JPS6347388B2 - - Google Patents

Info

Publication number
JPS6347388B2
JPS6347388B2 JP11583282A JP11583282A JPS6347388B2 JP S6347388 B2 JPS6347388 B2 JP S6347388B2 JP 11583282 A JP11583282 A JP 11583282A JP 11583282 A JP11583282 A JP 11583282A JP S6347388 B2 JPS6347388 B2 JP S6347388B2
Authority
JP
Japan
Prior art keywords
code
input
transmission line
logic circuit
ary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11583282A
Other languages
Japanese (ja)
Other versions
JPS596652A (en
Inventor
Kyotoshi Ito
Shozo Komaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11583282A priority Critical patent/JPS596652A/en
Publication of JPS596652A publication Critical patent/JPS596652A/en
Publication of JPS6347388B2 publication Critical patent/JPS6347388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 この発明は、デイジタル位相変調またはデイジ
タル振幅位相変調等の差動位相変調を用いて情報
の伝送を行なう通信システムに使用され、入力信
号を伝送路信号へ変換し、またその逆変換を行う
差動論理回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used in a communication system that transmits information using differential phase modulation such as digital phase modulation or digital amplitude phase modulation, and converts an input signal into a transmission line signal. This invention relates to a differential logic circuit that performs the inverse conversion.

<従来技術> デイジタル位相変調を用いて信号を伝送する場
合、絶対位相の伝送が困難な点より、搬送波の位
相差に情報を持たせた信号伝送を行なう。これを
差動論理方式と呼んでおり、送信側では現在送信
している搬送波の位相に、次に送信すべき情報に
相当した位相を加算し、この結果によつて次の位
相を決め、一方受信側では現在受信している搬送
波の位相と、次に受信される搬送波の位相との差
をとり、この結果を出力情報としている。これら
の操作は搬送波の位相と位相の和または差の演算
を直接行なうのではなく、搬送波の位相に対応し
たデイジタル情報同志の間で論理演算を行なうよ
う、差動論理回路を用いて行なわれている。この
差動論理回路は、2n進入力符号を2n進伝送路符号
に変換するための送信論理回路と、伝送されてき
た2n進伝送路符号を元の2n進入力符号に対応する
2n進出力符号に変換するための受信論理回路との
総称である。
<Prior art> When transmitting a signal using digital phase modulation, since it is difficult to transmit the absolute phase, the signal is transmitted by giving information to the phase difference of carrier waves. This is called a differential logic method, and on the transmitting side, the phase corresponding to the information to be transmitted next is added to the phase of the carrier wave currently being transmitted, and the next phase is determined based on this result. On the receiving side, the difference between the phase of the currently received carrier wave and the phase of the next received carrier wave is calculated, and this result is used as output information. These operations are performed using differential logic circuits to perform logical operations between digital information corresponding to the carrier wave phase, rather than directly calculating the sum or difference between the carrier wave phases. There is. This differential logic circuit includes a transmission logic circuit for converting a 2n - ary input code into a 2n- ary transmission line code, and a transmission logic circuit for converting a 2n-ary input code into a 2n-ary transmission line code, and a transmission logic circuit for converting the transmitted 2n-ary transmission line code to the original 2n -ary input code.
It is a general term for the receiving logic circuit for converting into 2n output codes.

第1図は4相位相差変調方式(4PSK)に用い
られる従来の差動論理回路を示し、同図Aは送信
論理回路、同図Bは受信論理回路である。即ち第
1図Aに示すように送信論理回路は、2組の2進
入力符号a1 m,a2 mはフリツプフロツプFF1,FF2
に端子11からのタイミング信号で読込まれると
共に1ビツト遅延用フリツプフロツプFF3,FF4
に、入力符号より1ビツト(タイミング信号)先
行して出力された伝送路符号b1 m-1,b2 m-1がそれ
ぞれ読込まれ、これらフリツプフロツプFF1
FF4の出力間で、NOR回路1a〜1h、OR回路
2a,2bにより4を法とする和分論理演算を行
ない、その演算結果の情報b1 m,b2 mによつて搬送
波の位相を変化させている。また、第1図Bに示
すように受信論理回路は、2組の2進伝送路符号
c1 m,c2 mはフリツプフロツプFF5,FF6に端子1
2のタイミング信号で読込まれ、そのフリツプフ
ロツプとの出力1ビツト遅延用フリツプフロツプ
FF7,FF8に読込まれる。入力された伝送路符号
と1ビツト先行して得られた伝送路符号c1 m-1
c2 m-1との間でNOR回路4a〜4h、OR回路5
a,5bにより4を法とする差分論理演算を行な
い、その結果のa1 m,a2 mを出力としている。
FIG. 1 shows a conventional differential logic circuit used in a four-phase phase difference keying system (4PSK), in which A is a transmitting logic circuit and B is a receiving logic circuit. In other words , as shown in FIG .
is read by the timing signal from terminal 11, and the flip-flops FF 3 and FF 4 for 1-bit delay are read.
Then, the transmission line codes b 1 m-1 and b 2 m-1 outputted one bit (timing signal) ahead of the input code are respectively read, and these flip-flops FF 1 to
Between the outputs of FF 4 , NOR circuits 1a to 1h and OR circuits 2a and 2b perform a summation logic operation modulo 4, and the phase of the carrier wave is determined by the information b 1 m and b 2 m of the operation result. It's changing. In addition, as shown in FIG. 1B, the reception logic circuit has two sets of binary transmission line codes.
c 1 m and c 2 m are flip-flops FF 5 and FF 6 connected to terminal 1.
The flip-flop is read with the timing signal of
Read into FF 7 and FF 8 . The transmission line code c 1 m-1 obtained by preceding the input transmission line code by 1 bit,
NOR circuits 4a to 4h and OR circuit 5 between c 2 m-1
A and 5b perform a differential logical operation modulo 4, and the results a 1 m and a 2 m are output.

また第2図は、16値直交振幅変調方式
(16QAM)に用いられる。読み出し専用メモリ
(ROM)を用いた差動論理回路で同図Aは送信
論理回路、同図Bは受信論理回路を示す。即ち第
2図Aに示すように送信論理回路は4系列の2進
入力符号a1 m,a2 m,a3 m,a4 mと、1ビツト遅延用
フリツプフロツプ7を介し、入力符号より1ビツ
ト先行して出力された伝送路符号b1 m-1,b2 m-1
b3 m-1,b4 m-1との間でROM8により2組の4を
法とする和分論理演算を行ない、この演算出力情
報により搬送波の振幅及び位相を変化させる。
Further, FIG. 2 is used for a 16-value quadrature amplitude modulation method (16QAM). In the differential logic circuit using a read-only memory (ROM), A in the figure shows a transmitting logic circuit, and B in the same figure shows a receiving logic circuit. That is, as shown in FIG. 2A, the transmission logic circuit receives four series of binary input codes a 1 m , a 2 m , a 3 m , and a 4 m and receives 1 bit from the input code via a flip-flop 7 for a 1-bit delay. Transmission line code b 1 m-1 , b 2 m-1 ,
Two sets of summation logical operations modulo 4 are performed between b 3 m-1 and b 4 m-1 by the ROM 8, and the amplitude and phase of the carrier wave are changed based on the output information of this operation.

また、第2図Bに示すように受信論理回路は4
系列の2進伝送路符号c1 m,c2 m,c3 m,c4 mと、1
ビツト遅延用フリツプフロツプ9を介し、その入
力符号より1ビツト先行して得られた伝送路符号
c1 m-1,c2 m-1,c3 m-1,c4 m-1との間で、ROM10
により2組の4を法とする差分論理演算を行な
い、その結果を情報出力としている。この
16QAM用差動論理回路は第1図に示した4PSK
用差動論理回路を2組用いても同様に構成するこ
とができる。
In addition, as shown in FIG. 2B, the receiving logic circuit has four
The binary transmission line codes of the series c 1 m , c 2 m , c 3 m , c 4 m and 1
Transmission line code obtained one bit ahead of the input code via bit delay flip-flop 9
ROM10 between c 1 m-1 , c 2 m-1 , c 3 m-1 , c 4 m-1
A differential logic operation modulo 4 is performed on two sets, and the result is output as information. this
The 16QAM differential logic circuit is 4PSK as shown in Figure 1.
A similar configuration can be achieved by using two sets of differential logic circuits.

このように従来の差動論理回路は、論理演算部
分をゲート素子あるいはROMにより実現してい
るが、その回路構成は送信論理回路と受信論理回
路では異なる回路構成となつていた。
As described above, in conventional differential logic circuits, the logical operation portion is realized by gate elements or ROM, but the circuit configurations are different between the transmitting logic circuit and the receiving logic circuit.

<発明の概要> この発明の目的は送信論理回路と受信論理回路
とを同一回路構成とした差動論理回路を提供する
ことにある。
<Summary of the Invention> An object of the present invention is to provide a differential logic circuit in which a transmission logic circuit and a reception logic circuit have the same circuit configuration.

この発明によれば、差動論理回路の論理演算部
分に、あらかじめ2nを法とする論理変換則に従つ
た論理変換情報を書き込んだ記憶素子を備え、こ
の記憶素子のアドレス入力端子に2n進入力符号あ
るいは2n進伝送路符号と、当該記憶素子のデータ
出力端子より得られる符号の一部を1ビツト遅延
させた符号とを加えることにより、論理変換情報
を当該記憶素子の残余のデータ出力端子から得
る。
According to this invention, the logic operation portion of the differential logic circuit is provided with a memory element in which logic conversion information according to the logic conversion rule modulo 2 n is written in advance, and the address input terminal of this memory element is connected to the address input terminal of the memory element. By adding the input input code or the 2n- ary transmission line code and a code obtained by delaying a part of the code obtained from the data output terminal of the memory element by 1 bit, the logic conversion information is converted to the remaining data of the memory element. Obtained from the output terminal.

<実施例> 第3図はこの発明の一実施例で、16QAM方式
用差動論理回路を示す。まず第3図を16QAM方
式用送信論理回路とする場合を説明すると、ナチ
ユラル形符号配置、グレー形符号配置、あるいは
回転対称形符号配置のいずれかの伝送路符号配置
を得ることができる和分論理変換情報ならびに送
信入力符号に対する被演算情報を書き込んだ記憶
素子21が設けられる。4系列の2進入力符号
a1 m,a2 m,a3 m,a4 mは入力端子23を通じて記憶
素子21のアドレス端子A0A1A2A3にそれぞれ入
力される。記憶素子21の出力端子D0D1D2D3
りの和分論理変換された4系列の2進伝送路符号
b1 m,b2 m,b3 m,b4 mは出力端子24に送出され
る。記憶素子21の出力端子D4D5D6D7の出力は
1ビツト遅延端子25を通じて記憶素子21のア
ドレス端子A4A5A6A7に入力される。記憶素子
(ROMあるいはRAM)は、8系列アドレス入力
端子A0〜A7及び8系列データ出力端子D0〜D7
備え、2048ビツト以上の記憶容量を有する。
<Embodiment> FIG. 3 is an embodiment of the present invention, showing a differential logic circuit for 16QAM system. First, to explain the case where FIG. 3 is used as a transmission logic circuit for a 16QAM system, an integration logic that can obtain a transmission path code constellation of either a natural code constellation, a Gray code constellation, or a rotationally symmetric code constellation. A storage element 21 is provided in which conversion information and operand information for the transmitted input code are written. 4 series binary input code
a 1 m , a 2 m , a 3 m , and a 4 m are respectively input to the address terminal A 0 A 1 A 2 A 3 of the storage element 21 through the input terminal 23 . Four series of binary transmission line codes subjected to summation logic conversion from the output terminal D 0 D 1 D 2 D 3 of the memory element 21
b 1 m , b 2 m , b 3 m , and b 4 m are sent to the output terminal 24 . The output of the output terminal D 4 D 5 D 6 D 7 of the storage element 21 is inputted to the address terminal A 4 A 5 A 6 A 7 of the storage element 21 through the 1-bit delay terminal 25. The storage element (ROM or RAM) has 8 series address input terminals A 0 to A 7 and 8 series data output terminals D 0 to D 7 , and has a storage capacity of 2048 bits or more.

この回路における和分論理変換則に従つた真理
値表の一例を第4図に示す。この第4図の左欄の
アドレス入力符号A0〜A7が右欄のデータ出力符
号D0〜D7となるように、あらかじめ送信入力符
号a1 m,a2 m,a3 m,a4 mと1ビツト遅延被演算符
号、すなわち1ビツト先行して出力された伝送路
符号b1 m-1,b2 m-1,b3 m-1,b4 m-1のすべての入力
条件に対する和分論理変換情報b1 m,b2 m,b3 m
b4 mを作成し、これをデータ出力の上位4ビツト
ならびに下位4ビツトとなるように記憶素子11
に記憶しておく。その結果、入力端子23の送信
入力符号と1ビツト遅延端子25を介して得られ
た被演算符号すなわち1ビツト遅延伝送路符号と
を、記憶素子21のアドレス入力端子A0〜A7
加えることによりその入力符号に対応した和分論
理変換情報及び被演算情報が記憶素子21のデー
タ出力端子D0〜D3ならびにD4〜D7に得られる。
An example of a truth table according to the summation logic conversion rule in this circuit is shown in FIG. The transmission input codes a 1 m , a 2 m , a 3 m , a are set in advance so that the address input codes A 0 to A 7 in the left column of FIG. 4 m and 1-bit delayed operand code, that is, all input conditions of transmission line codes b 1 m-1 , b 2 m-1 , b 3 m-1 , b 4 m-1 outputted 1 bit in advance. Integration logic conversion information for b 1 m , b 2 m , b 3 m ,
Create b 4 m and store it in the memory element 11 so that it becomes the upper 4 bits and lower 4 bits of the data output.
Remember it. As a result, the transmitted input code of the input terminal 23 and the operand code obtained via the 1-bit delay terminal 25, that is, the 1-bit delay transmission line code, are added to the address input terminals A 0 to A 7 of the storage element 21. Accordingly, summation logic conversion information and operand information corresponding to the input code are obtained at data output terminals D 0 -D 3 and D 4 -D 7 of the storage element 21.

なお第4図中の伝送路符号及び被演算符号の
Y1 m,b1 m,b2 m,Y2 m,b3 m,b4 mは、送信入力符
号X1 m,a1 m,a2 m,X2 m,a3 m,a4 mおよび1ビツ
ト遅延被演算符号Y1 m-1,b1 m-1,b2 m-1,Y2 m-1
b1 m-1,b2 m-1をグレー・ナチユラル変換したあ
と、Y1 m=(X1 m+Y1 m-1)MOD4及びY2 m=(X2 m
+Y2 m-1)MOD4を計算して得られた値をさら
にナチユラル・グレー変換したものであり、伝送
路符号配置としてはナチユラル形符号配置となる
論理変換則に従つたものである。たゞし、グレ
ー・ナチユラル及びナチユラル・グレー変換につ
いては行わなくてもよい。
Note that the transmission line code and operand code in Figure 4 are
Y 1 m , b 1 m , b 2 m , Y 2 m , b 3 m , b 4 m are the transmission input codes X 1 m , a 1 m , a 2 m , X 2 m , a 3 m , a 4 m and 1-bit delayed operand sign Y 1 m-1 , b 1 m-1 , b 2 m-1 , Y 2 m-1 ,
After gray natural transformation of b 1 m-1 and b 2 m-1 , Y 1 m = (X 1 m + Y 1 m-1 ) MOD4 and Y 2 m = (X 2 m
+Y 2 m-1 ) The value obtained by calculating MOD4 is further subjected to natural gray conversion, and the transmission line code arrangement follows the logic conversion rule that results in a natural code arrangement. However, it is not necessary to perform gray-natural and natural-gray conversions.

次に同じく第3図を16QAM方式用受信論理回
路とする場合を説明すると、記憶素子21はナチ
ユラル形符号配置、グレー形符号配置あるいは回
転対称形符号配置の伝送路符号を、元の送信入力
符号に対応した受信出力符号に変換するための差
分論理変換情報ならびに受信伝送路符号に対する
被演算情報が書き込まれ、入力端子23には伝送
路符号c1 m,c2 m,c3 m,c4 mが入力され、出力端子
24には差分論理変換された受信出力符号a1 m
a2 m,a3 m,a4 mが得られる。
Next, to explain the case where FIG. 3 is used as a reception logic circuit for 16QAM system, the storage element 21 stores the transmission line code of the natural type code constellation, the Gray type code constellation, or the rotationally symmetric code constellation as the original transmission input code. Differential logic conversion information for converting to a reception output code corresponding to the reception output code and operand information for the reception transmission line code are written to the input terminal 23, and the transmission line codes c 1 m , c 2 m , c 3 m , c 4 m is input, and the received output code a 1 m , which has been subjected to differential logic conversion, is input to the output terminal 24.
A 2 m , a 3 m , and a 4 m are obtained.

この回路における差分論理変換則に従つた真理
値表の一例を第5図に示す。この第5図の左欄の
アドレス入力符号A0〜A7が右欄のデータ出力符
号D0〜D7となるように、あらかじめ伝送路符号
c1 m,c2 m,c3 m,c4 mと1ビツト遅延被演算符号す
なわち、その伝送符号より1ビツト先行して得ら
れた伝送路符号c1 m-1,c2 m-1,c3 m-1,c4 m-1のす
べての入力条件に対する差分論理変換情報a1 m
a2 m,a3 m,a4 mを作成し、これをデータ出力の上
位4ビツトに、また伝送路符号c1 m,c2 m,c3 m
c4 mがそのままデータ出力の下位4ビツトとなる
ように記憶素子21に記憶しておく。その結果、
入力端子23の伝送路符号と1ビツト遅延端子2
5を介して得られた被演算符号すなわち1ビツト
遅延伝送路符号とを、記憶素子21のアドレス入
力端子A0〜A7に加えることにより、当該伝送路
符号に対応した差分論理変換情報及び被演算情報
が記憶素子21のデータ出力端子D0〜D3ならび
にD4〜D7に得られる。なお第4図と同様に第5
図中の受信出力符号X1 m,a1 m,a2 m,X2 m,a3 m
a4 mは伝送路符号Z1 m,c1 m,c2 m,Z2 n,c3 m,c4 m
1ビツト先行して得られた伝送路符号Z1 m-1
c1 m-1,c2 m-1,Z2 m-1,c3 m-1,c4 m-1をグレー・ナ
チユラル変換したあとX1 n=(Z1 m−Z1 m-1)MOD
4及びX2 m=(Z2 m−Z2 m-1)MOD4を計算して得
られた値をさらにナチユラル・グレー変換したも
のである。たゞし、グレー・ナチユラル及びナチ
ユラル・グレー変換については行わなくてもよ
い。
An example of a truth table according to the differential logic conversion rule in this circuit is shown in FIG. The transmission line codes are set in advance so that the address input codes A 0 to A 7 in the left column of FIG. 5 become the data output codes D 0 to D 7 in the right column.
c 1 m , c 2 m , c 3 m , c 4 m and the 1-bit delayed operand codes, that is, the transmission line codes c 1 m-1 , c 2 m-1 obtained 1 bit ahead of the transmission code. , c 3 m-1 , c 4 m-1 differential logic conversion information a 1 m , for all input conditions of c 4 m-1 ,
Create a 2 m , a 3 m , a 4 m and use them as the upper 4 bits of the data output, and transmit the transmission line codes c 1 m , c 2 m , c 3 m ,
c 4 m is stored in the storage element 21 as it is as the lower 4 bits of the data output. the result,
Transmission line code of input terminal 23 and 1-bit delay terminal 2
By applying the operand code obtained through 5, that is, the 1-bit delayed transmission line code, to the address input terminals A 0 to A 7 of the storage element 21, the differential logic conversion information and the output code corresponding to the transmission line code are stored. Arithmetic information is available at data output terminals D 0 -D 3 and D 4 -D 7 of storage element 21. In addition, similar to Figure 4, the fifth
The received output symbols in the figure are X 1 m , a 1 m , a 2 m , X 2 m , a 3 m ,
a 4 m is the transmission line code Z 1 m-1 obtained by preceding the transmission line codes Z 1 m , c 1 m , c 2 m , Z 2 n , c 3 m , c 4 m by 1 bit,
After gray natural transformation of c 1 m-1 , c 2 m-1 , Z 2 m-1 , c 3 m-1 , c 4 m-1 , X 1 n = (Z 1 m − Z 1 m-1 ) MOD
4 and X 2 m = (Z 2 m - Z 2 m-1 ) The value obtained by calculating MOD4 is further subjected to natural gray conversion. However, it is not necessary to perform gray-natural and natural-gray conversions.

このような、和分論理変換情報ならびに被演算
情報を記憶素子に書き込んだ送信論理回路と、差
分論理変換情報ならびに被演算情報を記憶素子に
書き込んだ受信論理回路とを、同一伝送路の送信
側及び受信側に用い、伝送路において誤りが生じ
なければ、すなわち前記16QAM方式の場合、
b1 m,b2 m,b3 m,b4 mとc1 m,c2 m,c3 m,c4 mが等し
ければ、送信入力符号に一致した受信出力符号を
得ることができる。
Such a transmitting logic circuit that has written the summation logic conversion information and operand information in the storage element and a receiving logic circuit that has written the differential logic conversion information and operand information in the storage element are connected to the transmitting side of the same transmission path. and on the receiving side, and if no errors occur in the transmission path, that is, in the case of the 16QAM method,
If b 1 m , b 2 m , b 3 m , b 4 m and c 1 m , c 2 m , c 3 m , c 4 m are equal, a received output code matching the transmitted input code can be obtained.

第6図はこの発明を適用した2n進差動論理回路
の一般的構成を示し、2nを法とする和分論理変換
情報ならびに被演算情報あるいは2nを法とする差
分論理変換情報ならびに被演算情報を書き込んだ
記憶素子31とn系列の1ビツト遅延端子32と
が設けられ、2n進符号入力端子33よりの入力符
号が記憶素子31のアドレスA0〜Ao-1に入力さ
れ、記憶素子31の出力D0〜Do-1は2n進論理変
換符号出力素子34へ供給される。記憶素子31
の出力Do〜D2o-1は1ビツト遅延素子32を通じ
て記憶素子31のアドレス端子Ao〜A2o-1に供給
される。
FIG. 6 shows a general configuration of a 2n- ary differential logic circuit to which the present invention is applied, and shows summation logic conversion information modulo 2n , operand information or differential logic conversion information modulo 2n , and A memory element 31 in which operand information is written and an n-series 1-bit delay terminal 32 are provided, and the input code from the 2n- ary code input terminal 33 is input to addresses A0 to Ao-1 of the memory element 31. , the outputs D 0 to D o-1 of the storage elements 31 are supplied to the 2 n -ary logic conversion code output element 34 . Memory element 31
The outputs D o -D 2o-1 are supplied to address terminals A o -A 2o-1 of the storage element 31 through a 1-bit delay element 32.

<効果> 以上説明したように、この発明によれば差動論
理回路に用いる記憶素子のデータ出力端子の一部
に、残余のデータ出力と同一の符号を出力するか
または入力伝送路符号と同一の符号を出力するこ
とにより、送信論理回路または受信論理回路とす
ることができるので、同一回路構成で記憶素子の
変更のみによつて送信論理回路または受信論理回
路が実現できる。従つてこの発明を用いれば差動
論理回路の製造コスト、設計コストの低下を図る
ことができる。
<Effects> As explained above, according to the present invention, the same code as the remaining data output is output to a part of the data output terminal of the memory element used in the differential logic circuit, or the same code as the input transmission line code is output. By outputting the code, a transmitting logic circuit or a receiving logic circuit can be realized. Therefore, a transmitting logic circuit or a receiving logic circuit can be realized with the same circuit configuration only by changing the storage element. Therefore, by using the present invention, manufacturing costs and design costs of differential logic circuits can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の4PSK方式用差動論理回路を示
す図、第2図は従来の記憶素子(ROM)を用い
た16QAM方式用差動論理回路を示す図、第3図
はこの発明を用いた16QAM方式用差動論理回路
の一実施例を示す図、第4図はこの発明における
和分論理変換則に従つた真理値表の一例を示す
図、第5図はこの発明における差分論理変換則に
従つた真理値表の一例を示す図、第6図はこの発
明による差動論理回路の一般的構成を示す図であ
る。 21,31:記憶素子、23,33:符号入力
端子、24,34:論理変換符号出力端子、2
5,32:1ビツト遅延素子。
Figure 1 is a diagram showing a conventional 4PSK system differential logic circuit, Figure 2 is a diagram showing a 16QAM system differential logic circuit using a conventional memory element (ROM), and Figure 3 is a diagram showing a differential logic circuit using the present invention. FIG. 4 is a diagram showing an example of a truth table according to the summation logic conversion rule in this invention, and FIG. 5 is a diagram showing an example of a differential logic circuit in this invention. FIG. 6 is a diagram showing an example of a truth table according to the rule, and FIG. 6 is a diagram showing the general configuration of a differential logic circuit according to the present invention. 21, 31: Memory element, 23, 33: Code input terminal, 24, 34: Logic conversion code output terminal, 2
5,32:1 bit delay element.

Claims (1)

【特許請求の範囲】[Claims] 1 2n進入力符号を2n進伝送路符号に変換した
り、その伝送路符号を元の2n進入力符号に対応す
る2n進出力符号に変換したりする差動論理回路に
おいて、あらかじめ2nを法とする論理変換則に従
い、論理変換情報を書き込んだ記憶素子を備えそ
の記憶素子のアドレス入力端子に、2n進入力符号
あるいは2n進伝送路符号と、当該記憶素子のデー
タ出力端子より得られる符号の一部を1ビツト遅
延させた符号とを加えることにより、論理変換情
報を当該記憶素子の残余のデータ出力端子から
得、アドレス入力端子に帰還するためのデータ出
力端子の符号は、2n進伝送路符号と同一であるよ
うに前記記憶素子が構成されている差動論理回
路。
1 In a differential logic circuit that converts a 2 n- ary input code into a 2 n- ary transmission line code, or converts the transmission line code into a 2 n -ary output code corresponding to the original 2 n- ary input code, 2 A memory element in which logical conversion information is written according to the logic conversion rule modulo n is provided, and a 2 n- ary input code or a 2 n- ary transmission line code is input to the address input terminal of the memory element, and the data output of the memory element is By adding a code obtained by delaying a part of the code obtained from the terminal by 1 bit, logic conversion information is obtained from the remaining data output terminal of the memory element, and the code of the data output terminal is returned to the address input terminal. is a differential logic circuit in which the memory element is configured to be the same as a 2n - ary transmission line code.
JP11583282A 1982-07-02 1982-07-02 Differential logical circuit Granted JPS596652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11583282A JPS596652A (en) 1982-07-02 1982-07-02 Differential logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11583282A JPS596652A (en) 1982-07-02 1982-07-02 Differential logical circuit

Publications (2)

Publication Number Publication Date
JPS596652A JPS596652A (en) 1984-01-13
JPS6347388B2 true JPS6347388B2 (en) 1988-09-21

Family

ID=14672217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11583282A Granted JPS596652A (en) 1982-07-02 1982-07-02 Differential logical circuit

Country Status (1)

Country Link
JP (1) JPS596652A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116729A (en) * 1984-07-02 1986-01-24 キヤノン株式会社 Tonometer
JPS62268524A (en) * 1986-05-17 1987-11-21 キヤノン株式会社 Tonometer
JPS6397140A (en) * 1986-10-14 1988-04-27 キヤノン株式会社 Tonometer
JPS63125237A (en) * 1986-11-15 1988-05-28 キヤノン株式会社 Ophthalmic apparatus
JPH03270526A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Error inflection suppressing system in differential encoding
JPH07194557A (en) * 1994-10-03 1995-08-01 Canon Inc Ophthalmic system

Also Published As

Publication number Publication date
JPS596652A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
US5255288A (en) Arrangement for converting binary input signal into corresponding in-phase and quadrature phase signals
US5285479A (en) Quadrature modulation circuit
JPS6139755A (en) Angular modulation signal generator circuit
JPS585620B2 (en) Bit sequence transmission method
EP0392538B1 (en) Quadrature amplitude modulation communication system with transparent error correction
JP3582650B2 (en) Phase modulation apparatus, phase modulation method thereof, and phase modulation program
US4327439A (en) Method for generating modem transmission signals with quadrature amplitude modulation
US7889763B2 (en) Data transmission apparatus and data transmission method
US4646327A (en) Waveform shaping apparatus
JPS6347388B2 (en)
US6115428A (en) Apparatus for and method of generating π-/N-shifted N-differential encoded phase shift keying modulation signals
KR950005115B1 (en) Waveform shaping circuit for digital signal transmission system
US5373532A (en) π/4 quadrature phase shift keying modulator
US7120204B2 (en) Waveform generator operable in accordance with a plurality of band limitation characteristics
US7071855B1 (en) Gray code conversion method and apparatus embodying the same
US20080118246A1 (en) Encoding and decoding architecture and method for pipelining encoded data or pipelining with a look-ahead strategy
US6680981B1 (en) π/4 shift QPSK modulator and communication device
US6239666B1 (en) Uniform amplitude modulator
JPS58131851A (en) Differential logical circuit
US6873661B1 (en) π/4 QPSK modulator
JPH10112735A (en) Mapping circuit for dqpsk modulation
JP3008637B2 (en) Digital demodulation circuit
JPS62133842A (en) Multi-value orthogonal amplitude modulation system
JPS5823022B2 (en) Differential encoding method
JP2901169B2 (en) Mapping circuit for π / 4 shift QPSK modulation