JPS5966430A - Preparation of highly adhesive molded polyolefin article - Google Patents

Preparation of highly adhesive molded polyolefin article

Info

Publication number
JPS5966430A
JPS5966430A JP17812682A JP17812682A JPS5966430A JP S5966430 A JPS5966430 A JP S5966430A JP 17812682 A JP17812682 A JP 17812682A JP 17812682 A JP17812682 A JP 17812682A JP S5966430 A JPS5966430 A JP S5966430A
Authority
JP
Japan
Prior art keywords
content
corona discharge
film
ratio
discharge treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17812682A
Other languages
Japanese (ja)
Other versions
JPH0224855B2 (en
Inventor
Tsutomu Isaka
勤 井坂
Hiromu Nagano
煕 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP17812682A priority Critical patent/JPS5966430A/en
Priority to FR8316034A priority patent/FR2534262B1/en
Priority to US06/540,144 priority patent/US4563316A/en
Priority to KR1019830004764A priority patent/KR890002565B1/en
Priority to BE0/211668A priority patent/BE897947A/en
Priority to GB08326915A priority patent/GB2131030B/en
Publication of JPS5966430A publication Critical patent/JPS5966430A/en
Publication of JPH0224855B2 publication Critical patent/JPH0224855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/12Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment in an environment other than air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment

Abstract

PURPOSE:To improve the corona discharge effect sufficiently at an actual production level and obtain the titled composition having improved adhesive properties, by subjecting the surface of a molded polyolefin article to the corona discharge treatment under the respective specific treating conditions and atmosphere. CONSTITUTION:The surface of a continuously running polyolefin film 6 is subjected to the corona discharge treatment under such conditions as to give <=1.8 ratio of change [DELTA(O content/C content)/DELTA(N content/C content)] between the ratio of the O content to the C content (O content/C content) and the ratio of the N content to the C content (N content/C content) in a thin layer (hereinafter abbreviated to the thin layer) within 100Angstrom of the surface to be treated of the film 6 before and after the corona discharge treatment and >=3 ratio between the N content and the C content (N content/C content) in the thin layer after the corona discharge treatment by the high-voltage discharge between an electrode 3 and a metallic drum 1 while blowing a gas, e.g. an inert gas, consisting of the composition other than the air composition from a gas jetting outlet 5 provided in the electrode 3 on the discharge side on the surface of the film 6 to give the aimed molded article.

Description

【発明の詳細な説明】 本発明は高接着性ポリオレフィン成形物の製造方法に関
し、詳細には、コロナ放電処墳効果を実生産レベルで十
分に関め、谷樋素材に対する接着性の改善されたポリオ
レフィン成形物を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly adhesive polyolefin molded article, and in particular, the corona discharge treatment effect is fully concerned with the actual production level, and the adhesiveness to the gutter material is improved. The present invention relates to a method for producing a polyolefin molded article.

プラスチック製フィルムや成形物のコロナ放電処理は古
くから行なわれておシ、特にポリエチレンやポリプロピ
レン等のポリオレフィンフィルムの表面改質には欠くこ
とのできない技術であって、その適用範囲は益々拡大し
ていくものと期待されている。こうした状況に対処して
行く為にはコロナ放電による処理効率自体を向上しその
可能性を探求する必姿があシ、これまでにも広範囲に亘
る改良研究が展開されているが、未だ十分とは言えない
状況にある。
Corona discharge treatment of plastic films and molded products has been carried out for a long time, and is an indispensable technique for surface modification of polyolefin films such as polyethylene and polypropylene, and its scope of application is increasingly expanding. It is expected that it will go well. In order to deal with this situation, it is necessary to improve the processing efficiency of corona discharge itself and explore its possibilities.Although extensive improvement research has been carried out so far, it is still insufficient. I'm in a situation where I can't say anything.

例えばプラスチック成形品のコロナ放電処理法として、
特公昭48−17747号−にみられる如く、放電部に
有機溶剤を供給することによって放電面の化学変化を促
進させる技術があるが、残留溶剤が間廟となる成形物へ
の適用は困難である。
For example, as a corona discharge treatment method for plastic molded products,
As seen in Japanese Patent Publication No. 48-17747, there is a technique for promoting chemical changes on the discharge surface by supplying an organic solvent to the discharge section, but it is difficult to apply it to molded products where the residual solvent is a barrier. be.

又JournaJ of Applied Pol y
mer 5cience。
Also Journal of Applied Poly
mer 5science.

Vcl、15、p%1865〜1875(1971)に
は、不活性ガス雰囲気下でコロナ放電処理を行なう技術
が記載され、処理算囲気による活性化又は劣化専の影響
が示唆されるに及び、大% >7囲気を例えば低酸素雰
囲気に置@換えて処理を行なう技術も提案される様にな
ってきた。しかしこの種の従来法、例えば特公昭56−
18881号の方法では、大量の不活性ガスを必要とす
るのでコス)+1%になるという問題があ勺、又特開昭
57−23684号の方法(走行フィルムに対する不活
性雰囲慨下のコロナ放電技術)では、フィルムに随伴し
て巻込まれる大量を遮断する為に特殊なシールド横曲が
必要で装置塘わシが複雑になり、それでも同完全乃至略
児全な不活性算囲気が保障される訳ではなく低処理レベ
ルに甘んじなければならなかった。
Vcl, 15, p% 1865-1875 (1971) describes a technique of performing corona discharge treatment in an inert gas atmosphere, and it is said that the effect of activation or deterioration only due to the surrounding air during treatment is significant. % > 7 Techniques have also been proposed in which the surrounding atmosphere is replaced with, for example, a low-oxygen atmosphere. However, this type of conventional method, for example,
The method of No. 18881 requires a large amount of inert gas, resulting in a cost increase of +1%. Discharge technology) requires a special shield curvature in order to cut off the large amount of air that is entrained in the film, making the equipment complex, but even so, the same complete or almost completely inert atmosphere cannot be guaranteed. However, I had to settle for a low processing level.

この様に従来の改善処m=で十分な成果を挙げることが
できない理由は次の様に考えることができる。即ち処理
効率を高める為のポイントは、放電処理部におけるガス
算囲俄にあると考えられるが、従来の改善法では単に処
理系内やチャンバー内のガス雰囲完のみを問題としてお
シ、被処理物表層部の随伴流(外気)による遮弊障害を
考慮していない為と思われる。その為、バッチ式にょ)
静止状態で処理を行なえば前述の様な障害は軽減される
であろうが、それでは工業生産性が著しく低下して市場
価格が高騰するので、限られた用途にしか実用化するこ
とができない。しかも前述の様な連続処理で高い処理効
果を得ようとするといきおい処理速瓜゛は低下せざるを
得なぐなるが、それでは被処理物表面が損傷されて外観
不良、接着性不良、ブロッキング増大等の問題が派生し
てぐる。尚従前の大気算囲気下でのコロナ放電処理では
、被処理物の表面が酸化を斐けて表面に酸化劣化物が生
成するので、処理度合を進めても接着性を一部レベル以
上に向上させることはできない。
The reason why the conventional improvement process m= cannot produce sufficient results can be considered as follows. In other words, the key to increasing processing efficiency is considered to be the gas atmosphere in the discharge processing section, but conventional improvement methods only consider the completion of the gas atmosphere in the processing system or chamber as a problem, and do not This seems to be because the interference caused by the accompanying flow (outside air) on the surface layer of the processed material is not taken into account. Therefore, it is a batch type)
If the processing were carried out in a static state, the above-mentioned problems would be alleviated, but this would significantly reduce industrial productivity and increase market prices, making it practical only for limited applications. Moreover, if we try to obtain a high processing effect through continuous processing as described above, the processing speed will inevitably decrease, but this will damage the surface of the processed object and cause problems such as poor appearance, poor adhesion, and increased blocking. The problem arises. In the conventional corona discharge treatment under atmospheric conditions, the surface of the object to be treated undergoes oxidation and oxidized deterioration products are generated on the surface, so even if the degree of treatment is advanced, the adhesion will not improve beyond some levels. I can't let you.

本発明者等はこうした事情に着目し、ポリオレフィン成
形品に対し工業的生産レベルで高度の接着性を与えるこ
とのできる様なコロナ放電処理法の開発を期して研究を
進めてきた。本発明はこうした研究の結果なされたもの
であって、その構成は、少なくとも1対の電極を対向さ
せてなるコロナ放電処理装置にポリオレフィン成形品を
連続的に通してコロナ放電g&埋を行なうに当シ、処理
面に対して空気組成以外の組成からなる単独又は混合気
体を吹付け、被処理表面の100A以内の薄以内の薄層
におけるコロナ放電処理後の(−)比を8以上とすると
ころに#旨が存在する。
The present inventors have focused on these circumstances and have been conducting research with the aim of developing a corona discharge treatment method that can provide polyolefin molded products with a high degree of adhesion at an industrial production level. The present invention was made as a result of such research, and its configuration is for performing corona discharge g & embedding by continuously passing a polyolefin molded product through a corona discharge treatment device comprising at least one pair of electrodes facing each other. B. Spraying a single gas or a mixture of gases having a composition other than air onto the surface to be treated, and setting the (-) ratio of 8 or more after corona discharge treatment in a thin layer within 100A of the surface to be treated. There is # in .

本発明方法が通用されるポリオレフィン成形品としては
、フィルムやシート及び繊維、パイプ、テープ、織物、
不織布等の長尺物を含むもので、これら成形物を構成す
るポリオレフィンとしては公知の檀々のものが挙げられ
るが、フィルム用或いはシート用の代表的なポリオレフ
インドL”lj、ポリエチレン、ポリプロピレン、ポリ
ブテン−1、ポリ−4−メチルペンテン−1、ポリヘキ
セン等の単独重合体、プロピレン構成単位を701tf
jt%程度以上含有する各種共重合体、プロピレン1韓
成単位を4031rj14程度以上含有するポリオレフ
ィンブレンド物等が挙げられる。またこれらのポリオレ
フィンによジ構成される成形物中には、必要に応じて安
定剤、滑剤、耐ブロッキング剤、防曇剤、紫外線吸収剤
、難燃剤、透明化剤、酸化防止剤、耐光剤、帯電防止剤
、染料、顔料等の添加剤が含有されていてもよく、コロ
ナ放電の実施に悪影響を及ぼさないものは単独及び複合
の如何を問わず全て本発明の対象として含まれる。
Polyolefin molded products to which the method of the present invention can be applied include films, sheets, fibers, pipes, tapes, textiles,
These include long articles such as non-woven fabrics, and the polyolefins constituting these molded articles include a variety of well-known polyolefins, including typical polyolefins for films or sheets, polyethylene, polypropylene, Homopolymers such as polybutene-1, poly-4-methylpentene-1, polyhexene, propylene structural units are 701tf
Examples include various copolymers containing about 4031rj14 or more of propylene monomer units, and polyolefin blends containing about 4031rj14 or more of propylene monomer units. In addition, stabilizers, lubricants, anti-blocking agents, anti-fogging agents, ultraviolet absorbers, flame retardants, clarifying agents, antioxidants, and light-fastening agents are added to molded products made of these polyolefins as necessary. , antistatic agents, dyes, pigments, and other additives may be included, and all additives that do not adversely affect the implementation of corona discharge are included as objects of the present invention, regardless of whether they are used alone or in combination.

本発明では上記ポリオレフィン成形物を処理対象とし、
少なくとも1対の%Emを対向させてなるコロナ放電処
理装置に前記成形物を連続的に通して表面処理を行なう
が、この処理に当たシ処理面に空気組成以外の組成から
なる単独又は混合電体〔具体的には空気から空電組成の
一部を適当量線いたものや、空気へ空電組成の一部を適
当量追加したもの、更にはN2、N2、Ar、co2、
o2゜03、Xe、Kr等不活性ガスやイオン性ガスの
単独又は混合ガス等を包含するが(但し空気は除く)以
下便宜上不活性ガスと略記する〕を吹付ける。吹付速度
は特に限定されないが、好ましくは前記ポリオレフィン
成形物の送シ込み速度の11以上とする。そして後に詳
述する如く、被処理表面の100人以内の薄層における
コロナ放電処理N 前・後の(で)比及び(で)比を厳密に規定することに
よって、各種素材(例えば金属;各榎インキ、殊にセル
ロース系インキ、水性インキ等;樹脂、例えば塩化ビニ
リデン系単独又は共重合体や官能基含有樹脂等)との接
着性に極めて優れたポリオレフィン成形物を得ることが
できる。
In the present invention, the above-mentioned polyolefin molded product is treated,
Surface treatment is carried out by continuously passing the molded article through a corona discharge treatment device comprising at least one pair of %Em facing each other. Electric bodies [Specifically, those with a suitable amount of static electricity composition added from air, those with a suitable amount of static electricity composition added to air, N2, N2, Ar, co2, etc.
Including single or mixed gases such as inert gases such as O2°03, Xe, and Kr, and ionic gases (but excluding air, hereinafter abbreviated as inert gas for convenience) is sprayed. The spraying speed is not particularly limited, but is preferably 11 or more of the feeding speed of the polyolefin molded product. As will be explained in detail later, by strictly specifying the ratio before and after the corona discharge treatment N in a thin layer within 100 layers on the surface to be treated, various materials (e.g. metals; It is possible to obtain polyolefin molded articles having extremely excellent adhesion to Enoki inks, particularly cellulose-based inks, water-based inks, etc.; resins, such as vinylidene chloride homopolymers or copolymers, functional group-containing resins, etc.).

以下実施例図面に準拠しつつ本発明の構成及び作用効果
を明らかにしていくが、図面に示す放電側電極のmaや
配列、更にはカバーの形状等は代表例であるに過ぎず、
又図面ではプラスチックフィルムへの適用例を示したに
過ぎないから、これらの説明の趣旨に反しないという条
件の下で設計を変更することは本発明の技術的範囲に含
まれる。
The configuration and effects of the present invention will be clarified below based on the drawings of the embodiments, but the ma and arrangement of the discharge side electrodes, the shape of the cover, etc. shown in the drawings are only representative examples.
Further, since the drawings merely show an example of application to a plastic film, it is within the technical scope of the present invention to change the design on the condition that it does not go against the spirit of these descriptions.

第1図は本発明の実施概念を示す装部断面図、第2図は
放電側電極の一部を示す斜視図であって、図中の1は金
属ドラム、2は電極カバー・8は放電側電極、4はガス
供給管、5はガス噴出口、6は走行フィルムを示す。即
ちフィルム6は矢印A方向に回転する金属トリム1に対
して矢印B方向から導入され、更に矢印C方向へ引出さ
れて行くが、図示しない高電圧発生機に接続されている
放電側電極8と、ポリエステル、エポキシ樹脂、セラミ
ック、クロルスルホン化ポリエチレン、EPツバ−等で
カバーされた金属トリム1との間に数百KC/Sの1蓬
周波で数千ないし敵方■の高電圧をかけることによって
発生する毘圧コロナの影響を受け、例えば自然の大気中
であればオゾンや酸化窒素が生成してフィルム6の表面
にカルボニル基やカルボキVA/基を生ぜしめることに
よシ衷面が(迩性化される。一方従来例であれば、大気
中の酸累によってフィルム表面に接着性を阻害する酸化
劣化物が生成して表面を遮弊する。しかし本図例であれ
ば、コロナ放電の寡囲慨全体を電極カバー2によって大
気から遮断すると共に、放電側電極8にガス噴出口5を
設はフィルム6の表面に向けて不活性ガスを吹付ける様
に構成しているので、前述の障害が解消され、フィルム
6表層部へのコロナ放電効果を最大限に高めることがで
きる。
FIG. 1 is a cross-sectional view of the equipment part showing the concept of implementing the present invention, and FIG. 2 is a perspective view showing a part of the discharge side electrode, in which 1 is a metal drum, 2 is an electrode cover, and 8 is a discharge side electrode. A side electrode, 4 a gas supply pipe, 5 a gas outlet, and 6 a running film. That is, the film 6 is introduced from the direction of arrow B into the metal trim 1 rotating in the direction of arrow A, and is further pulled out in the direction of arrow C. , applying a high voltage of several thousand or more at a frequency of several hundred KC/S between the metal trim 1 covered with polyester, epoxy resin, ceramic, chlorosulfonated polyethylene, EP collar, etc. For example, in the natural atmosphere, ozone and nitrogen oxide are generated under the influence of pressure corona generated by On the other hand, in the conventional case, oxidized deterioration products that inhibit adhesion are generated on the film surface due to acid accumulation in the atmosphere, which impedes the surface.However, in the case of this example, corona discharge The electrode cover 2 isolates the entire area from the atmosphere, and the discharge-side electrode 8 is provided with a gas outlet 5 to spray inert gas toward the surface of the film 6. This problem is eliminated, and the corona discharge effect on the surface layer of the film 6 can be maximized.

この状況を更に詳述すれば、矢印B方向に沿って相当の
高速度で進入してくるフィ7レム6の表面には、若干な
がら随伴空気層が形成されておシ、コロナ放電部の雰囲
気が不活性ガスによって置換されても、フィルム6の表
面自体は相変らず大気雰囲気になっている。従って本発
明を実施するに当っては、第3図に示す如く不活性ガス
をフィルム表面へ強く吹付け、随伴空電層7を噴気ff
18によシ破壊分散させることによって、フィルム表面
を不活性ガスによってほぼ完全に置換する。随伴空気層
7を破壊分散させるのに必要な噴気流8の流速は被処理
物の形状や寸法及び処理装置への搬入速度等によって変
わるので一律に決めることはできないが、実験の結果随
伴空気層7の進入速度(換言すれば被処理物の搬入速度
)を基準にして足めるのが最も好ましいことが分かった
。即ち不活性ガスの噴気流速を被処理物の搬入速度の1
チ以上、好ましくは10優以上、更に好ましくは40%
以上にしてやれば、随伴空気層7を実質上の不都合がな
い程度にまで高めることができる。尚被処理物の搬入速
度は一般に1〜500 m:/分程度である。
To explain this situation in more detail, a small amount of accompanying air layer is formed on the surface of the fillet 7 that enters at a fairly high speed along the direction of arrow B, and the atmosphere of the corona discharge part Even if the gas is replaced with an inert gas, the surface of the film 6 itself remains in an atmospheric atmosphere. Therefore, in carrying out the present invention, an inert gas is strongly blown onto the film surface as shown in FIG.
By destructive dispersion in step 18, the film surface is almost completely replaced with inert gas. The flow velocity of the jet stream 8 required to destroy and disperse the entrained air layer 7 cannot be uniformly determined because it varies depending on the shape and size of the object to be treated, the speed of conveyance to the processing equipment, etc., but as a result of experiments, It has been found that it is most preferable to make the addition based on the approach speed of 7 (in other words, the transport speed of the object to be processed). In other words, the flow rate of the inert gas jet is 1 of the conveyance speed of the material to be treated.
10% or more, preferably 10% or more, more preferably 40%
By doing the above, the accompanying air layer 7 can be increased to the extent that there is no substantial problem. The speed at which the material to be processed is carried in is generally about 1 to 500 m/min.

この様な条件を採用することによって随伴空気層を破壊
分散させることができる様になシ、且つ同時にコロナ放
電部の近傍を不活性ガス雰囲気で保護することが可能と
なるので、第1図に示した電極カバー2は、雰囲気保持
用としての機能よシも、むL15電極8を機械的な前音
から保護するという機能と随伴流を少しでも抑制する機
能の方が強く期待される様になる。従って本発明の実施
に当っては、時に電極カバー2を取外すこともあシ得る
が、不活性ガスの消費量を抑制する為には、雰囲気保持
用としての機能を改めて見直すことが望ましく、例えば
第4図に示す如くカバー2の下端(フィルム側)を絞る
と同時に、導管10から不活性ガスをカバー2内へ導入
すれば、該ガスは斜面9の内面に沿って収束される様に
矢印方向へ流れ、カバー2の入口においてガスカーテン
効果が発揮される。即ち随伴空気層の侵入が入口側で遮
断され、電極カバー2の価値が一段と向上する。
By adopting such conditions, it becomes possible to destroy and disperse the accompanying air layer, and at the same time, it becomes possible to protect the vicinity of the corona discharge part with an inert gas atmosphere. The electrode cover 2 shown here is expected to have a function of protecting the L15 electrode 8 from mechanical noise and suppressing the accompanying flow as much as possible, in addition to its function of maintaining the atmosphere. Become. Therefore, when implementing the present invention, it is sometimes possible to remove the electrode cover 2, but in order to suppress the consumption of inert gas, it is desirable to reconsider its function for maintaining the atmosphere. As shown in FIG. 4, if the lower end (film side) of the cover 2 is squeezed and at the same time inert gas is introduced into the cover 2 from the conduit 10, the gas will be converged along the inner surface of the slope 9 in the direction indicated by the arrow. direction, and a gas curtain effect is exerted at the inlet of the cover 2. That is, the intrusion of the entrained air layer is blocked on the inlet side, and the value of the electrode cover 2 is further improved.

但しフィルム6の出口側(第4図の右側)についてはカ
バー2内のガスが走行フイMムロに随伴して排出されて
いくので、シール性ないし大9C侵入遮断性については
入口側はどの配りぽをする必要性は無いが、前述の様に
不活性ガス消費量を少なくするという意味においては入
口側と同様の配慮を払うことは有意義である。冑カバー
2の入口側及び出口側における上述のシール機能を最低
限度において発揮する為には、フィルムの走行速度に対
して少なくとも0.2係以上、好ましくは10係以上の
速度でフィルム面に放出させることが望まれる。尚不活
性ガスの噴出速度については、ガス噴出口5及びカバー
2の出入口のいずれについても下限側のみを述べたが上
限については実質上制限を設ける必要はなく、経済性と
最終製品の要求品質との兼ね合いで適当に決めればよい
However, regarding the exit side of the film 6 (the right side in Figure 4), the gas inside the cover 2 is discharged along with the traveling film M, so the sealing performance or large 9C intrusion blocking property is determined by the arrangement on the entrance side. Although there is no need to do so, it is meaningful to take the same consideration as on the inlet side in terms of reducing the amount of inert gas consumed as described above. In order to exert the above-mentioned sealing function on the inlet and outlet sides of the helmet cover 2 to the minimum extent possible, it is necessary to discharge onto the film surface at a speed of at least 0.2 times the traveling speed of the film, preferably at least 10 times the traveling speed of the film. It is desirable that the Regarding the ejection speed of the inert gas, only the lower limit side has been described for both the gas ejection port 5 and the inlet/outlet of the cover 2, but there is no practical need to set an upper limit on the ejection speed, and it is based on economic efficiency and the required quality of the final product. It should be decided appropriately based on the balance.

以上の様な処理条件を設定することによってコロナ放電
の処理効果が高められ、接着性が大幅に改善されるが、
こうした効果を常時安定して発揮させる為には、被処理
物の処理前・後における表面特性諸元を定量的に把握し
ておく必要があると考え更に研究を進めた。その結果、
■被処理物表亙)比のコロナ放電処理前・後における変
化量の比〔Δ(旦〕/Δ(N−)〕、及び■同じくフィ
ルCC ム表面100人以内の薄層におけるコロナ放電熱埋後の
(テ)比を厳密に管理しておくことによシ、制度の接着
性を保障し得ることが判明した。即ちON 前記■については〔Δ(−)/Δ(で)〕が1.8以下
となる様、また前記■については処理後の(一)が8以
上となる様に、コロナ放電の処理条件及び処理算囲完を
厳密にコントロールすることによυ、例えば金属、各槁
印刷インキ(特にセルロース糸インキや水性インキ等)
、塩化ビニリデン系単独又は共厘合樹脂や官能基含有樹
脂等の各種合成樹脂尋との接着性を飛躍的に高めること
ができる。冑上記の様な表面特性の測定法は櫨々あるが
、最も適しているのはESCA法である。
By setting the treatment conditions as described above, the treatment effect of corona discharge is enhanced and the adhesion is significantly improved.
In order to consistently and stably exhibit these effects, we conducted further research based on the belief that it was necessary to quantitatively understand the surface characteristics of the treated object before and after treatment. the result,
■ Ratio of change in the surface ratio of the treated object before and after corona discharge treatment [Δ(Dan)/Δ(N-)], and ■ Similarly, corona discharge heat in a thin layer within 100 layers on the film surface. It has been found that by strictly controlling the post-embedding (te) ratio, it is possible to guarantee the adhesion of the system. By strictly controlling the treatment conditions of corona discharge and the completion of the treatment, for example, metal, Various printing inks (especially cellulose thread ink, water-based ink, etc.)
It is possible to dramatically improve the adhesion to various synthetic resins such as vinylidene chloride-based resins alone or together, and functional group-containing resins. There are many methods for measuring the surface properties as described above, but the most suitable is the ESCA method.

ところで本発明で規矩する〔(N−)比≧8〕という要
件を満たすポリオレフィン成形物は、従来の処理条件で
も時として得ることができ、又公知の窒累ガス雰囲気下
でのコロナ放電処理によっても挙現可能である。しかし
ながら先に説明した如く少なくとも連続処理を対象とす
る従来法で上記の様な高レベルの(τ)比を確保する為
には大規模な設備を要するので、工業的規模での実用化
は困難であった。これに対し本発明の方法を採用すれば
、比較的簡単な設備で(τ)比を容易に8以上まで高め
ることができる。一方プワスチック材の各柚素材との接
着性が、ESCA法で求められるNの生成割合(Cに対
する)によシ単純に決まってくるという報告もある。し
かしかかる報告は接着性に影響を及はす一側面のみをと
らえたものに丁ぎない。ちなみに素材に対してN成分を
ブレンドすれば(!!−)比は増大するが、N含有成分
である帯電防止剤や滑剤を混合するだけでは接着性は向
上せず、むしろ低下するという事実を考えれば、(N−
)比の増大が接着性と直ちに結びつくものでないことは
明白である。そこで接着性に影響を与える他の要因につ
いても検討を行なったとこON ろ、前記〔△(−)/Δ(−)〕によシ算出されCC る値がコロナ放電処理効果、即ち接着性向上効果をほぼ
正確に表わし、これが1.8以下となる様な処理を受け
たものは目的にかなり静レベルの接着性を発揮するとい
う◆夾が確認された。ちなみにに8以上を示すものであ
っても、〔Δ(で)/Δ(τ)〕が1.8を越えるとコ
ロナ放電処理効果が不十分で1清レベルの接着性を得る
ことができない。こうした意味から、本発明では図示し
た様な処理法を採用し、且つ前記(τ)比が8以上、〔
Δ(旦)/Δ(N−)〕が1.8以下となる様に処理C
C 条件をコントロールすることが必須となる。
By the way, polyolefin molded articles satisfying the requirement of [(N-) ratio ≧8] stipulated in the present invention can sometimes be obtained under conventional treatment conditions, and can also be obtained by known corona discharge treatment in a nitrogen gas atmosphere. is also possible. However, as explained earlier, in order to secure such a high level of (τ) ratio as mentioned above, large-scale equipment is required, at least with the conventional method that targets continuous processing, making it difficult to put it into practical use on an industrial scale. Met. On the other hand, if the method of the present invention is adopted, the (τ) ratio can be easily increased to 8 or more with relatively simple equipment. On the other hand, there is also a report that the adhesion of a plastic material to each yuzu material is simply determined by the production ratio of N (relative to C) determined by the ESCA method. However, such reports only capture one aspect that affects adhesion. By the way, if you blend an N component into the material, the ratio will increase (!!-), but just adding an antistatic agent or lubricant, which is a N-containing component, will not improve the adhesion, but will actually decrease it. If you think about it, (N-
) It is clear that an increase in the ratio does not directly correlate with adhesion. Therefore, we investigated other factors that affect adhesion and found that the CC value calculated by [△(-)/Δ(-)] was the corona discharge treatment effect, that is, the improvement in adhesion. It was confirmed that the effect was expressed almost accurately, and that those treated so that the value was 1.8 or less exhibited a fairly static level of adhesion to the intended purpose. Incidentally, even if it shows a value of 8 or more, if [Δ(de)/Δ(τ)] exceeds 1.8, the corona discharge treatment effect will be insufficient and it will not be possible to obtain adhesiveness at the 1st grade level. In this sense, the present invention adopts the processing method as shown in the figure, and also when the (τ) ratio is 8 or more, [
Process C so that Δ(dan)/Δ(N-)] is 1.8 or less
C. It is essential to control the conditions.

本発明は概略以上の様に構成されており、コロナ放電熱
」」条件を規定すると共に、処理前・後にN おける表層部の(−)比及び(テ)比の変化量から処理
効果を常時把握する様にしたので、各種素材との接着性
に優れたポリオレフィン成形物tHm賽に得ることが可
能になった。
The present invention is roughly constructed as described above, and in addition to stipulating the "corona discharge heat" conditions, the treatment effect can be constantly evaluated from the amount of change in the (-) ratio and (Te) ratio of the surface layer portion before and after treatment. By understanding this, it has become possible to easily obtain polyolefin molded products tHm with excellent adhesiveness to various materials.

次に実験例を示す。Next, an experimental example will be shown.

同央験例で採用した表面特性の評価法は次の通シである
The method for evaluating surface properties adopted in the central experiment is as follows.

illヘイズ: J I S−に−6714によシ測矩
(2)印刷インキ接着力 市販のセロファン用印刷インキを用い、グラビア印刷機
で赤色及び白色の印刷を行なう。
ill haze: Measured according to JIS-6714 (2) Printing ink adhesive strength Red and white printing was performed with a gravure printing machine using a commercially available printing ink for cellophane.

印刷後油密の方法で同時乾燥し、市販セロファンテープ
にチバン社製)Kよるテープ剥離試験、もみ試験及び引
掻き試験を行なった5、■テープ剥離試験評価基準 5:全く剥離せず 4:インキ剥m面積が約5係未満 8;インキ剥離面積5〜10係 2;−fンキ剥噛面槓10〜50壬 1:インキ剥噛面槓50チ以上 @もみ試験(同一箇所を5回もみ、インキの脱落状況を
肉眼判定する) 5:全く脱落なし 4:線上に僅かに脱落するが、実用上間萌なし 8:ンワの入った線上で数箇所脱落 2:Vワの入った線上で多数h1所脱落1:線上に多数
、幅方向にも)脱溶あシQ)引掻き試験 硬質紙上に印刷物を敷き、印刷部を引掻いてインキの脱
落状紗を調べる。
After printing, it was simultaneously dried in an oil-tight manner, and a commercially available cellophane tape was subjected to a tape peeling test, kneading test, and scratching test using K (manufactured by Chiban Co., Ltd.) 5, ■ Tape peeling test evaluation criteria 5: No peeling at all 4: Ink Peeling area less than about 5 inches 8; Ink peeling area 5 to 10 parts 2; , judge the state of ink falling off with the naked eye) 5: No falling off at all 4: Slight falling on the line, but in practical terms no gaps 8: Falling off in several places on the line with the ``V'' 2: On the line with the ``V'' Many falling off in h1 places 1: Many on the line, also in the width direction) De-dissolving foot Q) Scratching test Place the printed matter on hard paper and scratch the printed area to check for ink falling off.

(3)ワミネート強度 セロファンインキを用いて印刷した後ポリエチレンイミ
ンをコーティングし、乾燥後290℃の低密度ポリエチ
レンを厚さが80μmとなる様に浴融押出法でラミネー
トする。
(3) After printing with laminated strength cellophane ink, it is coated with polyethyleneimine, and after drying, it is laminated with low density polyethylene at 290° C. to a thickness of 80 μm using a bath melt extrusion method.

次いで24時間エージングした後、フィルムとポリエチ
レン層の間を剥離し、その接着強度を測定する。同剥離
条件は、180度剥離、速f200順/分とする (4)その他の接着性 アルミニウムの蒸着性及び塩化ビニリデン樹脂との接着
性を(2)項と同様の方法で調べる。
After aging for 24 hours, the film and polyethylene layer were peeled off and the adhesive strength was measured. The peeling conditions were 180 degree peeling and a speed of f200/min. (4) Other Adhesive Properties The vapor deposition properties of aluminum and the adhesion to vinylidene chloride resin were examined in the same manner as in (2).

実施例 アイソタクチックポリプロピノン(MI=4.0)を用
い、常法に従って厚さ20μmの2軸延伸フイルムを得
、これを被処理フィルムとする。このフィルムを使用し
、第1表に示す酸累宮有率の望#ガスを吹付けながらコ
ロナ放電処理を行なった。
EXAMPLE Using isotactic polypropynon (MI=4.0), a biaxially stretched film with a thickness of 20 μm was obtained according to a conventional method and used as a film to be treated. Using this film, a corona discharge treatment was performed while spraying a gas having a specific acid concentration shown in Table 1.

伺処理電力は4000ジユ一ル/m2とし、また比較の
為、大気雰囲慨及び処理雰囲電を単に窒素ガス置換した
だけのものについても同様にコロナ放電処理を行なった
。同処理速度は何れも20m/分とした。
The treatment power was set at 4000 joules/m2, and for comparison, corona discharge treatment was also performed in the same manner in which the atmospheric atmosphere and the treatment atmosphere were simply replaced with nitrogen gas. The processing speed was 20 m/min in both cases.

各フィルムの接着性試験結果を第2表に示す。The adhesion test results for each film are shown in Table 2.

また上記フィルムを印刷し、ポリエチレン(PE)をラ
ミネートした後180℃の熱板で2秒間加熱加圧したも
のについて、ラミネート面の接着強度を調べたところ第
8表の結果が得られた。
Furthermore, the adhesive strength of the laminated surface of the film printed on the film, laminated with polyethylene (PE), and heated and pressed for 2 seconds using a hot plate at 180° C. was examined, and the results shown in Table 8 were obtained.

第8表 第1〜8表からも明らかな様に、コロナ放電処理を大気
雰囲気で行なった場合(A1)はもとよシ、放電系を単
に窒素ガス置換しただけでも(A2.8.4)〔Δ(で
)/Δ(τ〕〕を低レベルに抑えることができず、接着
性は不十分である。
As is clear from Tables 1 to 8 of Table 8, not only the corona discharge treatment is performed in the atmospheric atmosphere (A1), but also the case where the discharge system is simply replaced with nitrogen gas (A2.8.4). ) [Δ(de)/Δ(τ]] cannot be suppressed to a low level, resulting in insufficient adhesion.

殊にA8及び4については、本発明における1つ〔Δ(
−)/Δ(で)〕の値が大きすぎる為十分な接着性が得
られない。これに対し酸素濃度を従来例(洗2.8)に
近似させた場合でも、これを放電処理面に吹付けると(
実施例:扁5.6)、処理後の(で)比が効果的に上昇
すると共に〔ON Δ(テ)/Δ(で)〕も1.8以下の低い値となシ、使
用した全ての素材に対して優れた接着性を示す様になる
。これらの結果からも明らかな様に、コロナ放電処理に
おいては放電雰囲気全体の02濃度で把握するだはでは
不十分であシ、被Is埋面に不活性ガスを積極的に吹付
けて随伴空気層を破壊拡散させて放電面の02114M
を低減することが極めて重要な要件となる。
Especially for A8 and 4, one [Δ(
-)/Δ(de)] is too large, sufficient adhesion cannot be obtained. On the other hand, even if the oxygen concentration is approximated to the conventional example (washing 2.8), if this is sprayed onto the discharge treated surface (
Example: 5.6), the (de) ratio after treatment effectively increases, and [ON Δ(te)/Δ(de)] also has a low value of 1.8 or less. It shows excellent adhesion to other materials. As is clear from these results, in corona discharge treatment, it is insufficient to grasp the 02 concentration in the entire discharge atmosphere, and the accompanying air is 02114M of the discharge surface by breaking and diffusing the layer.
Reducing this is an extremely important requirement.

尚A4の比較例フィルムでも実用可能と思われるが、全
体的に接着性レベルが低く、且つ特に加熱処理によって
セロファンとの接着性が極端に低下することが確認され
た。
Although the A4 Comparative Example film seems to be practical, it was confirmed that the overall adhesiveness level was low and that the adhesiveness to cellophane was extremely reduced especially by heat treatment.

実施例 被処理フィルムとして二軸延伸ポリプロピレンフィルム
(]]l紡績社製バイレリンイルムー〇Tp−2061
,20μm)を使用し、第4表に示す条件でコロナ放電
処理を行なつ友。同賽験A7〜12については、窒素ガ
ス量をフィルム幅1mに対して3m3/br−ni一定
とし、実施例の場合のガス吹付速度は1.8m 7秒と
した。塘た実験A18〜16はガス供給量を変更してフ
ィルム排出側におけるフィルム表面の酸素濃度を調整し
た例であるが、単に処理装置内へガスを吹込む方法(比
較例:屋18及び14)の場合は、フィルム表面にガス
を吹付ける方法(実施例:A14及び15)の場合に比
べて8〜8倍量のガスを供給しなければ同等の酸素濃度
が得られない。
Example Film to be treated was biaxially oriented polypropylene film (]]l Boseki Co., Ltd., Byrelin Ilmu〇Tp-2061.
, 20 μm) and perform corona discharge treatment under the conditions shown in Table 4. For the same tests A7 to A12, the amount of nitrogen gas was constant at 3 m3/br-ni per 1 m of film width, and the gas spraying speed in the example was 1.8 m for 7 seconds. Experiments A18 to A16 are examples in which the oxygen concentration on the film surface on the film discharge side was adjusted by changing the gas supply amount, but there was a method in which gas was simply blown into the processing equipment (comparative examples: Ya18 and A14). In this case, the same oxygen concentration cannot be obtained unless 8 to 8 times the amount of gas is supplied compared to the method of spraying gas onto the film surface (Examples: A14 and 15).

上記で得た各フィルムの接着性を第5表に一括して示す
Table 5 shows the adhesive properties of each film obtained above.

”61p与↓ノ′ 第4.5表からも明らかな様に、処理速度、処理電力及
び雰囲気中の02濃度がほぼ同尋となる様に設層した場
合でも、単に装置内へ不活性ガスを吹込んだだけでは(
比較例:A7〜9及び13.14)、フィルム表面に随
伴空気層が形成されて処理効率が低下する為、特に〔Δ
(−)/Δ(N−)CC 〕を低レベルに抑えることができず、接着性を十分に高
めることができないが、フィルム表面に不活性ガスを吹
付けると(実施例=10〜12及び15.16)、随伴
空気層が該噴電流によって破壊除去されて処理効率が高
まる為、〔Δ(で)/Δ(N−)〕を極めて低レベルに
することができ、各種素材に対する接着性は飛躍的に向
上する。
``61p given ↓ノ'' As is clear from Table 4.5, even if the layers are set so that the processing speed, processing power, and 02 concentration in the atmosphere are approximately the same, simply adding inert gas to the equipment If you just inject (
Comparative Examples: A7 to 9 and 13.14), an accompanying air layer is formed on the film surface and the processing efficiency decreases, so especially [Δ
(-)/Δ(N-)CC] cannot be suppressed to a low level and the adhesion cannot be sufficiently increased, but if an inert gas is sprayed onto the film surface (Examples 10 to 12 and 15.16), the accompanying air layer is destroyed and removed by the ejected current, increasing processing efficiency, making it possible to reduce [Δ(de)/Δ(N-)] to an extremely low level, resulting in improved adhesion to various materials. will improve dramatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状況を示す概念図、第2図は本発
明で用いられる放電側電極を例示する見取シ図、第8図
は随伴空気層の破壊状況を示す説明図、第4図Fit極
カバーの一例を示す説明図である。 1・・・金属ドラム   2・・・電極カバー8・・・
放電側電極   5・・・ガス噴出口6・・・フィルム 出願人  東洋紡績株式会社 第1図 4図 千−系売ネ市正書 (自発) 昭和57年12月23[J 1、事件の表示 昭和57年特許願第178126号 2、発明の名称 高接着性ポリオレフィン成形物の製造方法3、補正をす
る者 11件との関係  特許出願人 大阪市北区堂島浜二丁目2番8号 (316)東洋紡績株式会社 代表者  宇 野  牧 4、代 理 人   〒530 大阪市北区堂島2丁目3番7号 シンコービル 明細書の「発明の詳細な説明Jの欄 6、補正の内容 明細−1の第16頁の第19行と第20行の間に下記の
文章を挿入します。
FIG. 1 is a conceptual diagram showing the implementation status of the present invention, FIG. 2 is a sketch diagram illustrating the discharge side electrode used in the present invention, FIG. 8 is an explanatory diagram showing the state of destruction of the accompanying air layer, and FIG. FIG. 4 is an explanatory diagram showing an example of a Fit pole cover. 1... Metal drum 2... Electrode cover 8...
Discharge side electrode 5...Gas outlet 6...Film Applicant Toyobo Co., Ltd. Figure 1 Figure 4 1000-Series Neighborhood City Authorization (Spontaneous) December 23, 1981 [J 1, Incident Indication] 1981 Patent Application No. 178126 2, Name of the invention: Method for manufacturing highly adhesive polyolefin molded products 3, Relationship with 11 amendments Patent applicant: 2-2-8 Dojimahama, Kita-ku, Osaka (316) Toyobo Co., Ltd. Representative Maki Uno 4, Agent Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka 530 Column 6 of Detailed Description of the Invention J, Details of Contents of Amendment-1 of the Specification Insert the following text between lines 19 and 20 on page 16.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも1対の電極を対向させてなるコロナ放
電処理装置にポリオレフィン成形物を連続的に通してコ
ロナ放電処理を行なうに当シ、処理面に対して空気組成
以外の組成からなる単独又は混ロナ放電処理前・後にお
ける変化量の比〔(被処理物表面100λ以内の薄層に
おけるコロ全特黴とする?jEm看性ポリオレフィン成
形物の製造方法。
(1) When corona discharge treatment is performed by continuously passing a polyolefin molded product through a corona discharge treatment device comprising at least one pair of electrodes facing each other, a single or Ratio of amount of change before and after mixed Rona discharge treatment [(Total characteristic mold in a thin layer within 100λ of the surface of the object to be treated?) Method for producing a transparent polyolefin molded product.
JP17812682A 1982-10-08 1982-10-08 Preparation of highly adhesive molded polyolefin article Granted JPS5966430A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17812682A JPS5966430A (en) 1982-10-08 1982-10-08 Preparation of highly adhesive molded polyolefin article
FR8316034A FR2534262B1 (en) 1982-10-08 1983-10-07 CORONA DISCHARGE TREATMENT PROCESS FOR IMPROVING SURFACE ADHESION OF A POLYOLEFIN MOLDED PRODUCT
US06/540,144 US4563316A (en) 1982-10-08 1983-10-07 Production of polyolefin shaped product
KR1019830004764A KR890002565B1 (en) 1982-10-08 1983-10-07 Method for preparing high adhesive polyolefin
BE0/211668A BE897947A (en) 1982-10-08 1983-10-07 PROCESS FOR THE PRODUCTION OF SHAPED POLYOLEFIN PRODUCTS
GB08326915A GB2131030B (en) 1982-10-08 1983-10-07 Surface modification of polyolefin shaped product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17812682A JPS5966430A (en) 1982-10-08 1982-10-08 Preparation of highly adhesive molded polyolefin article

Publications (2)

Publication Number Publication Date
JPS5966430A true JPS5966430A (en) 1984-04-14
JPH0224855B2 JPH0224855B2 (en) 1990-05-30

Family

ID=16043102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17812682A Granted JPS5966430A (en) 1982-10-08 1982-10-08 Preparation of highly adhesive molded polyolefin article

Country Status (2)

Country Link
JP (1) JPS5966430A (en)
BE (1) BE897947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204239A (en) * 1985-03-08 1986-09-10 Idemitsu Petrochem Co Ltd Surface-treatment of polypropylene resin
JPS6317047A (en) * 1986-07-10 1988-01-25 東レ株式会社 Polyolefin laminated film
JP2010516850A (en) * 2007-01-24 2010-05-20 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for treating the surface of a polymer substrate, the resulting substrate and its use in the production of multilayer materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015732B2 (en) * 2007-11-14 2012-08-29 藤森工業株式会社 Method for producing laminated film
JP5216926B2 (en) * 2012-04-24 2013-06-19 藤森工業株式会社 Method for producing laminated film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578026A (en) * 1978-12-11 1980-06-12 Showa Denko Kk Surface treatment of molded polypropylene article
JPS55137136A (en) * 1979-04-13 1980-10-25 Tokuyama Soda Co Ltd Production of polypropylene composition film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578026A (en) * 1978-12-11 1980-06-12 Showa Denko Kk Surface treatment of molded polypropylene article
JPS55137136A (en) * 1979-04-13 1980-10-25 Tokuyama Soda Co Ltd Production of polypropylene composition film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204239A (en) * 1985-03-08 1986-09-10 Idemitsu Petrochem Co Ltd Surface-treatment of polypropylene resin
JPH0374694B2 (en) * 1985-03-08 1991-11-27
JPS6317047A (en) * 1986-07-10 1988-01-25 東レ株式会社 Polyolefin laminated film
JP2010516850A (en) * 2007-01-24 2010-05-20 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for treating the surface of a polymer substrate, the resulting substrate and its use in the production of multilayer materials

Also Published As

Publication number Publication date
JPH0224855B2 (en) 1990-05-30
BE897947A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
KR890002565B1 (en) Method for preparing high adhesive polyolefin
Sun et al. Corona treatment of polyolefin films—A review
JP2019016590A (en) Method for performing simultaneous plasma treatment on end surfaces of at least two adhesive tapes
CA2143772A1 (en) Product and process for polymeric article with improved surface properties
JPS5966430A (en) Preparation of highly adhesive molded polyolefin article
US5958524A (en) Process for the surface treatment of articles comprising at least one plastic material
KR20180108825A (en) Method for producing an adhesive tape by plasma lamination
JPH0225935B2 (en)
JPS59191741A (en) Production of highly adhesive, laminar polyester molding
JPH059459B2 (en)
US3667095A (en) Apparatus for coating surfaces and curing the same at high speeds
JPS59191739A (en) Production of highly adhesive polyester blend molding
JPS59191737A (en) Production of highly adhesive polyester molding
JPS628448B2 (en)
US6106904A (en) Method for promoting adhesion between a backing and an adhesive composition
EP2960054B1 (en) Surface-treated films with polypropylene base
JPH0664304A (en) Method and device for electrically pretreating lubricant-containing foil made of plastic material, esp. polypropylene or polyethylene
US3218212A (en) Method of and apparatus for forming a clear glossy laminate
JPS6350281Y2 (en)
JP2018001547A (en) Induction heating method for polyolefin-coated steel pipe
JPS59191738A (en) Production of highly adhesive composite polyester molding
JPS6017342B2 (en) Surface treatment method for propylene polymer molded articles
JPS59105032A (en) Car exterior parts
JPS6034970B2 (en) Method for treating the surface of propylene polymer moldings
JPH0464534B2 (en)