JPS58131851A - Differential logical circuit - Google Patents

Differential logical circuit

Info

Publication number
JPS58131851A
JPS58131851A JP1445182A JP1445182A JPS58131851A JP S58131851 A JPS58131851 A JP S58131851A JP 1445182 A JP1445182 A JP 1445182A JP 1445182 A JP1445182 A JP 1445182A JP S58131851 A JPS58131851 A JP S58131851A
Authority
JP
Japan
Prior art keywords
code
transmission
codes
circuit
notation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1445182A
Other languages
Japanese (ja)
Inventor
Kiyotoshi Ito
伊藤 清敏
Yoichi Saito
洋一 斉藤
Shozo Komaki
小牧 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1445182A priority Critical patent/JPS58131851A/en
Publication of JPS58131851A publication Critical patent/JPS58131851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To simplify the logical element of a logical circuit and to make the design of the circuit easy, by providing an element writing converting information setting 2<n> as a notation in advance to a logical operation part of a differential logical circuit and obtaining a 2<n>-notation output signal corresponding to a 2<n>-notation input code. CONSTITUTION:Transmission input codes a1-an from a transmission code input terminal 32 are written in a storage element 30 of a 2<n>-notation transmission logical circuit in advance as conversion information setting 2<n> as the natation, and the transmission input codes a1-an from the terminal 32 and a one-bit delay transmission line code from a one-bit delay element 31 are set as addresses and applied to the element 30. From an output terminal 33 of the element 30, transmission output codes b1-bn of incremental logical conversion information of 2<n>- notation corresponding to the codes a1-an are outputted. The 2<n>-notation reception logical circuit consists of a storage element 34 written with the conversion information in advance and a one-bit delay element 35, the input codes b1-bn from a tansmission line code input terminal 36 are converted, the codes a1-an are outputted to a reception code output terminal 27 to simplify the logical circuit.

Description

【発明の詳細な説明】 本発明は、ディジタル位相変調または振幅位相変調等の
差動位相変調を用いて情報の伝送を行なう通信システム
に使用される差動論理回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential logic circuit used in a communication system that transmits information using differential phase modulation such as digital phase modulation or amplitude phase modulation.

ディジタル位相変調を用いて信号を伝送する場合、絶対
位相の伝送ができないため、搬送波の位相差に情報を持
たせた信号伝送を行なう。これを差動論理方式と呼んで
おり、送信側では現在送信している搬送波の位相に、次
に送信すべき情報に相当した位相を加算し、この結果に
よって次の位相を決めている。一方、受信側では現在受
信している搬送波の位相と、次に受信される搬送波の位
相との差をとり、この結果を出力情報としている。
When transmitting a signal using digital phase modulation, since absolute phase cannot be transmitted, the signal is transmitted using information in the phase difference between carrier waves. This is called a differential logic method, and on the transmitting side, the phase corresponding to the information to be transmitted next is added to the phase of the carrier wave currently being transmitted, and the next phase is determined based on this result. On the other hand, the receiving side calculates the difference between the phase of the carrier wave currently being received and the phase of the carrier wave to be received next, and uses this result as output information.

これらの操作は、直接搬送波の位相と位相の和または差
の演算を行なうのではなく、搬送波の位相に対応するデ
ィジタル情報同志の間で論理演算を行なうよう、差動論
理回路を用いて行なわれている。との差動論理回路は、
2n進入力符号を2n進伝送路符号に変換するための送
信論理変換回路と、伝送されてきた伝送路符号を元の2
n進入力符号に対応する2n進出力符号に変換するため
の受信論理変換回路との総称である。
These operations are performed using differential logic circuits to perform logical operations between digital information corresponding to the carrier wave phase, rather than directly calculating the sum or difference between the carrier wave phases. ing. The differential logic circuit with
A transmission logic conversion circuit for converting a 2n-ary input code into a 2n-ary transmission line code, and converting the transmitted transmission line code to the original 2n-ary transmission line code.
It is a general term for a reception logic conversion circuit for converting an n-ary input code into a 2n-ary output code corresponding to the n-ary input code.

第1図は4相伝送差変調方式(4PSK)に用いられる
従来の差動論理回路で、(a)は送信論理変換回路、(
b)は受信論理変換回路を示す。即ち、第1図(a)に
示すように、送信論理変換回路は、2系列の2進入符号
号an、anと1ビツト遅延用フリツプフロツプ3によ
り1ビット先行して出力された伝送路符号bjl 、 
b景−1との間で、NOR回路1、OR回路2により4
を法とする和分論理演算を行ない、この情報によって搬
送波の位相を変化させており、また、受信論理変換回路
は、第1図(b)に示すように、2系列の2進伝送路符
号c r 、 c 景と1ビツト遅延用フリツプフロツ
プ6により1ピロ  n−1n−1 ット先行して得られた伝送路符5C+Cと2 の間で、NOR回路4、OR回路5により4を法とする
差分論理演算を行ない、その結果を情報出力としている
Figure 1 shows a conventional differential logic circuit used in four-phase transmission differential modulation (4PSK), in which (a) is a transmission logic conversion circuit; (a) is a transmission logic conversion circuit;
b) shows a reception logic conversion circuit. That is, as shown in FIG. 1(a), the transmission logic conversion circuit converts two series of binary input code signals an, an and the transmission path code bjl, which is outputted 1 bit in advance by the 1-bit delay flip-flop 3.
4 between NOR circuit 1 and OR circuit 2 between
The phase of the carrier wave is changed based on this information, and the reception logic conversion circuit converts two series of binary transmission line codes as shown in FIG. 1(b). The NOR circuit 4 and the OR circuit 5 calculate the modulus of 4 between the transmission line code 5C+C and 2 obtained by 1 pilot n-1n-1 by the cr, c picture and the 1-bit delay flip-flop 6. It performs differential logic operations and outputs the results as information.

第2図は16QAM方式に対する送受信装置の全体構成
図で、(a)は送信側装置、(b)は受信側装置を示す
。即ち、送信側装置は4系列の2進入符号号811 、
812.821 、822に対し、2組の4進和分論理
回路7,8.2値−4値変換器9,10及び16QAM
変調器1]よりなり、また、受信側装置は、1.6 Q
 A M復調器12、及び2組の識別器13,1.4.
4逆差分論理回路1.5 、1.6よりなるが、破線で
囲んだ16 Q A、 M用送信論理変換回路や受信論
理変換回路を構成する4進和分論理回路や4進差分論理
回路は第1図の場合と同様にゲート素子を用いた個別I
C部品の組み合わせによって実現されていた。
FIG. 2 is an overall configuration diagram of a transmitting/receiving device for the 16QAM system, in which (a) shows the transmitting side device and (b) shows the receiving side device. That is, the transmitting device sends four series of binary input codes 811,
812.821, 822, two sets of quaternary summation logic circuits 7, 8. 2-value to 4-value converters 9, 10 and 16QAM
modulator 1], and the receiving side device is 1.6 Q
A M demodulator 12 and two sets of discriminators 13, 1.4.
Consisting of 4 inverse difference logic circuits 1.5 and 1.6, the 16 QA and M transmission logic conversion circuits and reception logic conversion circuits are comprised of 1.5 and 1.6 quaternary summation logic circuits and quaternary difference logic circuits surrounded by broken lines. is an individual I using a gate element as in the case of Fig. 1.
It was realized by a combination of C parts.

このように、従来の差動論理回路は、論理演算部分にゲ
ート素子を用いた個別IC部品の組み合わせにより実現
しているため、多値数が多くなるにしたがい、用いるゲ
ート素子の数が多くなり、論理回路の構成が複雑かつ大
規模となるというような欠点があった。
In this way, conventional differential logic circuits are realized by combining individual IC components that use gate elements in the logic operation part, so as the number of multi-values increases, the number of gate elements used increases. However, the disadvantage was that the logic circuit configuration was complex and large-scale.

本発明は、上記従来の欠点を解決すべく、差動論理回路
の論理演算部分に、あらかじめ2nを法とする論理変換
則に従って変換情報を書き込んだ記憶素子を設けて、2
n進入力符号に対応する2n進出力符号を得るようにし
、これによって、差動論理回路に使用する論理素子を大
幅に簡素化し、かつ記憶素子に書き込む論理変換情報を
自由に設計することにより、ディジタル位相変調または
振幅位相変調方式における伝送路符号配置の設計の融通
性を図るものである。
In order to solve the above-mentioned conventional drawbacks, the present invention provides a memory element in which conversion information is written in advance according to a logic conversion rule modulo 2n in a logic operation part of a differential logic circuit.
By obtaining a 2n-ary output code corresponding to an n-ary input code, thereby greatly simplifying the logic elements used in the differential logic circuit, and freely designing the logic conversion information to be written in the memory element, This is intended to provide flexibility in the design of transmission line code arrangement in digital phase modulation or amplitude phase modulation.

第3図は本発明の差動論理回路の一実施例で、(a)図
は16 Q A M川伝送路符号を得るための送信論理
変換回路を示し、(b)図は同じ<16QAM用受信出
力符号を得るための受信論理変換回路を示す。
Figure 3 shows an embodiment of the differential logic circuit of the present invention, (a) shows a transmission logic conversion circuit for obtaining a 16QAM transmission line code, and (b) shows the same <16QAM transmission line code. 3 shows a reception logic conversion circuit for obtaining a reception output code.

まず第3図(a)の送信論理変換回路を説明すると、加
は2系列の4進和分論理変換情報を書き込んだ記憶素子
、2】は1ビツト遅延素子、22は送信符号A’7 、
 Aqの入力端子、乙は和分論理変換された伝送路符号
Bn 、 BINの出力端子である。本回路方式におけ
る和分論理変換則に従った真理値表の一例を第4図に示
す。この第4図の左欄の送信入力符号が右欄の伝送路符
号となるように、あらかじめ送信入力符号A’7 、 
鱈と1ビット遅延伝送路符号Bn −1、Bn−1のす
べての入力条件に対する和分論理変換情報Bn、Bnを
作成し、これを記憶素子20に記憶しておく。その結果
、入力端子22の送信入力符号A’7 、 A’7と1
ビツト遅延素子21で得られる1ビット遅延伝送路符号
B−1.Bn−1を当該記憶(5) 素子20のアドレス入力端子ao−27に加えることに
より、当該符号に対応した和分論理変換情報すなわら伝
送路符号B? 、 B¥が出力端子乙に得られる。なお
、第4図中の伝送路符号B?及びBqは、送信入力符号
A? 、 A景及び1ビット遅延伝送路符号B+?−]
 、 Bn−1を交番2進符号に変換したあと、13?
 −(A¥ + [1? −1)・MOD4及びBシー
(A¥+Bシー1)・MOD4を計算して得られた値を
、さらに交番2進符号に変換したものである。
First, the transmission logic conversion circuit shown in FIG. 3(a) will be explained. Addition is a storage element in which two series of quaternary summation logic conversion information is written, 2] is a 1-bit delay element, 22 is a transmission code A'7,
The input terminal of Aq is the input terminal, and B is the output terminal of the transmission line code Bn and BIN which have been subjected to summation logic conversion. An example of a truth table according to the summation logic conversion rule in this circuit system is shown in FIG. The transmission input code A'7,
Summation logic conversion information Bn, Bn for all input conditions of cod and 1-bit delay transmission line codes Bn-1, Bn-1 is created and stored in the storage element 20. As a result, the transmission input codes A'7, A'7 and 1 of the input terminal 22 are
1-bit delay transmission line code B-1 obtained by bit delay element 21. By adding Bn-1 to the address input terminal ao-27 of the memory (5) element 20, the summation logic conversion information corresponding to the code, that is, the transmission line code B? , B\ is obtained at output terminal B. In addition, the transmission line code B? in FIG. and Bq is the transmission input code A? , A-view and 1-bit delay transmission line code B+? -]
, After converting Bn-1 to alternating binary code, 13?
The values obtained by calculating -(A¥+[1?-1)・MOD4 and Bc(A¥+Bc1)・MOD4 are further converted into alternating binary codes.

次に、第3図(b)の受信論理変換回路を説明すると、
24は2系列の4を法とする差分論理変換情報を書き込
んだ記憶素子、5は1ビツト遅延素子、26は伝送路符
号Cr 、 Cgの入力端子、27は差分論理変換され
た受信出力符号A’;’ 、 A景の出力端子である。
Next, the reception logic conversion circuit shown in FIG. 3(b) will be explained.
24 is a storage element in which two series of differential logic conversion information modulo 4 is written; 5 is a 1-bit delay element; 26 is an input terminal for transmission line codes Cr and Cg; and 27 is a reception output code A that has been subjected to differential logic conversion. ';' is the output terminal of A view.

本回路方式における差分論理変換則に従った真理値表の
一例を第5図に示す。この第5図の左欄の人力符号が右
欄の出力符号となるように、あらかじめ受信人力符号C
?・C’と1ビット先行して得られた受信入力符号C?
 −1、Cn−1のすべての入力条件に対する論理変換
情報A’7 、 A、9を作成(6) し、これを記憶素子24に記憶しておく。その結果、入
力端子26の受信入力符号Cn 、 Cn、と1ピツト
遅延素子5により、1ビット先行して得られた入力符号
C?−1,0n−1を当該記憶素子24のアドレス入力
端子aO−27に加えることにより、当該符号に対応し
た差分論理変換情報すなわら受信出力符号AV 、 A
raが出力端子27に得られる。なお、第5図中の受信
出力符号A?及びA景は、受信入力符号C?。
An example of a truth table according to the differential logic conversion rule in this circuit system is shown in FIG. In order that the manual code in the left column of FIG. 5 becomes the output code in the right column,
?・Receive input code C obtained 1 bit ahead of C'?
Logic conversion information A'7, A, and 9 for all input conditions of -1 and Cn-1 are created (6) and stored in the storage element 24. As a result, the received input code Cn, Cn of the input terminal 26 and the input code C? obtained 1 bit in advance by the 1-pit delay element 5 are obtained. -1,0n-1 to the address input terminal aO-27 of the memory element 24, the differential logic conversion information corresponding to the code, that is, the reception output code AV, A
ra is obtained at the output terminal 27. In addition, the received output code A? in FIG. and A view is the received input code C? .

Cn及び1ビット先行入力符号C? −1、C景−2を
自然2進符号に変換したあと A? −(C1;l  
に?−1)・MOD4.、A¥=(Cε−C易−1)・
MOD4を計算して得られた値を、ふた\び自然2進符
号に変換したものである。
Cn and 1-bit advance input code C? After converting -1 and C view-2 into natural binary code, A? -(C1;l
To? -1)・MOD4. , A¥=(Cε-Cyi-1)・
The value obtained by calculating MOD4 is converted into a natural binary code.

第6図は本発明を適用した差動論理回路の一般的構成図
で、(a)図は2n進送信論理変換回路、(b)図は2
n進受信論理変換回路を示す。このような送信論理変換
回路及び受信論理変換回路を、同一伝送路の送信側及び
受信側にそれぞれ用いろことにより、伝送路において誤
りが生じなければ、送信入力符号に対応した受信出力符
号を得ることができ(7) る。また、記憶素子30.34に書き込む論理変換情報
は、論理式の変更を行なえば容易に変更可能で゛ある。
FIG. 6 is a general configuration diagram of a differential logic circuit to which the present invention is applied.
An n-ary reception logic conversion circuit is shown. By using such a transmission logic conversion circuit and a reception logic conversion circuit on the transmission side and reception side of the same transmission path, if no error occurs on the transmission path, a reception output code corresponding to the transmission input code can be obtained. It is possible (7). Further, the logical conversion information written in the memory elements 30 and 34 can be easily changed by changing the logical formula.

以下説明したように、この発明によれば 2n進入力符
号に対応した2n進出力符号を得るための差動論理回路
に、2nを法とする論理変換則に従い、すべての入力条
件に対応する論理変換情報を書き込んだ記憶素子をもら
いたので、簡単な回路構成により差動論理回路が実現可
能であり、また記憶素子に書き込む論理変換情報を変更
することにより、回路構成の変1を伴なうことなくディ
ジタル伝送路の符号配置を容易に変更することができる
As explained below, according to the present invention, a differential logic circuit for obtaining a 2n output code corresponding to a 2n input code is provided with a logic corresponding to all input conditions according to the logic conversion rule modulo 2n. Since I received a memory element with conversion information written in it, a differential logic circuit can be realized with a simple circuit configuration, and by changing the logic conversion information written in the memory element, it is possible to create a differential logic circuit without changing the circuit configuration. The code arrangement of the digital transmission path can be easily changed without any trouble.

特に2nX2nQAM方式等の多値変調方式に用いる差
動論理回路では、nが大きくなるにしたがい、従来の個
別ICを用いた論理素子の組み合わせによる方法によれ
ば、回路構成が非常に複雑かつ大規模となるが、本発明
回路構成を用いれば、記憶素子の容量を増やし、論理変
換情報の変更を行なうだけで、大幅な回路構成の変(を
伴なうことなく、容易に差動論理回路が実現可能である
In particular, in differential logic circuits used in multilevel modulation systems such as 2nX2nQAM systems, as n increases, the circuit configuration becomes extremely complex and large-scale when using the conventional method of combining logic elements using individual ICs. However, if the circuit configuration of the present invention is used, a differential logic circuit can be easily constructed by simply increasing the capacity of the storage element and changing the logic conversion information (without significant changes to the circuit configuration). It is possible.

(8)(8)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (+1)は従来の4PSK用差動論
理回路を示す図、第2図(a)、(b)は16 Q A
 M方式に対する送受信装置の全体構成図、第3図(a
) 、 (b)は本発明を用いた16 Q A M用差
動論理回路の一実施例を示す図、第4図は和分論理変換
則(二従った真理値表の一例を示す図、第5図は差分論
理変換則に従った真理値表の一例を示す図、第6図(a
) 、 (b)は本発明による差動論理回路の一般的構
成図である。 20、24.30 、34・・・記憶素子、2]、 、
 25 、31.35・・・1ビツト遅延素子、22.
32・・・送信符号入力端子、23.33・・・伝送路
符号出力端子、26.36・・・伝送路符号入力端子、
27,37・・・受信符号出力端子。 代理人 弁理士 鈴 木   誠 (9) 27 ♂冴   X冴 へ           ! 6             転 ハ                        
 ト第3図 第4図 第6図 第5図
Figures 1 (a) and (+1) are diagrams showing conventional 4PSK differential logic circuits, and Figures 2 (a) and (b) are 16 Q A
Figure 3 (a) is an overall configuration diagram of the transmitting/receiving device for the M system.
), (b) is a diagram showing an example of a differential logic circuit for 16 Q A M using the present invention, and FIG. 4 is a diagram showing an example of a truth table according to the summation logic conversion rule (2). Figure 5 is a diagram showing an example of a truth table according to the differential logic conversion rule, and Figure 6 (a
) and (b) are general configuration diagrams of a differential logic circuit according to the present invention. 20, 24.30, 34... memory element, 2], ,
25, 31.35...1 bit delay element, 22.
32... Transmission code input terminal, 23.33... Transmission line code output terminal, 26.36... Transmission line code input terminal,
27, 37... Reception code output terminal. Agent Patent Attorney Makoto Suzuki (9) 27 Sae X Sae! 6 Rolling
Figure 3 Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (J、+ 2n進入力符号を2n進伝送路符号に変換し
たり、該伝送路符号を元の2n進入力符号に対応する2
n進出力符号に変換したりする差動論理回路において、
あらかじめ2nを法とする論理変換則に従い論理変換情
報を書き込んだ記憶素子を備え 2n進入力符号と当該
符号より1ビット先行して出力された2n進伝送路符号
、あるいは2n進伝送路符号と当該符号より1ビット先
行して得られる伝送路符号を前5記記憶素子のアドレス
入力端子に加え、論理変換情報を出力データ端子がら得
ることを特徴とする差動論理回路。
(J.
In a differential logic circuit that converts to an n-ary output code,
It is equipped with a memory element in which logic conversion information is written in advance according to the logic conversion rule modulo 2n, and stores the 2n-ary input code and the 2n-ary transmission line code outputted 1 bit ahead of the code, or the 2n-ary transmission line code and the corresponding code. A differential logic circuit characterized in that a transmission line code obtained one bit ahead of the code is added to the address input terminal of the storage element, and logic conversion information is obtained from the output data terminal.
JP1445182A 1982-02-01 1982-02-01 Differential logical circuit Pending JPS58131851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1445182A JPS58131851A (en) 1982-02-01 1982-02-01 Differential logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1445182A JPS58131851A (en) 1982-02-01 1982-02-01 Differential logical circuit

Publications (1)

Publication Number Publication Date
JPS58131851A true JPS58131851A (en) 1983-08-05

Family

ID=11861395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1445182A Pending JPS58131851A (en) 1982-02-01 1982-02-01 Differential logical circuit

Country Status (1)

Country Link
JP (1) JPS58131851A (en)

Similar Documents

Publication Publication Date Title
JP2853230B2 (en) Digital filter device
EP0776110B1 (en) Quadrature modulation circuit
US3988538A (en) Digital data scrambler and descrambler
US6212219B1 (en) Spread spectrum communication system
JP3582650B2 (en) Phase modulation apparatus, phase modulation method thereof, and phase modulation program
JPH0642682B2 (en) Error correction multilevel encoding / decoding device
US4646327A (en) Waveform shaping apparatus
US4346472A (en) Method and apparatus for eliminating double bit errosion in a differential phase shift keying system
JPS6347388B2 (en)
JPS58131851A (en) Differential logical circuit
US7071855B1 (en) Gray code conversion method and apparatus embodying the same
US4406009A (en) Method and apparatus for converting binary information into a single-sideband 3-level correlative signal
JPH0588585B2 (en)
US7065145B2 (en) Digital carrierless amplitude and phase modulation (CAP) transmitter using vector arithmetic structure (VAS)
US6680981B1 (en) π/4 shift QPSK modulator and communication device
US6239666B1 (en) Uniform amplitude modulator
JP2548932B2 (en) Multilevel QAM communication system
US7057538B1 (en) 1/N-rate encoder circuit topology
JPS62133842A (en) Multi-value orthogonal amplitude modulation system
JPS5823022B2 (en) Differential encoding method
JP3134746B2 (en) Digital wireless communication device
JP2901169B2 (en) Mapping circuit for π / 4 shift QPSK modulation
JPH0648830B2 (en) Modulator
JP2845159B2 (en) Communication method and communication device using quaternary modulation / demodulation method
JPH0443448B2 (en)