JPH0580206B2 - - Google Patents
Info
- Publication number
- JPH0580206B2 JPH0580206B2 JP61112984A JP11298486A JPH0580206B2 JP H0580206 B2 JPH0580206 B2 JP H0580206B2 JP 61112984 A JP61112984 A JP 61112984A JP 11298486 A JP11298486 A JP 11298486A JP H0580206 B2 JPH0580206 B2 JP H0580206B2
- Authority
- JP
- Japan
- Prior art keywords
- deformation
- detection means
- cornea
- examined
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 22
- 210000004087 cornea Anatomy 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 230000004410 intraocular pressure Effects 0.000 claims description 10
- 238000007664 blowing Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、被検眼の角膜に空気流を吹き付けて
角膜を変形し、その変形を光学的に検知して眼圧
を測定するようにした非接触型の眼圧計に関する
ものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention deforms the cornea by blowing an air flow onto the cornea of the eye to be examined, and measures the intraocular pressure by optically detecting the deformation. This relates to a non-contact tonometer.
[従来の技術]
従来、この種の眼圧計においては、アライメン
ト検知用光束の角膜反射光が光軸と同軸の空気流
方向にあるか否かを光電的に検知し、もし反射光
と光軸とがずれている場合、又は作動距離がずれ
ていて光電変換素子に反射光が集光していない場
合には、空気の噴出を停止するようにしている。
従つて、アライメントと作動距離調整が極めて微
妙である。従来例としては、特開昭60−83642号
公報、特開昭61−196935号公報が知られている
が、何れも正確な測定値を得るにはアライメント
と作動距離調整を微妙に行なう必要がある。[Prior Art] Conventionally, in this type of tonometer, it is photoelectrically detected whether or not the corneal reflected light of the alignment detection light beam is in the airflow direction coaxial with the optical axis, and if the reflected light and the optical axis are If the working distance is off, or if the reflected light is not focused on the photoelectric conversion element, the air blowout is stopped.
Therefore, alignment and working distance adjustment are extremely delicate. Conventional examples include JP-A-60-83642 and JP-A-61-196935, but both require delicate alignment and working distance adjustment to obtain accurate measurement values. be.
[発明の目的]
本発明の目的は、アライメント又は作動距離又
はその双方の信号等の位置検出信号を利用して測
定値を補正することにより、アライメントと作動
距離調整が若干精度が悪くても正確な眼圧測定が
できるようにし、位置合わせが極めて容易でしか
も精度の高い眼圧計を提供することにある。[Object of the Invention] The object of the present invention is to correct alignment and working distance adjustment even if the accuracy is slightly low by correcting measured values using position detection signals such as alignment and/or working distance signals. To provide a tonometer that can perform accurate intraocular pressure measurement, is extremely easy to align, and has high accuracy.
[発明の概要]
上述の目的を達成するための本発明の要旨は、
被検眼の角膜に気流を吹き付けて角膜の変形を光
学的に検知する眼圧計において、被検眼の角膜に
気流を吹き付けて角膜の変形を光学的に検知する
眼圧計において、被検眼からの角膜反射光の受光
に基づき角膜の変形情報を検出する変形検出手段
と、被検眼からの角膜反射光の受光に基づき前記
変形検出手段が前記変形情報を得る際の被検眼の
位置情報を検出する位置検出手段と、前記変形検
出手段の検出結果より得られる眼圧測定値を前記
位置検出手段の検出に基づいて補正する補正手段
とを有することを特徴とする眼圧計である。[Summary of the invention] The gist of the present invention for achieving the above object is as follows:
A tonometer that optically detects corneal deformation by blowing an airflow onto the cornea of the eye to be examined uses a tonometer that optically detects corneal deformation by blowing an airflow onto the cornea of the eye to be examined. Deformation detection means for detecting corneal deformation information based on received light; and position detection for detecting positional information of the eye to be examined when the deformation detection means obtains the deformation information based on reception of corneal reflected light from the eye to be examined. and a correction means for correcting the intraocular pressure measurement value obtained from the detection result of the deformation detection means based on the detection of the position detection means.
[発明の実施例]
本発明を図示の実施例に基づいて詳細に説明す
る。[Embodiments of the Invention] The present invention will be described in detail based on illustrated embodiments.
第1図は第1の実施例を示すものであり、Eは
被検眼、Ecはその角膜を表している。この被検
眼Eの角膜Ecに向けて、変形検知用光束が光源
1からレンズ2を通して投射され、その角膜反射
光をレンズ3を通して光電変換素子4で受光する
ようになつている。一方、アライメント検知用光
束は、光源5からレンズ6、光分割部材7、レン
ズ8を経て角膜Ecの曲率中心に投射され、角膜
Ecが所定の位置にあるときはそのまま同じ光路
を戻り、光分割部材7及びレンズ9を通過して例
えば二次元半導体光位置センサのような光電変換
素子10に到達するようになつている。また、シ
リンダ11とピストン12から成るシリンダ機構
によつて得られる圧縮空気は、光軸L上に配置さ
れたノズル13から角膜Ecへ向つて吹き付けら
れるようになつている。 FIG. 1 shows a first embodiment, where E represents the eye to be examined and Ec represents the cornea. A light beam for deformation detection is projected from a light source 1 through a lens 2 toward the cornea Ec of the eye E to be examined, and the reflected light from the cornea is received by a photoelectric conversion element 4 through a lens 3. On the other hand, the alignment detection light beam is projected from the light source 5 through the lens 6, the light splitting member 7, and the lens 8 to the center of curvature of the cornea Ec.
When Ec is at a predetermined position, the light returns along the same optical path, passes through the light splitting member 7 and the lens 9, and reaches a photoelectric conversion element 10, such as a two-dimensional semiconductor optical position sensor. Further, compressed air obtained by a cylinder mechanism consisting of a cylinder 11 and a piston 12 is blown toward the cornea Ec from a nozzle 13 arranged on the optical axis L.
気流方向は光軸Lと一致しており、この空気吹
き付けによつて角膜Ecが点線のように圧平され
ると、光電変換素子4からの信号は最大となるの
で、その時の空気圧から眼圧を求めることができ
る。また、光源5から出射したアライメント検知
用光束の角膜反射光は、角膜Ecが所定の位置に
ある場合には光電変換素子10の中心位置に至る
から、光電変換素子10からの信号によつて空気
流と角膜曲率中心とがどの程度偏心しているかを
検知することができ、それによりアライメント調
整を行うことができる。もし、偏心している状態
で空気を吹き付けると、空気流の一部は横に逃げ
るため、角膜Ecの変形は少なく、眼圧は見掛け
上高いように測定される。しかし、偏心とこの見
掛け上の眼圧上昇の関係は一定しているので、こ
れを予め求めておいて補正すれば、若干偏心して
いたとしてもその偏心量が判れば正確な測定値を
得ることができる。 The airflow direction coincides with the optical axis L, and when the cornea Ec is applanated as shown by the dotted line by this air blow, the signal from the photoelectric conversion element 4 becomes maximum, so the intraocular pressure is determined from the air pressure at that time. can be found. In addition, since the corneal reflected light of the alignment detection light beam emitted from the light source 5 reaches the center position of the photoelectric conversion element 10 when the cornea Ec is at a predetermined position, it is transmitted to the air by the signal from the photoelectric conversion element 10. It is possible to detect the degree to which the flow and the center of corneal curvature are eccentric, and alignment adjustment can be performed accordingly. If air is blown in an eccentric state, a portion of the airflow escapes to the side, resulting in little deformation of the cornea Ec and the intraocular pressure being measured as apparently high. However, the relationship between eccentricity and this apparent increase in intraocular pressure is constant, so if you calculate this in advance and correct it, even if there is a slight eccentricity, you can obtain accurate measurements if you know the amount of eccentricity. I can do it.
第2図は本発明の第2の実施例を示し、第1図
のものと同一の符号は同一又は同等の部材を表し
ている。この第2の実施例では、アライメント即
ち偏心に加えて作動距離即ち光軸方向への誤差も
補正できるようになつている。また、気流を吹き
付けた際の角膜Ecの変形情報及びアライメント
と作動距離の情報を、共通の光源15と光電変換
素子16によつて求めることができる。この場合
に、光源15はレンズ17の焦点位置に配置され
ているので、光源15からの光束はレンズ17を
通つて平行になり、角膜Ecに当つて光源像15
aを形成する。角膜Ecからの反射光はレンズ8、
光分割部材7、レンズ18、シリンドリカルレン
ズ19を通つて4個の要素を縦横に「田」の字状
に並列した所謂4葉光電変換素子16に入射する
ことになる。この4葉光電変換素子16は例えば
第3図aに示すように、互いに独立した4個の受
光要素16a〜16dを有し、それぞれの要素1
6a〜16dから信号を取り出すことができる。 FIG. 2 shows a second embodiment of the invention, in which the same reference numerals as in FIG. 1 represent the same or equivalent parts. In this second embodiment, in addition to alignment, that is, eccentricity, it is also possible to correct errors in the working distance, that is, in the optical axis direction. Furthermore, information on the deformation of the cornea Ec and information on the alignment and working distance when the airflow is blown can be obtained using the common light source 15 and photoelectric conversion element 16. In this case, since the light source 15 is placed at the focal point of the lens 17, the light beam from the light source 15 passes through the lens 17, becomes parallel, and hits the cornea Ec with a light source image 15.
form a. The reflected light from the cornea Ec is reflected by the lens 8,
The light passes through the light splitting member 7, the lens 18, and the cylindrical lens 19, and enters the so-called four-leaf photoelectric conversion element 16 in which four elements are arranged vertically and horizontally in a ``field'' shape. This four-leaf photoelectric conversion element 16 has four mutually independent light receiving elements 16a to 16d, as shown in FIG.
Signals can be taken out from 6a to 16d.
前述の光源像15aの像15bは、アライメン
トと作動距離とが共に合致しているときは、第3
図aに示すように円形で4葉光電変換素子16の
中心に至る。もし作動距離がずれていると、第3
図b,cに示すように楕円形となる。また、光電
変換光素子16の位置がずれていると、第3図d
に示すように4葉光電変換素子16の中心からず
れてしまう。従つて、4つの受光素子16a〜1
6dからの信号によつてアライメント及び作動距
離を検知することができる。 When the alignment and the working distance both match, the image 15b of the light source image 15a described above is the third image.
As shown in Figure a, it is circular and reaches the center of the four-leaf photoelectric conversion element 16. If the working distance is off, the third
It has an elliptical shape as shown in Figures b and c. Furthermore, if the position of the photoelectric conversion optical element 16 is shifted,
As shown in the figure, the four-leaf photoelectric conversion element 16 is shifted from the center. Therefore, the four light receiving elements 16a to 1
Alignment and working distance can be detected by signals from 6d.
一方、作動距離が所定の距離よりも近付いてい
ると、気流による圧力は強くなるから、補正を実
施しないと見掛け上の眼圧は実際よりも低くな
り、逆に遠ざかつていると見掛け上の眼圧は実際
よりも高くなる。しかし、このような作動距離の
ずれと角膜変形との関係は一定しているので、こ
の関係を予め求めておいて補正を行えば、作動距
離に多少のずれがあつたとしても正確な測定値が
得られる。 On the other hand, if the working distance is closer than the predetermined distance, the pressure due to the airflow will be stronger, so if no correction is performed, the apparent intraocular pressure will be lower than the actual one. The pressure will be higher than it actually is. However, since the relationship between such deviations in working distance and corneal deformation is constant, if this relationship is determined in advance and corrected, accurate measurements can be obtained even if there is a slight deviation in working distance. is obtained.
角膜Ecの変形情報に関しては、気流が吹き付
けられて角膜Ecが変形すると、光源像15aの
共役関係も崩れるので、4葉光電変換素子16に
入射する光束はなくなり、この時点の空気圧から
眼圧を求めることができる。なお、角膜Ecが変
形する直前の像15bによる信号を、アライメン
ト及び作動距離の情報として使用できることは云
うまでもない。 Regarding the deformation information of the cornea Ec, when the cornea Ec is deformed by the airflow, the conjugate relationship of the light source image 15a also collapses, so no light flux enters the four-lobed photoelectric conversion element 16, and the intraocular pressure can be calculated from the air pressure at this point. You can ask for it. It goes without saying that the signal from the image 15b just before the cornea Ec deforms can be used as information on alignment and working distance.
[発明の効果]
以上説明したように本発明に係る眼圧計は、位
置検出手段の検出によつて角膜の変形情報を補正
できるため、アライメントと作動距離調整が多少
粗雑であつても、精度の高い眼圧測定を行うこと
ができ、被検眼と装置との位置合わせが容易にな
る。[Effects of the Invention] As explained above, the tonometer according to the present invention can correct corneal deformation information by detecting the position detection means, so even if the alignment and working distance adjustment are somewhat rough, the accuracy can be improved. High intraocular pressure can be measured, and alignment of the eye to be examined and the device becomes easy.
図面は本発明に係る眼圧計の実施例を示すもの
であり、第1図は第1の実施例の光学的配置図、
第2図は第2の実施例の光学的配置図、第3図は
第2の実施例における光電変換素子と光源像との
関係の説明図である。
符号1,5,15は光源、2,3,6,8,
9,17,18はレンズ、4,10は光電変換素
子、7は光分割部材、11はシリンダ、12はピ
ストン、13はノズル、16は4葉光電変換素
子、19はシリンドリカルレンズである。
The drawings show an embodiment of the tonometer according to the present invention, and FIG. 1 is an optical layout diagram of the first embodiment;
FIG. 2 is an optical layout diagram of the second embodiment, and FIG. 3 is an explanatory diagram of the relationship between the photoelectric conversion element and the light source image in the second embodiment. Codes 1, 5, 15 are light sources, 2, 3, 6, 8,
9, 17, and 18 are lenses, 4 and 10 are photoelectric conversion elements, 7 is a light splitting member, 11 is a cylinder, 12 is a piston, 13 is a nozzle, 16 is a four-leaf photoelectric conversion element, and 19 is a cylindrical lens.
Claims (1)
を光学的に検知する眼圧計において、被検眼から
の角膜反射光の受光に基づき角膜の変形情報を検
出する変形検出手段と、被検眼からの角膜反射光
の受光に基づき前記変形検出手段が前記変形情報
を得る際の被検眼の位置情報を検出する位置検出
手段と、前記変形検出手段の検出結果より得られ
る眼圧測定値を前記位置検出手段の検出に基づい
て補正する補正手段とを有することを特徴とする
眼圧計。 2 前記変形検出手段と前記位置検出手段は共通
の光源と光電変換素子を有する特許請求の範囲第
1項に記載の眼圧計。[Scope of Claims] 1. In a tonometer that optically detects the deformation of the cornea by blowing an airflow onto the cornea of the eye to be examined, a deformation detection means that detects corneal deformation information based on the reception of corneal reflected light from the eye to be examined. and a position detection means for detecting positional information of the eye to be examined when the deformation detection means obtains the deformation information based on reception of corneal reflected light from the eye to be examined, and intraocular pressure obtained from the detection result of the deformation detection means. A tonometer comprising: a correction means for correcting a measured value based on detection by the position detection means. 2. The tonometer according to claim 1, wherein the deformation detection means and the position detection means have a common light source and a photoelectric conversion element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61112984A JPS62268524A (en) | 1986-05-17 | 1986-05-17 | Tonometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61112984A JPS62268524A (en) | 1986-05-17 | 1986-05-17 | Tonometer |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6329919A Division JPH07171112A (en) | 1994-12-05 | 1994-12-05 | Ophthalmotonometer |
JP9041456A Division JPH09313449A (en) | 1997-02-10 | 1997-02-10 | Eye inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62268524A JPS62268524A (en) | 1987-11-21 |
JPH0580206B2 true JPH0580206B2 (en) | 1993-11-08 |
Family
ID=14600493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61112984A Granted JPS62268524A (en) | 1986-05-17 | 1986-05-17 | Tonometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62268524A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2588881B2 (en) * | 1986-09-06 | 1997-03-12 | 株式会社 トプコン | Non-contact tonometer |
US5031623A (en) * | 1988-05-31 | 1991-07-16 | Canon Kabushiki Kaisha | Non-contact tonometer |
JPH0651028B2 (en) * | 1989-02-03 | 1994-07-06 | キヤノン株式会社 | Non-contact tonometer |
JPH08280631A (en) * | 1995-04-17 | 1996-10-29 | Topcon Corp | Non-contact type tonometer |
JP3466027B2 (en) * | 1996-07-31 | 2003-11-10 | 株式会社ニデック | Ophthalmic equipment |
JP5586823B2 (en) * | 2007-01-31 | 2014-09-10 | 株式会社ニデック | Axial length measuring device |
JP7201375B2 (en) * | 2018-09-19 | 2023-01-10 | 株式会社トプコン | tonometry device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS596652A (en) * | 1982-07-02 | 1984-01-13 | Nippon Telegr & Teleph Corp <Ntt> | Differential logical circuit |
JPS60158832A (en) * | 1984-01-30 | 1985-08-20 | 株式会社柳本製作所 | Sight apparatus of tonometer |
-
1986
- 1986-05-17 JP JP61112984A patent/JPS62268524A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS596652A (en) * | 1982-07-02 | 1984-01-13 | Nippon Telegr & Teleph Corp <Ntt> | Differential logical circuit |
JPS60158832A (en) * | 1984-01-30 | 1985-08-20 | 株式会社柳本製作所 | Sight apparatus of tonometer |
Also Published As
Publication number | Publication date |
---|---|
JPS62268524A (en) | 1987-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5340434B2 (en) | Ophthalmic apparatus, processing apparatus, ophthalmic system, processing method, ophthalmic apparatus control method, program | |
CN115066199A (en) | Apparatus and method for detecting surface motion | |
US5031623A (en) | Non-contact tonometer | |
US4825873A (en) | Non-contact eye pressure meter | |
JPH0586215B2 (en) | ||
JPH0580206B2 (en) | ||
JPH03289932A (en) | Ophthalmologic apparatus | |
JPS6324383B2 (en) | ||
US5387951A (en) | Intraocular length measuring instrument capable of avoiding errors in measurement caused by the movement of a subject's eye | |
JPH0430296B2 (en) | ||
JPS60227729A (en) | Tonometer | |
JPH09313449A (en) | Eye inspection device | |
JPH07171112A (en) | Ophthalmotonometer | |
JP5677495B2 (en) | Ophthalmic apparatus and control method thereof | |
JPS6230768B2 (en) | ||
JPH04174639A (en) | Cornea curvature measuring device | |
JP4018476B2 (en) | Non-contact tonometer | |
JP3052280B2 (en) | Eye refraction measuring device | |
JPH0566805B2 (en) | ||
JPH02220626A (en) | Apparatus for measuring shape of cornea | |
JPH04269937A (en) | Ophthalmologic apparatus | |
JPH0580207B2 (en) | ||
JPH0360490B2 (en) | ||
JPH0430857B2 (en) | ||
JPH02167134A (en) | Non-contact tonometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |