JPS596652A - Differential logical circuit - Google Patents

Differential logical circuit

Info

Publication number
JPS596652A
JPS596652A JP11583282A JP11583282A JPS596652A JP S596652 A JPS596652 A JP S596652A JP 11583282 A JP11583282 A JP 11583282A JP 11583282 A JP11583282 A JP 11583282A JP S596652 A JPS596652 A JP S596652A
Authority
JP
Japan
Prior art keywords
code
input
transmission line
logic circuit
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11583282A
Other languages
Japanese (ja)
Other versions
JPS6347388B2 (en
Inventor
Kiyotoshi Ito
伊藤 清敏
Shozo Komaki
小牧 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11583282A priority Critical patent/JPS596652A/en
Publication of JPS596652A publication Critical patent/JPS596652A/en
Publication of JPS6347388B2 publication Critical patent/JPS6347388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To obtain logical conversion information from remaining output terminals of a storing element by applying a 2<n>-notation input code and a code obtained by delaying a part of a code obtained from a data output terminal. CONSTITUTION:OR conversion information obtaining any transmission line code array out of a natural code array, a Gray code array, and a rotationally symmetrical code array and the storing element 21 in which information to be operated for the transmitted input codes is written are provided. Binary input codes in four sequences are inputted to the address terminals A0-A3 of the element 21 through input terminals 23 and binary transmission codes of four sequences which are OR-converted and outputted from the output terminals D0-D3 of the element 21 are sent to output terminals 24. Information from output terminals D4-D7 is supplied to the address terminals A4-A7 of the storing element 21 through an one-bit delay element 25.

Description

【発明の詳細な説明】 この発明は、ディジタル位相変調またはゲイジタル振幅
位相変調等の差動位相変調を用いて情報の伝送を行なう
通信システムに使用され、入力信号を伝送路信号へ変換
し、−またその逆変換を行う差動論理回路に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used in a communication system that transmits information using differential phase modulation such as digital phase modulation or gauge digital amplitude phase modulation, and converts an input signal into a transmission line signal. The present invention also relates to a differential logic circuit that performs the inverse conversion.

〈従来技術〉 ディジタル位相変調を用いて信号を伝送する場合、絶対
位相の伝送が困離な点より、搬送波の位相差に情報を持
たせた信号伝送を行なう。これを差動論理方式と呼んで
おシ、送信側では現在送信している搬送波の位相に、次
に送信すべき情報に和尚した位相を加算し、この結果に
よって次の位相を決め、−力受(K側では現在受信して
いる搬送波の位相と、次に受信される搬送波の位相との
差をとシ、この結果を出力情報としている。これらの操
作は搬送波の位相と位相の和または差の演算を直接性な
うのではなく、搬送波の位相に対応したディジタル情報
同志の間で論理演算を行なうよう、差動論理回路を用い
て行なわれている。との差動論理回路は、2 進入力符
号を2 進体送路符号に変換するだめの送信論理回路と
、伝送されてきた2n進伝送路符号を元の2−人カ符号
闇応する2 進出力符号に変換するための受信論理回路
との総称である。
<Prior Art> When transmitting a signal using digital phase modulation, since it is difficult to transmit the absolute phase, the signal is transmitted by giving information to the phase difference between carrier waves. This is called a differential logic method. On the transmitting side, the phase of the carrier wave currently being transmitted is added to the phase of the information to be transmitted next, and the next phase is determined based on this result. On the receiving (K side), the difference between the phase of the carrier wave currently being received and the phase of the carrier wave to be received next is calculated, and this result is used as output information. A differential logic circuit is used to perform a logical operation between pieces of digital information corresponding to the phase of a carrier wave, rather than directly calculating the difference. A transmission logic circuit for converting a binary input code into a binary transmission line code, and a transmission logic circuit for converting the transmitted 2n-ary transmission line code into a binary output code corresponding to the original 2-digit code. This is a general term for receiving logic circuits.

第1図は4相位相差変調方式(4PSK)に用いられる
従来の差動論理回路を示し、同図Aは送信論理回路、同
図Bは受信論理回路である。即ち第1図Aに示すように
送信i!1iil理回路は、2組の2進入符号号a1 
 、ag  はフリップフロップFFl。
FIG. 1 shows a conventional differential logic circuit used in a four-phase phase difference keying system (4PSK), in which A is a transmitting logic circuit and B is a receiving logic circuit. That is, as shown in FIG. 1A, transmission i! 1iii logic circuit has two sets of binary input codes a1
, ag is a flip-flop FFl.

FFgに端子11からのタイミング信号で読込まれると
共に1ビツト遅延用フリツプフロツプFFi。
Flip-flop FFi is read into FFg by a timing signal from terminal 11 and is delayed by 1 bit.

FF4に、入力符号より1ビツト(タイミング信号)先
行して出力された伝送路符号す、m−1,b、m−1が
それぞれ読込まれ、これらフリップフロップFF1〜F
F4の出力間で、NOR回路1a〜1hXoR回路2a
 、2bによシ4を法とする和分論理演算を行ない、そ
の演X結果の情報bl  rbRによって搬送波の位相
を変化させている。また、第1図Bに示すように受信論
理回路は、2組の2進伝送路符号C1+0g  はフリ
ップフロップF F s 、 F’ Fsに端子12の
タイミング信号で読込まれ、そのフリップフロップとの
出力1ビツト遅延用7リツプフロツブFFY、FFsに
読込まれる。入力された伝送路符号と1ビット先行して
得られた伝送路符号cl   、(4g   との間で
NOR回路4a〜4h。
The transmission line codes S, m-1, b, and m-1 outputted one bit (timing signal) ahead of the input code are respectively read into FF4, and these flip-flops FF1 to F
Between the outputs of F4, NOR circuits 1a to 1hXoR circuit 2a
, 2b performs a summation logic operation modulo 4, and the phase of the carrier wave is changed based on the information bl rbR of the operation X result. Furthermore, as shown in FIG. 1B, in the receiving logic circuit, the two sets of binary transmission line codes C1+0g are read into the flip-flops F F s and F' Fs by the timing signal at the terminal 12, and the output from the flip-flops is It is read into seven lip flops FFY and FFs for 1-bit delay. NOR circuits 4a to 4h operate between the input transmission line code and the transmission line code cl, (4g) obtained 1 bit in advance.

OR回路5a、5bによシ4を法とする差分論理演算を
行ない、その結果のal  、ag  を出力としてい
る。
The OR circuits 5a and 5b perform a differential logic operation modulo 4, and output the results al and ag.

また第2図は、16値直交撮幅変詞方式(16QAM)
に用いられる。読み出し専用メモリ(ROM)を用いた
差動論理回路で同図Aは送信論理回路、同図Bは受信論
理回路を示す。即ち第2図Aに示すように送信論理回路
は4系列の2進入符号号as  + a m  + j
L s  T Jl 4  と、1ビツト遅延用7リツ
プフロツプ7を介し、入力符号より1ビット先行して出
力された伝送路符号bl   rbR1bs   、b
4   との間でROM8にょ92組の4を法とする和
分論理演算を行ない、この演算出力情報によシ搬送波の
振幅及び位相を変化させる。
In addition, Figure 2 shows the 16-value orthogonal width variable method (16QAM).
used for. In the differential logic circuit using a read-only memory (ROM), A in the same figure shows a transmitting logic circuit, and B in the same figure shows a receiving logic circuit. That is, as shown in FIG. 2A, the transmission logic circuit has four series of binary input codes as + a m + j.
L s T Jl 4 and the transmission line code bl rbR1bs , b which is outputted 1 bit ahead of the input code via the 7-bit flip-flop 7 for 1-bit delay.
A summation logic operation modulo 4 of 92 sets in the ROM 8 is performed between 4 and 4, and the amplitude and phase of the carrier wave are changed based on the output information of this operation.

また、第2図Bに示すように受信論理回路は4M 列O
2IA 伝送路符”j Cs ” + C* ms c
II ” t e 4 ” ト、1ピツト遅延用フリツ
プフロツプ9を介し、その入力符号よυ1ビット先行し
て得られた伝送路符号c1m″″1..m−1,、m−
1,04m″″1 との間で、RONloにより2mの
4を法とする差分論理演算を行ない、その結果を情報出
力としている。この16QAM用差動論理回路は第1図
に示した4PSK用差動嗣理回路を2組用いても同様に
構成することができる。
In addition, as shown in FIG. 2B, the reception logic circuit has 4M columns O
2IA Transmission line code “j Cs” + C* ms c
II ``t e 4 '', the transmission line code c1m''''1. .. m-1,, m-
1.04m''''1, a differential logical operation using 2m modulo 4 is performed by RONlo, and the result is output as information. This 16QAM differential logic circuit can be constructed in the same way even if two sets of 4PSK differential logic circuits shown in FIG. 1 are used.

このように従来の差動論理回路は、論理演算部分をゲー
ト素子あるいはROMによシ実現しているが、その回路
構成は送信論理回路と受信論理(ロ)路では異なる回路
構成となっていた。
In this way, in conventional differential logic circuits, the logic operation part is implemented using gate elements or ROM, but the circuit configurations are different for the transmitting logic circuit and the receiving logic (2) circuit. .

〈発明の概袂〉 この発明の目的は送信論理回路と受信論理回路とを同−
回路構成とした差動論理回路を提供することにある。
<Summary of the Invention> An object of the present invention is to provide the same transmitting logic circuit and receiving logic circuit.
An object of the present invention is to provide a differential logic circuit having a circuit configuration.

この発明によれば、差動論理回路の論理演算部分に、あ
らかじめ2n を法とする論理変換則に従った論理変換
情報を書き込んだ記憶素子を備え、この記憶素子のアド
レス入力端子に2n進入力符号あるいは2n進伝送路符
号と、当該記憶素子のデータ出力端子よりmられる符号
の一部を1ビツト遅延させた符号とを加えることにより
、論理変換情報を当該記憶素子の残余のデータ出力端子
力・ら傅る。
According to this invention, the logic operation portion of the differential logic circuit is provided with a memory element in which logic conversion information according to the logic conversion rule modulo 2n is written in advance, and the address input terminal of this memory element is provided with a 2n-base input. By adding a code or a 2n-ary transmission line code and a code obtained by delaying a part of the code m from the data output terminal of the memory element by 1 bit, the logic conversion information is output to the remaining data output terminal of the memory element.・Ra ru.

〈実施例〉 第3図はこの発明の一実施例で、16QAM方式用差動
論理回路を示す。まず第3図を16QAM方式用送信論
理回路とする場合を説明すると、ナチュラル形符号配置
、グレー形符号配置、あるいは回転対称形符号配置のい
ずれかの伝送路符号配置を得ることができる和分論理変
換情報ならびに送信入力符号に対する被演算情報をiI
k′@込んだ記憶素子21が設けられる。4系列の2進
入符号号a、m、a、m、、、m、84mは入力端子2
3を通じて記憶素子21のアドレス端子AoAIAff
iAsにそれぞれ入力される。記憶素子21の出力端子
D(IDIDzDsよシの和分l!!理変換された4系
列の2進伝送W’r符号bx”、 bs+−、bsm、
 b4mtri 出力m子24 K送出される。記憶素
子21の出力端子D 4 D s D mD7の出力は
1ピツト遅延累子25を通じて記憶素子21のアドレス
端子A 4 A s A s A ?に入力される。
<Embodiment> FIG. 3 is an embodiment of the present invention, showing a differential logic circuit for 16QAM system. First, to explain the case where FIG. 3 is used as a transmission logic circuit for the 16QAM system, a summation logic that can obtain a transmission path code constellation of either a natural code constellation, a gray code constellation, or a rotationally symmetric code constellation. The conversion information and the operand information for the transmitted input code are
A storage element 21 containing k'@ is provided. The 4-series binary input code a, m, a, m, , m, 84m is input terminal 2.
3 to the address terminal AoAIAff of the storage element 21.
Each is input to iAs. The output terminal D of the memory element 21 (the sum of IDIDzDs and si!!) is the converted four-series binary transmission W'r code bx", bs+-, bsm,
b4mtri output m24K sent. The output of the output terminal D 4 D s D mD7 of the memory element 21 is passed through the 1-pit delay capacitor 25 to the address terminal A 4 A s A s A ? is input.

記憶素子(ROMあるいはRAM)は、8系列アドレス
入力端子AO−A?及び8系列データ出力端子DO〜D
7を備え、2048ビット以上の記憶零値を有する。
The storage element (ROM or RAM) has 8 series address input terminals AO-A? and 8 series data output terminals DO~D
7 and has a storage zero value of 2048 bits or more.

この回路における和分論理変換則に従った真理値表の一
例を第4図に示す。この第4図の左欄のアドレス入力符
号AoxAyが右欄のデータ出力符号Do−1)7とな
るように、あらかじめ送信入力符号a1m、a2m、a
8m、84mと1ピット遅延被演算符号、すなわち1ビ
ット先行して出力された伝送路符号b1m−1,b2m
−1,b8m−1,b4m−1ノスヘテノ入力条件に対
する和分論理変換情報b1m、b、m。
FIG. 4 shows an example of a truth table according to the summation logic conversion rule in this circuit. The transmission input codes a1m, a2m, a are set in advance so that the address input code AoxAy in the left column of FIG.
8m, 84m and 1-pit delayed operand codes, that is, transmission line codes b1m-1, b2m outputted 1 bit in advance
-1, b8m-1, b4m-1 Summation logic conversion information b1m, b, m for noshateno input conditions.

bam、b4mを作威し、これをデータ出力の上位4ビ
ツトならびに下位4ビツトとなるように記憶素子11に
記憶しておく。その結果、入力端子23の送信入力符号
と1ビツト遅延累子25を介して得られた被演算符号す
なわち1ビット遅延伝送路符号とを、記憶素子21のア
ドレス入力端子A。
bam and b4m are generated and stored in the memory element 11 so as to become the upper 4 bits and lower 4 bits of the data output. As a result, the transmitted input code of the input terminal 23 and the operand code obtained via the 1-bit delay multiplier 25, that is, the 1-bit delay transmission line code, are transferred to the address input terminal A of the storage element 21.

〜A7に加えることによりその入力符号に対応した和、
分論理変侠情報及び被演算情報が記憶素子21のデータ
出力端子Do=D口ならびにD4〜Dマに得られる。
~By adding to A7, the sum corresponding to the input sign,
The logical change information and the operand information are obtained at the data output terminals Do=D and D4 to D of the storage element 21.

なお第4図中の伝送路符号及び被演算・1符1号のYl
rn(blrn、bgm)Ylrrl(b−1ト4m)
ハ、送信入力符号X、m(、、m、、、m)、x、m(
a、m、84m)および1ビット遅1MM31EFLj
+Yxm−”(b+”−1,b−−”)。
In addition, the transmission line code and operand/1 code 1 Yl in Figure 4
rn(blrn,bgm)Ylrrl(b-1to4m)
C, Transmission input code X, m(,,m,,,m),x,m(
a, m, 84m) and 1 bit slow 1MM31EFLj
+Yxm-”(b+”-1, b--”).

Yg”−”(btm−”、bgm−”) ヲf L/ 
−−すfニラに変換り、り6ト、Yt”=(Xsm+Y
sm−” ) M OD 4 及ヒYgrn=(X/”
+Yg”−”)MOD 4 ヲtt’ll L、テm 
ラtLだ値をさらにナチュラル・グレー変換したもので
あシ、伝送路符号配置としてはナチュラル形符号配置と
なる’1AiI理変換則に従ったものである。fcソし
、グレー〇ナチュラル及びナチュラル・グレー変換につ
いては行わなくてもよい。
Yg"-"(btm-", bgm-") wof L/
--Convert to Sf leek, ri6t, Yt"=(Xsm+Y
sm-”) M OD 4 and Ygrn=(X/”
+Yg"-") MOD 4 Wott'll L, Tem
This value is obtained by further natural-gray conversion of the tL value, and the transmission line code arrangement follows the '1AiI logical conversion rule, which results in a natural code arrangement. fc, gray〇natural and natural-gray conversion need not be performed.

次に同じく第3図を16QAM方式用受信論理回路とす
る場合を説明すると、記憶素子21はナチュラル形符号
配置、グレー形符号配&あるいは回転対称形符号配置の
伝送路符号を、元の送信入力符号に対応した受信出力符
号に変換する丸めの差分癲1理変換情報ならびに受信伝
送路符号に対する被演算情報が書き込まれ、入力端子2
3には伝送路符号c 1”、 (!2”、 cmm、 
04mカ入力サレす出力端子24には差分論理変換され
た受信出力゛1、符、・号atm、at”、asm、8
4mが得られる。
Next, to explain the case where FIG. 3 is also used as a reception logic circuit for 16QAM system, the storage element 21 stores the transmission path code of natural type code arrangement, gray type code arrangement & or rotationally symmetric code arrangement as the original transmission input. Rounding difference conversion information to be converted into a reception output code corresponding to the code and operand information for the reception transmission line code are written, and input terminal 2
3 has the transmission line code c 1”, (!2”, cmm,
The output terminal 24 that receives the 04m input receives the differential logic-converted reception output ``1, sign, ・sign atm, at'', asm, 8.
4m is obtained.

この回路における差分論理変換則に従った真理値表の一
例を第5図に示す。この第5図の左欄のアドレス入力符
号Ao−yAtが右欄のデータ出力符号Do−07とな
るように、あらかじめ伝送路符号c1m、c2m、ca
m、04mと1ビット遅蝙被演算符号すなわち、その伝
送符号より1ビット先行して得られた伝送路符号c1m
″″t 、 c、m−1、c、m−1、84m−1のす
べての入力条件に対する差分論理変、換1..情報a1
m、、m、a、m、84mを作成し、これをデータ出力
の上位4ビツトに、また伝送路符号C1m、C2m、C
8m、04mがそのままデータ出力の下位4ビツトとな
るように記憶素子21に記憶しておく。その結果、入力
端子23の伝送路符号と1ビツト遅延素子25を介して
得られた被演算符号すなわち1ビット遅延伝送路符号と
を、記憶素子21のアドレス入力端子AO−A?に加え
ることにより、当該伝送路符号に対応した差分論理変換
情報及び被演算情報が記憶素子21のデータ出力端子D
O〜D8ならびにD4〜皇〕7に得られる。なお第4図
と同様VCM 5 図中(D 受4g IJJ 符号号
XIm(a −、axrn) 、Xsm(aa”+a4
m) ’d伝送路符符号sm(cl” +c2”)、Z
z”(C,m、 C4m)と1ビット先行して得られた
伝送路符号Ztm−”(c1’−’、 asm−”)+
Zsm−”Canm−” +904m−1)をグレー拳
ナチュラル変換したあとX t ”−(Z t ” Z
 t ”−’ )M OD 4 及D x2” −(Z
 2mZ2”−”)IVIOD 4を計算して得られた
値をさらにナチュラル・グレー変換したものである。た
ソし、グレー〇ナチュラル及びナチュラル・グレー変換
については行わなくてもよい。
An example of a truth table according to the differential logic conversion rule in this circuit is shown in FIG. Transmission line codes c1m, c2m, ca are set in advance so that the address input code Ao-yAt in the left column of FIG. 5 becomes the data output code Do-07 in the right column.
m, 04m and the 1-bit delayed operand code, that is, the transmission line code c1m obtained 1 bit ahead of the transmission code.
``''Difference logic conversion for all input conditions of t, c, m-1, c, m-1, 84m-1, Conversion 1. .. information a1
m, , m, a, m, 84m are created and used as the upper 4 bits of the data output, and the transmission line codes C1m, C2m, C
8m and 04m are stored in the storage element 21 as they are as the lower 4 bits of the data output. As a result, the transmission line code of the input terminal 23 and the operand code obtained via the 1-bit delay element 25, that is, the 1-bit delayed transmission line code, are transferred to the address input terminals AO-A? of the storage element 21. By adding the differential logic conversion information and operand information corresponding to the transmission line code to the data output terminal D of the storage element 21,
Obtained in O~D8 and D4~English]7. In addition, as in Figure 4, VCM 5 (D receiver 4g IJJ code XIm (a -, axrn), Xsm (aa" + a4
m) 'd Transmission line code sm (cl" + c2"), Z
Transmission line code Ztm-” (c1'-', asm-") +
After converting Zsm-"Canm-" +904m-1) to gray fist natural, X t "-(Z t "Z
t ”-') M OD 4 and D x2”-(Z
2mZ2"-") IVIOD 4 is further converted into natural gray. However, it is not necessary to perform gray-natural and natural-gray conversions.

このような、和分論理変換情報ならびに被演算情報を記
憶素子に書き込んだ送信論理回路と、差分!1fiI理
変換情報ならびに被演算情報を記憶素子に書き込んだ受
信論理回路とを、同一伝送路の送信(Ill及び受信側
に用い、伝送路においてvAシが生じなければ、す々わ
ち前記16QAM方式の場合、blm、 bl!m、 
b、m、 b、m トC,m、 CIIm、 C,m、
 C,m カ等しければ、送信入力符号に一致した受信
出力符号を得ることができる。
A transmission logic circuit that writes such summation logic conversion information and operand information into a storage element, and a difference! If the reception logic circuit in which the 1fiI physical conversion information and the operand information are written in the storage element is used for the transmission (Ill) and reception side of the same transmission path, and no vA error occurs on the transmission path, the above 16QAM method is used. In the case of blm, bl!m,
b, m, b, m C, m, CIIm, C, m,
If C and m are equal, a received output code matching the transmitted input code can be obtained.

第6図はこの発明を適用した2n進差動論理M路の一般
的構成を示し 2nを法とする和分論理変換情報ならび
に被演算情報あるいは2n を法とする差分論理変換情
報ならびに被演算情報を書き込んだ記憶索子31とn系
列の1ビツト遅延紮子32とが設けられ 21進符号入
力端子33よりの入′力符号が記憶索子31のアドレス
A o =An −+に入力され、記憶索子31の出力
D o =D n−1は2n進論理変換符号出力端子3
4へ供給される。記憶索子31の出力Dr、〜D2n−
tは1ビツト遅延素子32を通じて記憶索子31のアド
レス端子An〜A2n−1に供給される。
FIG. 6 shows a general configuration of a 2n-ary differential logic M path to which the present invention is applied. Summation logic conversion information and operand information modulo 2n or differential logic conversion information modulo 2n and operand information The input code from the 21-decimal code input terminal 33 is input to the address A o =An -+ of the memory search element 31, The output D o =D n-1 of the memory search element 31 is the 2n-ary logic conversion code output terminal 3
4. Output Dr of memory search element 31, ~D2n-
t is supplied to the address terminals An to A2n-1 of the storage element 31 through the 1-bit delay element 32.

〈効 果〉 以上説明したように、この発明によれば差動論理囲路に
用いる記憶素子のデータ出力端子の一部に、残余のデー
タ出力と同一の符号を出力するかまたは入力伝送路符号
と同一の符号を出力することにより、送信論理回路また
は受信論理回路とすることができるので、同一回路構成
で記憶素子の変更のみによって送信論理回路または受信
論理回路が実現できる。従ってこの発明を用いれば差動
論理回路の#!造ココスト設計コストの低下を図ること
ができる。
<Effects> As explained above, according to the present invention, the same code as the remaining data output is output to a part of the data output terminal of the memory element used in the differential logic circuit, or the input transmission line code is By outputting the same code as , it can be used as a transmitting logic circuit or a receiving logic circuit. Therefore, a transmitting logic circuit or a receiving logic circuit can be realized with the same circuit configuration only by changing the storage element. Therefore, if this invention is used, #! It is possible to reduce the cost of design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の4PSK方式用差動論理回路を示す図、
第2図は従来の記憶索子(ROM)を用いた1 6QA
M方式用差動論理回路を示す図、第3図はこの発明を用
いた16QAM方式用差動論理回路の一実施例を示す図
、第4図はこの発明における和分論理変換則に従った真
理値表の一例を示す図、第5図はこの発明における差分
論理変換則に従ったX理値表の一例を示す図、第6図は
この発明による差動論理回路の一般的構成を示す図であ
る。 21.31:記憶素子、23 、33 :符号入力端子
、24,34:論理変換符号出力端子、25.32:1
ビツト遅延素子。 特許出願人  日本電仏電砧公社 代理人 車野 卑
Figure 1 is a diagram showing a conventional 4PSK differential logic circuit;
Figure 2 shows 16QA using conventional memory access memory (ROM).
FIG. 3 is a diagram showing an embodiment of the differential logic circuit for the 16QAM method using the present invention, and FIG. 4 is a diagram showing the differential logic circuit for the M method according to the summation logic conversion rule of the present invention. FIG. 5 is a diagram showing an example of a truth table, FIG. 5 is a diagram showing an example of an X-logical table according to the differential logic conversion rule of the present invention, and FIG. 6 is a diagram showing the general configuration of a differential logic circuit according to the present invention. It is a diagram. 21.31: Memory element, 23, 33: Code input terminal, 24, 34: Logic conversion code output terminal, 25.32:1
Bit delay element. Patent Applicant: Nippon Denbutsu Denkintsu Corporation Agent: Bei Kurumano

Claims (1)

【特許請求の範囲】[Claims] (1)2進入符号号を2進伝送路符号に変換したシ、そ
の伝送路符号を元の2n進入力符号に対応する2n進出
力符号に変換したシする差動論理回路において、あらか
じめ2 を法とする論理変換則に従い、論理変換情報を
書き込んだ記憶素子を備えその記憶素子のアドレス入力
端子に、2 進入力符号あるいは2 進体送路符号と、
尚該記憶素子のデータ出力端子よシ得られる符号の一部
をlピット遅延させた符号とを加えることによシ、論理
変換情報を尚該記憶素子の残余のデータ出力端子から得
、アドレス入力端子に帰還するだめのデータ出力端子の
符号は、2 進体送路符号と同一であるように前記記憶
素子が構成されている差動論理回路。
(1) In a differential logic circuit that converts a binary input code into a binary transmission line code and converts the transmission line code into a 2n output code corresponding to the original 2n input code, a memory element in which logic conversion information is written in accordance with a logic conversion rule that is a modulus; a binary input code or a binary field path code;
By adding a code obtained by l-pit delay to a part of the code obtained from the data output terminal of the memory element, logic conversion information is obtained from the remaining data output terminal of the memory element, and address input is obtained. The differential logic circuit wherein the memory element is configured such that the code of the data output terminal to be fed back to the terminal is the same as the binary body transmission path code.
JP11583282A 1982-07-02 1982-07-02 Differential logical circuit Granted JPS596652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11583282A JPS596652A (en) 1982-07-02 1982-07-02 Differential logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11583282A JPS596652A (en) 1982-07-02 1982-07-02 Differential logical circuit

Publications (2)

Publication Number Publication Date
JPS596652A true JPS596652A (en) 1984-01-13
JPS6347388B2 JPS6347388B2 (en) 1988-09-21

Family

ID=14672217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11583282A Granted JPS596652A (en) 1982-07-02 1982-07-02 Differential logical circuit

Country Status (1)

Country Link
JP (1) JPS596652A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116729A (en) * 1984-07-02 1986-01-24 キヤノン株式会社 Tonometer
JPS62268524A (en) * 1986-05-17 1987-11-21 キヤノン株式会社 Tonometer
JPS6397140A (en) * 1986-10-14 1988-04-27 キヤノン株式会社 Tonometer
JPS63125237A (en) * 1986-11-15 1988-05-28 キヤノン株式会社 Ophthalmic apparatus
US5285458A (en) * 1990-03-20 1994-02-08 Fujitsu Limited System for suppressing spread of error generated in differential coding
JPH07194557A (en) * 1994-10-03 1995-08-01 Canon Inc Ophthalmic system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116729A (en) * 1984-07-02 1986-01-24 キヤノン株式会社 Tonometer
JPS62268524A (en) * 1986-05-17 1987-11-21 キヤノン株式会社 Tonometer
JPH0580206B2 (en) * 1986-05-17 1993-11-08 Canon Kk
JPS6397140A (en) * 1986-10-14 1988-04-27 キヤノン株式会社 Tonometer
JPH0566805B2 (en) * 1986-10-14 1993-09-22 Canon Kk
JPS63125237A (en) * 1986-11-15 1988-05-28 キヤノン株式会社 Ophthalmic apparatus
JPH0576294B2 (en) * 1986-11-15 1993-10-22 Canon Kk
US5285458A (en) * 1990-03-20 1994-02-08 Fujitsu Limited System for suppressing spread of error generated in differential coding
JPH07194557A (en) * 1994-10-03 1995-08-01 Canon Inc Ophthalmic system

Also Published As

Publication number Publication date
JPS6347388B2 (en) 1988-09-21

Similar Documents

Publication Publication Date Title
US6844833B2 (en) Methods and apparatus for constant-weight encoding and decoding
EP0758825B1 (en) Method and apparatus for generating dc-free sequences with conveying partial information by the sequence of codeword digital sums of successive codewords
US3873971A (en) Random error correcting system
JPS5951645A (en) System and apparatus for coding and decoding of error correction multi-value
US6138265A (en) Decoding trellis coded modulated data with a conventional Viterbi decoder
US20020075173A1 (en) Parallel in serial out circuit for use in data communication system
US3230310A (en) Biternary pulse code system
JPS596652A (en) Differential logical circuit
US6442729B1 (en) Convolution code generator and digital signal processor which includes the same
US7071855B1 (en) Gray code conversion method and apparatus embodying the same
JPH06224783A (en) Cyclic coded crc device
US4519079A (en) Error correction method and apparatus
US4691318A (en) Data transmission system with error correcting data encoding
US6680981B1 (en) π/4 shift QPSK modulator and communication device
JPS62133842A (en) Multi-value orthogonal amplitude modulation system
US6076098A (en) Adder for generating sum and sum plus one in parallel
US6785343B1 (en) Rectangular-to-polar conversion angle quantizer
JPS61154331A (en) Data converter
JP2000112715A (en) Sine/cosine arithmetic circuit
JPS58131851A (en) Differential logical circuit
Arora et al. Conversion schemes in residue code
US5212696A (en) Method and apparatus for producing order independent signatures for error detection
SU693364A1 (en) Device for interfacing with main
JPS61192139A (en) Frame converting circuit
GB2294616A (en) Data interleaving process for radio transmission