention will be described.

上述の説明では作製の容易性から活性層3が回折格子の
開部分で分断されていだが、周期的な凹凸部分に同一周
期であればどこで分断されても同様な効果をもたらす。
In the above description, the active layer 3 is divided at the open portions of the diffraction grating for ease of fabrication, but the same effect can be obtained even if the active layer 3 is divided at any point with the same period in the periodic uneven portion.

また必ずしも完全に分断されている必要もなく、層厚を
変化させても発振閾値が変わるものの、スペクトル特性
は同様であり、安定々単一波長動作が可能でちる。また
、材料についてもInGaAsP系について述べたが、
AtGaAs系やAtInGaAs系等にも適用可能で
あり、横モード制御されたいかなる構造にも適用できる
ことは言うまでもない。
Furthermore, they do not necessarily have to be completely separated, and although the oscillation threshold changes even if the layer thickness is changed, the spectral characteristics are the same, and stable single wavelength operation is possible. Also, regarding the material, I mentioned InGaAsP system, but
It goes without saying that it can be applied to AtGaAs systems, AtInGaAs systems, etc., and can also be applied to any structure in which transverse mode is controlled.

以上のように、本発明によれば活性層の層厚を回折格子
を同一周期で変化させることによりし一 6− ザ利得を制御し、極めて安定な単一波長動作をするDF
Bレーザを提供することができる。また、本発明による
DF’Bレーザは容易に作製できるため、再現性良く実
現でき長距離で大容量の光フアイバ通信に用いる光源と
して使用可能であり、その効果は極めて大きい。
As described above, according to the present invention, the thickness of the active layer is changed by changing the thickness of the active layer at the same period as that of the diffraction grating.
B laser can be provided. Further, since the DF'B laser according to the present invention can be easily manufactured, it can be realized with good reproducibility and can be used as a light source for long-distance, large-capacity optical fiber communication, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図1(a)は、活性層に隣接した層に凹凸を設けた従来
のDFBレーザの断面図、図1(b)は図1(a)のD
FBレーザにおいて端面の位置によりスペクトルが影響
を受ける様子を示す特性図、図2は本発明による実施例
として単一の活性層が周期的に分断されたDFBレーザ
の断面図、図3は本発明のDFBレーザのスペクトルを
示す特性図である。 1・・・n型InP基板、2・・・導波路層、 3・・
・InGaA、sP活性層、4・・・バッファ層、5・
・・回折格子、6・・・端面、7・・・p型InP層、
8−p型InPもしくはInGaAsP層、9・・・p
型InPクラッド層、 10・・・InGaAsPキャ
ップ層、11 、1.2・・・電極、13 、14 、
1.5・・・埋め込みInP層、」6・・・Zn拡散領
域。 特許出願人 国際電信電話株式会社 代 理 人 大 塚 学 外1名
FIG. 1(a) is a cross-sectional view of a conventional DFB laser in which a layer adjacent to the active layer is provided with unevenness, and FIG. 1(b) is a cross-sectional view of the DFB laser shown in FIG. 1(a).
A characteristic diagram showing how the spectrum is affected by the position of the end face in an FB laser. FIG. 2 is a cross-sectional view of a DFB laser in which a single active layer is periodically divided as an example according to the present invention. FIG. 3 is a cross-sectional view of a DFB laser according to the present invention. FIG. 2 is a characteristic diagram showing a spectrum of a DFB laser. 1... n-type InP substrate, 2... waveguide layer, 3...
・InGaA, sP active layer, 4... buffer layer, 5.
... Diffraction grating, 6... End face, 7... P-type InP layer,
8-p-type InP or InGaAsP layer, 9...p
type InP cladding layer, 10... InGaAsP cap layer, 11, 1.2... electrode, 13, 14,
1.5...Buried InP layer, ``6...Zn diffusion region. Patent applicant International Telegraph and Telephone Co., Ltd. Agent Otsuka 1 external person

Claims (1)

【特許請求の範囲】[Claims] 少なくとも活性層と光の進行方向に沿って光の屈折率を
周期的に異ならしめる凹凸とを有する分布帰還形半導体
レーザにおいて、該活性層を含んで該凹凸が形成された
ことを特徴とする分布帰還形半導体レーザ。
A distributed feedback semiconductor laser having at least an active layer and irregularities that periodically vary the refractive index of light along the traveling direction of light, characterized in that the irregularities are formed including the active layer. Feedback type semiconductor laser.
JP21065183A 1983-11-09 1983-11-09 Distributed feedback semiconductor laser Pending JPS60102788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21065183A JPS60102788A (en) 1983-11-09 1983-11-09 Distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21065183A JPS60102788A (en) 1983-11-09 1983-11-09 Distributed feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60102788A true JPS60102788A (en) 1985-06-06

Family

ID=16592835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21065183A Pending JPS60102788A (en) 1983-11-09 1983-11-09 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60102788A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149888A (en) * 1989-11-07 1991-06-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and manufacture thereof
US5100694A (en) * 1989-08-01 1992-03-31 The United States Of America As Represented By The Administrator National Aeronautics And Space Administration Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
JPH0685402A (en) * 1991-12-12 1994-03-25 American Teleph & Telegr Co <Att> Product containing distributed feedback laser
US5327450A (en) * 1991-09-05 1994-07-05 Fujitsu Limited Optical semiconductor device and process of prodcuing same
JPH06232497A (en) * 1993-02-04 1994-08-19 Nec Corp Distribution feedback type semiconductor laser and its manufacture
US7016391B2 (en) 2000-03-13 2006-03-21 Sharp Kabushiki Kaisha Gain-coupled distributed feedback semiconductor laser device and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114186A (en) * 1974-02-15 1975-09-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114186A (en) * 1974-02-15 1975-09-06

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100694A (en) * 1989-08-01 1992-03-31 The United States Of America As Represented By The Administrator National Aeronautics And Space Administration Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
JPH03149888A (en) * 1989-11-07 1991-06-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and manufacture thereof
US5327450A (en) * 1991-09-05 1994-07-05 Fujitsu Limited Optical semiconductor device and process of prodcuing same
JPH0685402A (en) * 1991-12-12 1994-03-25 American Teleph & Telegr Co <Att> Product containing distributed feedback laser
JPH06232497A (en) * 1993-02-04 1994-08-19 Nec Corp Distribution feedback type semiconductor laser and its manufacture
US7016391B2 (en) 2000-03-13 2006-03-21 Sharp Kabushiki Kaisha Gain-coupled distributed feedback semiconductor laser device and production method therefor

Similar Documents

Publication Publication Date Title
JP4643794B2 (en) Semiconductor light emitting device
US5991322A (en) Semiconductor optical device
US5436195A (en) Method of fabricating an integrated semiconductor light modulator and laser
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JP2002084033A (en) Distributed feedback semiconductor laser
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JPS60102788A (en) Distributed feedback semiconductor laser
JPH04783A (en) Semiconductor optical element
JP3681693B2 (en) Semiconductor laser and semiconductor optical integrated circuit including this element
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
CN115280609A (en) Optical device
JPH077232A (en) Optical semiconductor device
JP2713445B2 (en) Semiconductor laser device
JPS62245692A (en) Distributed feedback semiconductor laser with external resonator
US20230035055A1 (en) Electroabsorption Modulated Laser
JPS61202487A (en) Distributed feedback type semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPH02212804A (en) Optical semiconductor element and production thereof
JPH02263490A (en) Wavelength variable semiconductor laser
JPS59127864A (en) Semiconductor light-emitting element
JP2914249B2 (en) Optical semiconductor device and method of manufacturing the same
JPH084178B2 (en) Method for manufacturing distributed Bragg reflection semiconductor laser
JPH0697591A (en) Manufacture of semiconductor laser
JPS60165782A (en) Semiconductor laser