JP2018001547A - Induction heating method for polyolefin-coated steel pipe - Google Patents

Induction heating method for polyolefin-coated steel pipe Download PDF

Info

Publication number
JP2018001547A
JP2018001547A JP2016130314A JP2016130314A JP2018001547A JP 2018001547 A JP2018001547 A JP 2018001547A JP 2016130314 A JP2016130314 A JP 2016130314A JP 2016130314 A JP2016130314 A JP 2016130314A JP 2018001547 A JP2018001547 A JP 2018001547A
Authority
JP
Japan
Prior art keywords
steel pipe
induction heating
heating
polyolefin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016130314A
Other languages
Japanese (ja)
Other versions
JP6692233B2 (en
Inventor
吉崎 信樹
Nobuki Yoshizaki
信樹 吉崎
義洋 宮嶋
Yoshihiro Miyajima
義洋 宮嶋
将人 福田
Masahito Fukuda
将人 福田
武英 相賀
Takehide Aiga
武英 相賀
雄輔 浜辺
Yusuke Hamabe
雄輔 浜辺
大祐 松枝
Daisuke Matsueda
大祐 松枝
弥 友部
Wataru Tomobe
弥 友部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Anti Corrosion Co Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Anti Corrosion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Anti Corrosion Co Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016130314A priority Critical patent/JP6692233B2/en
Publication of JP2018001547A publication Critical patent/JP2018001547A/en
Application granted granted Critical
Publication of JP6692233B2 publication Critical patent/JP6692233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Induction Heating (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, in the case, upon production of a polyolefin resin-coated steel pipe, rapid heating is performed by high frequency induction heating, surface oxidation is made ununiform by the influence of the ruggedness and adsorption water in blast treatment, and severe cathode peeling test performance required for a line pipe has not been satisfied.SOLUTION: A steel pipe is subjected to a step of being homogenized to 100 to 160°C in the first stage, and high frequency heating is performed in the two stage or more to suppress the ununiform oxidation in the surface of the steel. In this way, even in the case it is subjected to heating to a high temperature required for the melting to curing of a powder primer, its deterioration in adhesion can be suppressed, and its cathode peeling resistance can be improved.SELECTED DRAWING: Figure 1

Description

石油・ガス等のエネルギー輸送に用いられるラインパイプの防食用外面被覆には通常ポリオレフィン被覆鋼管が使用されるが、このポリオレフィン被覆に先立って鋼管を誘導加熱する。本発明は、この誘導加熱方法に関する。   Polyolefin-coated steel pipes are usually used for the outer surface coating for anticorrosion of line pipes used for energy transportation such as oil and gas. Prior to this polyolefin coating, the steel pipes are induction-heated. The present invention relates to this induction heating method.

石油・ガス等のエネルギー輸送用ラインパイプに用いられる外面ポリオレフィン被覆鋼管において、長期の防食性と施工時の耐疵性が要求される場合には3層被覆鋼管が用いられる。その構成は鋼管側から、防食性の高いエポキシ樹脂プライマー層、接着剤層、ポリオレフィン樹脂層からなる3層構造である。被覆されるポリオレフィン樹脂には、ポリエチレン樹脂とポリプロピレン樹脂があるが、安価で信頼性が高いことから、一般的にはポリエチレン樹脂が、高温用や耐疵性が要求される場合にはポリプロピレン樹脂が使用される。   A three-layer coated steel pipe is used when long-term corrosion resistance and weathering resistance during construction are required in an outer-surface polyolefin-coated steel pipe used for oil and gas energy transportation line pipes. The structure is a three-layer structure consisting of an epoxy resin primer layer, an adhesive layer, and a polyolefin resin layer having high anticorrosion properties from the steel pipe side. Polyolefin resins to be coated include polyethylene resins and polypropylene resins. However, since they are inexpensive and highly reliable, in general, polyethylene resins are used, and polypropylene resins are used when high temperature and weather resistance are required. used.

ラインパイプは漏洩での事故損失が非常に大きいため、ポリオレフィン被覆鋼管では埋設時やその前の鋼面に達する疵発生があった場合を考慮する。従って万が一疵があった場合には、疵部の腐食を抑制するため、鉄の自然電位よりも電位を下げる防食方法として電気防食が行われる。但し、疵発生率や電位を正確に捉えることが難しいため電気防食が過剰になる場合が在る。その場合、疵部を中心に被覆の剥離が進行する現象、いわゆる陰極剥離が発生する。陰極剥離が進展して鋼材露出面積が大きくなると、最終的には腐食が発生することから耐陰極剥離性はラインパイプの防食性能の中でも特に重要な項目である。   Since line pipes have a very large accident loss due to leakage, we consider cases in which polyolefin-coated steel pipes have flaws that reach the steel surface before or during burial. Therefore, in the unlikely event that there is a flaw, cathodic protection is performed as a corrosion prevention method that lowers the potential below the natural potential of iron in order to suppress corrosion of the brim. However, since it is difficult to accurately capture the wrinkle generation rate and potential, there are cases where the anticorrosion becomes excessive. In that case, a phenomenon in which peeling of the coating progresses around the collar portion, that is, so-called cathode peeling occurs. If the stripping of the cathode progresses and the exposed area of the steel material becomes large, corrosion will eventually occur. Therefore, the stripping resistance of the cathode is a particularly important item in the anticorrosion performance of the line pipe.

ポリオレフィン被覆では陰極剥離を抑制するため3層の被覆構成を有するとともに、下地処理や樹脂の改良が日夜行われている。陰極剥離抑制には鋼材の下地処理とプライマーが重要である。現在、プライマーに関しては液体エポキシ樹脂を塗装した薄膜のプライマーに代わり、性能の良い粉体のエポキシ樹脂を塗装した厚膜のプライマーが用いられるようになって来ている。いずれのエポキシ樹脂でも樹脂を硬化させるために、ガスあるいは誘導加熱といった方法によるプライマー塗装前又はプライマー塗装後の鋼管加熱が必須である。   Polyolefin coating has a three-layer coating structure to suppress cathode peeling, and surface treatment and resin improvement are performed day and night. In order to suppress cathode peeling, primer treatment of steel and primer are important. At present, instead of a thin film primer coated with a liquid epoxy resin, a thick film primer coated with a high performance powder epoxy resin has been used. In order to cure the resin in any epoxy resin, it is essential to heat the steel pipe before or after primer coating by a method such as gas or induction heating.

但し、液体エポキシ樹脂で誘導加熱方式を用いた製造方法は特許文献1に示されるように鋼管の加熱温度は180℃と低く、液体エポキシ樹脂塗装後に加熱が行われる。その一方、粉体エポキシ樹脂での厚膜塗装には塗装前に鋼管を加熱しておく必要があると同時に鋼管の加熱温度も液体より高い。これは、特に粉体エポキシ樹脂では溶融粘度が高温であるほど低下するために、下地にブラスト処理を行って表面に数μm以下の細かい凹凸がある鋼管では高温で塗装した方が良好な性能が得られる理由による。   However, in the manufacturing method using the induction heating method with a liquid epoxy resin, as shown in Patent Document 1, the heating temperature of the steel pipe is as low as 180 ° C., and the heating is performed after the liquid epoxy resin coating. On the other hand, for thick film coating with powder epoxy resin, it is necessary to heat the steel pipe before coating, and at the same time, the heating temperature of the steel pipe is higher than that of the liquid. This is especially true for powdered epoxy resins, because the higher the melt viscosity, the lower the melt viscosity. Therefore, it is better to perform blasting on the base and paint at a high temperature on steel pipes with fine irregularities of several μm or less on the surface. It depends on the reason why it is obtained.

特開昭58−74337号公報JP 58-74337 A

特に粉体エポキシ樹脂をプライマーとする塗装では、鋼材加熱温度は180℃以上が必要で、更に高温にすれば溶融粘度が低下して、粗度のある鋼材表面への浸透性が高まることから耐陰極剥離性能も向上する。このため、粉体エポキシ樹脂塗装時の鋼材温度としては200℃以上が好ましい。しかしながら、高周波誘導加熱では200℃以上に加熱しても紛体プライマーの性能を十分に発揮できない現象が発生する。すなわち、ブラスト処理した鋼管を高周波誘導加熱で加熱した場合、十分な耐陰極剥離性能が得られないという課題があった。   In particular, in the coating using a powder epoxy resin as a primer, the steel heating temperature needs to be 180 ° C. or higher, and if the temperature is further increased, the melt viscosity decreases and the permeability to the surface of the rough steel material increases. Cathode peeling performance is also improved. For this reason, 200 degreeC or more is preferable as steel material temperature at the time of powder epoxy resin coating. However, in high frequency induction heating, a phenomenon occurs in which the performance of the powder primer cannot be exhibited sufficiently even when heated to 200 ° C. or higher. That is, when the blasted steel pipe is heated by high-frequency induction heating, there is a problem that sufficient anti-cathode peeling performance cannot be obtained.

かかる課題を解決するために、鋭意検討した結果、その原因は高周波誘導加熱の特性によることが明らかとなった。すなわち、高周波誘導加熱では鋼材に流れる誘導電流によって発熱するが、周波数が高い場合は表面の浅い部分が特に発熱する。これは表皮効果と呼ばれ、例えば周波数が20000Hzであると、その誘導電流の浸透深さは一般炭素鋼で50μmと非常に浅い領域となる。一方、ブラストを行った鋼材の表面は50μm以上の凹凸があるため凸部が極端に高温となり鋼材表面に不均一酸化が進行する。このために紛体プライマー塗膜との密着性が低下すると考えられる。
そこで、被覆ラインでの高周波誘導加熱による粉体エポキシ樹脂塗装での性能低下を防ぐ方法を詳細に検討した。その結果、鋼管を2段以上で加熱する、具体的には1段目で100〜160℃に均一加熱後、2段目の加熱で200〜260℃以上とすることで、鋼材表面の不均一酸化が抑制され、粉体エポキシ樹脂の耐陰極剥離性能を低下させることなく高温で塗装することが可能であることを見出した。
更に、高周波誘導加熱の周波数を3000Hz以下、更に望ましくは2000Hz以下とすることで粗度に対して誘導電流の浸透深さを十分に確保し、ブラスト処理によって生成した凸部の不均一加熱を軽減することが出来る。
As a result of intensive studies to solve such problems, it has become clear that the cause is due to the characteristics of high-frequency induction heating. That is, in high-frequency induction heating, heat is generated by an induced current flowing through the steel material, but when the frequency is high, a portion having a shallow surface particularly generates heat. This is called the skin effect. For example, when the frequency is 20000 Hz, the penetration depth of the induced current is a very shallow region of 50 μm in general carbon steel. On the other hand, since the surface of the blasted steel material has irregularities of 50 μm or more, the convex portion becomes extremely hot and non-uniform oxidation proceeds on the steel material surface. For this reason, it is thought that adhesiveness with a powder primer coating film falls.
Therefore, we examined in detail how to prevent performance degradation in powder epoxy resin coating due to high-frequency induction heating in the coating line. As a result, the steel pipe is heated in two or more stages, specifically, the first stage is uniformly heated to 100 to 160 ° C., and then the second stage is heated to 200 to 260 ° C. or more, so that the steel material surface is non-uniform. It has been found that oxidation can be suppressed and coating can be performed at a high temperature without reducing the anti-cathode peeling performance of the powder epoxy resin.
Furthermore, by setting the frequency of high-frequency induction heating to 3000 Hz or less, and more desirably 2000 Hz or less, the penetration depth of the induction current is sufficiently ensured with respect to the roughness, and uneven heating of the convex portion generated by the blasting process is reduced. I can do it.

本発明の加熱方法で製造したポリオレフィン被覆鋼管は、高周波誘導加熱を2段以上で行う事でブラスト表面の酸化状態が不均一とならないことから、粉体エポキシ樹脂をプライマーとして使用した場合に鋼管を200℃以上の高温に加熱することが可能となり、良好な陰極剥離性能が得られる。   The polyolefin-coated steel pipe manufactured by the heating method of the present invention does not become uneven in the blast surface by performing high-frequency induction heating in two or more stages. Therefore, when a powder epoxy resin is used as a primer, It becomes possible to heat to a high temperature of 200 ° C. or higher, and good cathode peeling performance can be obtained.

図1は本発明のポリオレフィン樹脂被覆鋼管の製造方法における誘導加熱装置の配置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of the arrangement of induction heating devices in the method for producing a polyolefin resin-coated steel pipe of the present invention. 図2は一般的なポリオレフィン樹脂被覆鋼管の製造方法における誘導加熱装置の配置の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the arrangement of induction heating devices in a general method for producing a polyolefin resin-coated steel pipe. 図3は本発明の複数段(2段)の加熱と均熱化処理を行った場合の鋼管表面温度曲線のイメージ図。FIG. 3 is an image diagram of a steel pipe surface temperature curve when a plurality of stages (two stages) of heating and soaking of the present invention are performed. 図4は一般的な均熱化時間を有しない単数(1段)加熱処理を行った場合の鋼管表面温度曲線のイメージ図。FIG. 4 is an image diagram of a steel pipe surface temperature curve when a single (one stage) heat treatment without a general soaking time is performed. 図5は高周波誘導加熱の周波数と電流浸透深さの関係を示す例。FIG. 5 shows an example of the relationship between the frequency of high frequency induction heating and the current penetration depth.

以下、本発明のポリオレフィン被覆使用材料について説明を行なう。
本発明の被覆に使用する鋼管に特に制限は無く、普通鋼、あるいは高合金鋼など、ラインパイプに用いられる鋼種に適用可能である。また、サイズ、厚みの制約は設備に起因する。
Hereinafter, the polyolefin coating material of the present invention will be described.
There is no restriction | limiting in particular in the steel pipe used for the coating | cover of this invention, It can apply to the steel types used for a line pipe, such as normal steel or high alloy steel. In addition, restrictions on size and thickness are attributed to equipment.

次に、エポキシ樹脂プライマー層について説明する。粉体エポキシ樹脂塗料はビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を単独、もしくは混合し、更に多官能性のフェノールノボラック型エポキシ樹脂やハロゲン化エポキシ樹脂を組み合わせたものに、フェノール系、アミン系、イミダゾール化合物、ジシアンジアミドといった硬化剤を添加して調整され、更に20〜50重量%の無機顔料が添加されたものを用いる。無機顔料はシリカ、酸化チタン、ウォラストナイト、マイカ、タルク、カオリン、酸化クロム、ホウ酸亜鉛、燐酸亜鉛等の顔料、もしくは亜鉛、Al等の金属粉、あるいはセラミック粉等を適宜用いることができる。粉体エポキシ樹脂塗料は、海外では、JOTUN、Arsonsisi、3M等のメーカーで鋼管被覆用として販売されている銘柄を適宜用いる。国内では日本ペイント株式会社、もしくは関西ペイント株式会社から入手可能で、プライマー層の厚みは150〜600μmが適切である。   Next, the epoxy resin primer layer will be described. Powder epoxy resin paints are bisphenol A type epoxy resin and bisphenol F type epoxy resin, or mixed with polyfunctional phenol novolac type epoxy resin or halogenated epoxy resin. , An imidazole compound, a dicyandiamide, and the like. As the inorganic pigment, a pigment such as silica, titanium oxide, wollastonite, mica, talc, kaolin, chromium oxide, zinc borate, and zinc phosphate, metal powder such as zinc and Al, ceramic powder, and the like can be used as appropriate. . For powder epoxy resin paints, brands sold for steel pipe coating by manufacturers such as JOTUN, Arsonsisi, 3M, etc. are used as appropriate. In Japan, it can be obtained from Nippon Paint Co., Ltd. or Kansai Paint Co., Ltd., and the primer layer is suitably 150 to 600 μm in thickness.

粉体エポキシ樹脂プライマー層を塗装後に、変性ポリオレフィン樹脂接着剤を介してポリオレフィン樹脂被膜を積層する。変性ポリオレフィン樹脂接着剤は、ポリオレフィン樹脂を無水マレイン酸で変性したもの、あるいはポリオレフィンと無水マレイン酸との共重合体、ポリオレフィンとアクリル酸エステルと、無水マレイン酸との共重合体をベースに変性したものを用いることができる。変性ポリオレフィン樹脂接着剤は、粉体あるいはペレットで供給される。ペレットで供給されるポリエチレンに使用する接着剤としては、例えば三井化学社製のNE060,NE065,NE080、BOREALIS社製のBorcoat ME0420、Lyondell Basell社製のLucalen G3710E等が使用できる。ペレットの場合、接着剤押出機を用いて加熱溶融した樹脂を、Tダイスを用いてプライマー塗布後の鋼管外面に被覆する。中小径鋼管では丸ダイスを用いる場合もある。その他の方法としては、変性ポリオレフィン樹脂接着剤を粉砕して粉体化し、この粉体を塗布する方法もある。これらの方法により、0.1〜0.4mmの接着剤層を形成する。   After coating the powder epoxy resin primer layer, a polyolefin resin film is laminated through a modified polyolefin resin adhesive. The modified polyolefin resin adhesive is modified based on a polyolefin resin modified with maleic anhydride, or a copolymer of polyolefin and maleic anhydride, a copolymer of polyolefin, acrylic acid ester and maleic anhydride. Things can be used. The modified polyolefin resin adhesive is supplied as powder or pellets. Examples of the adhesive used for polyethylene supplied in pellets include NE060, NE065, NE080 manufactured by Mitsui Chemicals, Borcoat ME0420 manufactured by BOREALIS, Lucalen G3710E manufactured by Lyondell Basell, and the like. In the case of pellets, the outer surface of the steel pipe after primer application is coated with a resin that has been heated and melted using an adhesive extruder using a T die. For small and medium diameter steel pipes, round dies may be used. As another method, there is a method in which the modified polyolefin resin adhesive is pulverized and powdered, and this powder is applied. By these methods, an adhesive layer of 0.1 to 0.4 mm is formed.

変性ポリオレフィン接着剤層の上に被覆するポリオレフィン樹脂は、鋼管被覆用として市販されているものを使用することができる。代表的なポリオレフィンはポリエチレンであり、その他には高温用にポリプロピレンが用いられる。ポリエチレン樹脂としては鋼管被覆用に用いられる銘柄を使用することができる。例えば、国内では日本ポリエチレン社製のNOVATEC ER002S、海外では BOREALIS社製のBorcoat HE3450、Lyondell Basell社製のLupolen 4552Dなどの、鋼管被覆に要求される長期耐久性を有し、カーボンブラックを添加したものが使用可能である。   As the polyolefin resin to be coated on the modified polyolefin adhesive layer, those commercially available for coating a steel pipe can be used. A typical polyolefin is polyethylene, and in addition, polypropylene is used for high temperatures. As the polyethylene resin, a brand used for coating a steel pipe can be used. For example, NOVATEC ER002S manufactured by Japan Polyethylene Co., Ltd., Borcoat HE3450 manufactured by BOREALIS Co., Ltd. Can be used.

ポリプロピレン樹脂としては一般的にはホモポリマーよりも低温特性に優れる共重合体が使用され、耐熱性と耐候性対策として、着色顔料、充填強化剤、酸化防止剤、紫外線吸収剤、ヒンダードアミン系の耐候剤等が添加されたもので、低温靭性と高温使用での耐酸化劣化性を兼ね備えたものであることが好ましい。ポリプロピレン樹脂の着色顔料としてカーボンブラックを用いると、高温で酸化防止剤の効果が消失するため、高性能の被覆鋼管品では用いられない。このため、着色顔料の色としては白色が一般的である。ポリプロピレン樹脂は、例えば国内では日本ポリプロピレンのTX1843B、海外ではBOREALIS社製のBorcoat BB108E-1199、LyondellBasell社製のMoplen Coat EP60R/BIANCOといった鋼管被覆用の樹脂が使用出来る。   Polypropylene resins generally use copolymers with better low-temperature properties than homopolymers, and include color pigments, filling enhancers, antioxidants, UV absorbers, and hindered amine-based weather resistance as measures against heat resistance and weather resistance. It is preferable that an agent or the like is added, and has both low temperature toughness and oxidation deterioration resistance at high temperature use. When carbon black is used as the color pigment of polypropylene resin, the effect of the antioxidant disappears at high temperatures, and therefore it cannot be used in high performance coated steel pipe products. For this reason, the color of the color pigment is generally white. As the polypropylene resin, for example, TX1843B of Japanese polypropylene in Japan, Borcoat BB108E-1199 manufactured by BOREALIS, and Moplen Coat EP60R / BIANCO manufactured by LyondellBasell can be used overseas.

ポリオレフィン樹脂被覆層は取り扱い時の疵発生を抑制するため、2mm以上被覆する。ポリオレフィン樹脂被覆層は厚い程、耐疵性と防食性に優れるが、厚膜になると内部応力が大きくなるため6mm以下が望ましい。   The polyolefin resin coating layer covers 2 mm or more in order to suppress wrinkling during handling. The thicker the polyolefin resin coating layer is, the better the weather resistance and anticorrosion properties are.

以下に本発明のポリオレフィン被覆鋼管の製造方法を説明する。
鋼管は油付着を事前に除去した後に、鋼管表面の錆や汚れを除去して接着に必要な粗度を確保するためにブラスト処理を行う。ブラスト処理に用いる研掃材としては、一般的には鋼製ショット粒及びグリッド粒を用いる。更に清浄な表面が要求される場合には、アルミナ等のセラミック素材を用いても良い。ブラスト処理後の表面に、鉄粉等の汚れが付着している場合、ブラシ、吸引、液体による洗浄等の処理を行うことができる。洗浄には酸性の洗浄剤を用いる方法が有効で、反応性を高めるために30〜80℃に鋼材を加熱して使用する。洗浄剤の酸としてはリン酸系が良く、例えばChemetall社のOakite31、32、33、131が使用出来る。洗浄後には水洗と乾燥を行う。更にクロメートやその他の化成処理を行っても本発明の効果を減じるものでは無い。ただし、本発明の加熱方式の効果は鋼材表面に洗浄剤や化成処理による保護膜が形成された場合には小さくなる。
The method for producing a polyolefin-coated steel pipe according to the present invention will be described below.
The steel pipe is blasted in order to remove the rust and dirt on the surface of the steel pipe and secure the roughness required for bonding after removing the oil adhesion in advance. In general, steel shot grains and grid grains are used as the abrasive for blasting. Further, when a clean surface is required, a ceramic material such as alumina may be used. When dirt such as iron powder adheres to the surface after the blast treatment, treatments such as brushing, suction, and washing with liquid can be performed. For cleaning, a method using an acidic cleaning agent is effective, and the steel material is heated to 30 to 80 ° C. to increase the reactivity. As the acid of the cleaning agent, phosphoric acid is preferable, and for example, Oakite 31, 32, 33, 131 of Chemetall can be used. After washing, wash with water and dry. Further, even if chromate or other chemical conversion treatment is performed, the effect of the present invention is not reduced. However, the effect of the heating method of the present invention is reduced when a protective film is formed on the steel surface by a cleaning agent or chemical conversion treatment.

次いで本発明による高周波誘導加熱による塗装前の鋼管の加熱方法を示す。本発明では前述のブラスト処理による50μm程度の微細な凹凸がある鋼管を高周波誘導加熱によって200℃以上の高温加熱を行う場合にも、鋼材表面の不均一な酸化を防止し耐陰極剥離性能の低下を抑制することが出来る。
ブラスト時の鋼材表面は清浄な面であるが、すぐに薄い酸化物や分子レベルの付着水で覆われる。この初期段階の酸化物層の厚みは5nm程度であることがX線光電子分光分析(XPS/ESCA)で観察される。一方、高周波誘導加熱では瞬間的に鋼管表面のみが高温に加熱される。特にブラスト処理した鋼管では粗度があることもあって、特に凸部や鋼管と接触面積が少ないへげ部分が瞬間的に高温になるために、付着水による表層酸化が激しく生じる。従って、通常の1段加熱で急激に鋼材表面を加熱すると、表面が不均一な状態で酸化膜が急激に成長して鋼材表面は数10nmに及ぶ厚い鉄酸化層の被膜に覆われ、塗料の濡れ性や密着性が大きく減少する。これに対して、事前に低温加熱を行って結晶水を除去し、比較的緩やかな酸化条件で鋼材表面に予め薄い10nm以下の酸化被膜を均一に形成させておくと、その後、酸化の激しくなる高温まで加熱を行っても酸化物の急激な成長が抑制されることから、接着阻害の影響が小さくなる。
Next, a method for heating a steel pipe before painting by high frequency induction heating according to the present invention will be described. In the present invention, even when a steel pipe having fine irregularities of about 50 μm by the blast treatment described above is heated at a high temperature of 200 ° C. or higher by high frequency induction heating, uneven oxidation of the steel surface is prevented and the cathode peeling resistance is deteriorated. Can be suppressed.
The surface of steel during blasting is a clean surface, but it is immediately covered with thin oxides and molecular water. It is observed by X-ray photoelectron spectroscopy (XPS / ESCA) that the thickness of the oxide layer at this initial stage is about 5 nm. On the other hand, in high frequency induction heating, only the steel pipe surface is instantaneously heated to a high temperature. In particular, the blasted steel pipe may have roughness, and particularly the convex portion and the bald portion having a small contact area with the steel pipe instantaneously become a high temperature, so that surface layer oxidation due to adhering water occurs violently. Therefore, when the steel material surface is heated suddenly by normal one-step heating, the oxide film grows rapidly with the surface being non-uniform, and the steel material surface is covered with a thick iron oxide layer coating of several tens of nanometers. The wettability and adhesion are greatly reduced. On the other hand, if low-temperature heating is performed in advance to remove crystal water and a thin oxide film of 10 nm or less is uniformly formed on the steel surface in advance under relatively mild oxidation conditions, then the oxidation becomes intense. Even when heated to a high temperature, the rapid growth of the oxide is suppressed, so the influence of adhesion inhibition is reduced.

このことから、初めの加熱工程では鋼材表面の付着水除去と薄い均一酸化膜形成を目的とした加熱を行う。この時、鋼材均熱時の温度を100〜160℃の範囲で調整すると、付着水除去と鋼材酸化のバランスが良く、10〜20nm程度の均一な保護酸化膜が形成出来る。その後に、次の加熱工程で均熱化後に粉体プライマーが性能を発揮する200℃以上となる加熱を行う方法を提案するものである。本発明の基本的な方法は2段加熱であるが、本発明の骨子として一度薄い酸化膜を形成する100〜160℃に加熱する工程が含まれていれば、その後の加熱工程を分割して多段の工程としても問題無い。   For this reason, in the first heating step, heating is performed for the purpose of removing adhering water from the steel material surface and forming a thin uniform oxide film. At this time, if the temperature at the time of soaking of the steel material is adjusted in the range of 100 to 160 ° C., the balance between the removal of adhering water and the oxidation of the steel material is good, and a uniform protective oxide film of about 10 to 20 nm can be formed. Thereafter, a method is proposed in which heating is performed at 200 ° C. or higher at which the powder primer exhibits performance after soaking in the next heating step. Although the basic method of the present invention is two-stage heating, if the process of heating to 100 to 160 ° C. once forming a thin oxide film is included as the essence of the present invention, the subsequent heating process is divided. There is no problem as a multistage process.

前述の高周波誘導加熱における周波数は3000Hz以下、更に望ましくは2000Hz以下とする。高周波誘導加熱による渦電流は鋼材の表面に近いほど大きく、内部にゆくにつれて指数関数的に小さくなることが知られている。いわゆる表皮効果である。渦電流が表面における電流密度の0.368倍に減少した点での表面からの深さを電流の浸透深さσと呼び、以下の(式1)が成立することが知られている。
σ(cm)= 5.03×103×√(ρ/μf) ・・・・・・・(式1)
ρ(μΩ・cm):電気抵抗率
μ :比透磁率
f(Hz) :周波数
周波数の影響を例えばρを常温の鋼材の値として20μΩ・cm、炭素鋼の比透磁率を1000として計算した例を図5に示す。但し、実際の加熱では温度によりρは大きくなる。
The frequency in the above-mentioned high frequency induction heating is set to 3000 Hz or less, more preferably 2000 Hz or less. It is known that the eddy current due to high frequency induction heating increases as it approaches the surface of the steel material, and decreases exponentially as it goes inside. This is the so-called skin effect. The depth from the surface at the point where the eddy current has decreased to 0.368 times the current density at the surface is called the current penetration depth σ, and it is known that the following (Equation 1) holds.
σ (cm) = 5.03 × 10 3 × √ (ρ / μf) (1)
ρ (μΩ · cm): Electric resistivity
μ: relative magnetic permeability f (Hz): FIG. 5 shows an example in which the influence of frequency and frequency is calculated, for example, ρ is 20 μΩ · cm with a steel material at room temperature, and the relative magnetic permeability of carbon steel is 1000. However, in actual heating, ρ increases with temperature.

図5の例からも明らかなように高周波加熱では例えば周波数が10000Hzでは浸透深さσは70μmと非常に薄い領域のみが加熱される。このため、塗装鋼管の様にブラスト処理で鋼材に50μm以上の凹凸がある場合、表層のみ加熱される影響が更に大きくなる。従って、電流浸透深さσは粗度に対して十分に大きくする必要がある。そこで、本発明では粗度の影響を除外するために用いる周波数は3000Hz以下とした。3000Hzでのσの計算値は130μmで粗度の2倍以上の値となる。その一方で周波数が低すぎると、高周波加熱の効率が低下することから200Hz以上が実用的である。   As is clear from the example of FIG. 5, in high frequency heating, for example, at a frequency of 10,000 Hz, only a very thin region with a penetration depth σ of 70 μm is heated. For this reason, when the steel material has unevenness of 50 μm or more by blasting like a painted steel pipe, the influence of heating only the surface layer is further increased. Therefore, the current penetration depth σ needs to be sufficiently large with respect to the roughness. Therefore, in the present invention, the frequency used to exclude the influence of roughness is set to 3000 Hz or less. The calculated value of σ at 3000 Hz is 130 μm, which is more than twice the roughness. On the other hand, if the frequency is too low, the efficiency of high-frequency heating is reduced, so 200 Hz or more is practical.

本発明におけるポリオレフィン被覆鋼管の加熱〜冷却までの工程概念図を図1に示す。また、本工程で得られる鋼管表面の想定温度曲線を図3に示す。図1における鋼管1の被覆工程で、第1段階の誘導加熱用コイル2を用いて鋼管を100〜160℃に均一加熱し、第2段階の誘導加熱用コイル3を用いて鋼管を200〜260℃に均一加熱する。この後、粉体エポキシ樹脂を粉体エポキシ樹脂プライマーの塗装装置4を用いて塗装した後、接着剤ペレット樹脂を押出機とTダイスからなる接着剤塗布装置5によりフィルム状にして巻き付ける。更に同様にポリオレフィン樹脂ペレットを押出機とTダイスからなるポリオレフィン樹脂塗布装置6によって巻き付け、その後水冷ゾーン7で水冷して本発明のポリオレフィン樹脂被覆鋼管を製造する。   FIG. 1 shows a process conceptual diagram from heating to cooling of a polyolefin-coated steel pipe in the present invention. Moreover, the assumed temperature curve of the steel pipe surface obtained by this process is shown in FIG. In the covering process of the steel pipe 1 in FIG. 1, the steel pipe is uniformly heated to 100 to 160 ° C. using the first stage induction heating coil 2, and the steel pipe is 200 to 260 using the second stage induction heating coil 3. Heat uniformly to ° C. Thereafter, the powder epoxy resin is coated using the powder epoxy resin primer coating device 4, and then the adhesive pellet resin is wound into a film by an adhesive coating device 5 including an extruder and a T die. Further, similarly, the polyolefin resin pellets are wound by a polyolefin resin coating device 6 comprising an extruder and a T die, and then water cooled in a water cooling zone 7 to produce the polyolefin resin coated steel pipe of the present invention.

比較として通常のポリオレフィン被覆鋼管の加熱〜冷却までの工程概念図を図2に示す。また、本工程で得られる鋼管表面の想定温度曲線を図4に示す。図2における鋼管1の被覆工程で、誘導加熱用コイル8を用いて鋼管を200〜260℃に均一加熱する。この後、粉体エポキシ樹脂を粉体エポキシ樹脂プライマーの塗装装置4を用いて塗装した後、接着剤塗布装置5によってフィルム状にして巻き付ける。更に同様にポリオレフィン樹脂塗布装置6によって巻き付け、その後水冷ゾーン7で水冷して一般的なポリオレフィン樹脂被覆鋼管を製造するが、この場合は、ブラストによる微細な凹凸がある鋼管を高周波誘導加熱によって急速に200℃以上の高温加熱を行うため、紛体プライマーの性能を十分に発揮できず、耐陰極剥離性能に劣る被覆となる。   As a comparison, FIG. 2 shows a process conceptual diagram from heating to cooling of a normal polyolefin-coated steel pipe. Moreover, the assumed temperature curve of the steel pipe surface obtained by this process is shown in FIG. In the coating process of the steel pipe 1 in FIG. 2, the steel pipe is uniformly heated to 200 to 260 ° C. using the induction heating coil 8. Thereafter, the powder epoxy resin is coated using the powder epoxy resin primer coating device 4, and then wound into a film by the adhesive application device 5. Similarly, a general polyolefin resin-coated steel pipe is manufactured by winding with a polyolefin resin coating device 6 and then water-cooling in a water-cooling zone 7. In this case, a steel pipe having fine irregularities due to blasting is rapidly produced by high-frequency induction heating. Since the high-temperature heating at 200 ° C. or higher is performed, the performance of the powder primer cannot be sufficiently exhibited, and the coating is inferior in the resistance to cathodic peeling.

〔実施例及び比較例の製造方法〕
以下、本発明のポリオレフィンとしてポリエチレンを使用し、所定の誘導加熱を行った場合の実施例及び比較例の製造方法を示す。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−100番のグリッドブラスト処理を行って除錆したものを用意した。その後、鋼管の表面洗浄処理液にOAKITE31を用いて汚れや鉄粉等を除去し、残った液を水洗した後にエアブロー乾燥した。
次いで被覆ラインの誘導加熱装置として200KWの誘導加熱用コイル2と100KWの誘導加熱用コイル3を搬送ライン内に並べた。誘導加熱用コイル2の出端と誘導加熱用コイル3の入端の距離を本発明の実施例1〜8及び比較例1〜5では1.0mとなるように調整し、鋼管のライン搬送速度は1.5m/分として30秒以上の間欠加熱となるようにした。一方、比較例6〜8では本発明とは異なる1段加熱を行うため、2つのコイル間の距離を0とした。
2つのコイルの周波数として、本発明の範囲として実施例1〜6では2000Hz、実施例7では200Hz、実施例8では3000Hzを用いた。また比較例4〜5では本発明の誘導加熱周波数とは異なる5000Hz,10000Hzで加熱を実施した。
[Production Methods of Examples and Comparative Examples]
Hereinafter, the manufacturing method of an Example and a comparative example at the time of performing predetermined induction heating using polyethylene as polyolefin of this invention is shown.
As the steel pipe, a 5.5A length of 200A JIS G3452 piping carbon steel pipe was used. The outer surface of the steel pipe was subjected to TGD-100 grid blasting made by IKK to remove the rust. Thereafter, dirt and iron powder were removed using OAKITE 31 as the surface cleaning treatment liquid for the steel pipe, and the remaining liquid was washed with water and then air blow dried.
Next, a 200 KW induction heating coil 2 and a 100 KW induction heating coil 3 were arranged in the transport line as an induction heating device for the coating line. The distance between the leading end of the induction heating coil 2 and the leading end of the induction heating coil 3 is adjusted to 1.0 m in Examples 1 to 8 and Comparative Examples 1 to 5 of the present invention, and the line conveying speed of the steel pipe Was set to 1.5 m / min for intermittent heating for 30 seconds or more. On the other hand, in Comparative Examples 6-8, since the one-step heating different from this invention is performed, the distance between two coils was set to 0.
As frequencies of the two coils, 2000 Hz was used in Examples 1 to 6, 200 Hz in Example 7, and 3000 Hz in Example 8 as the scope of the present invention. In Comparative Examples 4 to 5, heating was performed at 5000 Hz and 10000 Hz, which are different from the induction heating frequency of the present invention.

2つの誘導加熱用コイル2と誘導加熱用コイル3は出力を制御して温度調整を行った。本発明の実施例では誘導加熱用コイル2の加熱後の均一化温度を100〜160℃に調整し、誘導加熱用コイル3で加熱後の温度が200〜260℃となる場合を実施例とした。比較例1は誘導加熱用コイル3の加熱温度が不足して粉体の溶融〜硬化が不十分となる場合とした。比較例2は誘導加熱用コイル2での加熱温度が100℃以下のため付着水の除去が不十分となる場合とした、比較例3は誘導加熱用コイル2での加熱温度が高すぎる場合とした。比較例4及び5は誘導加熱の周波数が高く、本発明の範囲から外れる場合である。比較例6〜8は誘導加熱用コイル2と誘導加熱用コイル3の距離をゼロとし、加熱間欠処理を設けない場合である。   The two induction heating coils 2 and the induction heating coil 3 were temperature controlled by controlling the outputs. In the embodiment of the present invention, the uniform temperature after heating of the induction heating coil 2 is adjusted to 100 to 160 ° C., and the temperature after heating with the induction heating coil 3 is 200 to 260 ° C. . In Comparative Example 1, the heating temperature of the induction heating coil 3 was insufficient and the powder was not sufficiently melted and cured. In Comparative Example 2, the heating temperature in the induction heating coil 2 is 100 ° C. or less, and the removal of adhering water is insufficient. In Comparative Example 3, the heating temperature in the induction heating coil 2 is too high. did. Comparative Examples 4 and 5 are cases where the frequency of induction heating is high and deviates from the scope of the present invention. Comparative Examples 6 to 8 are cases in which the distance between the induction heating coil 2 and the induction heating coil 3 is zero, and no intermittent heating treatment is provided.

上記の加熱を行った鋼管に粉体エポキシ樹脂プライマー(3M社製226N 8G)を200μm狙いで静電粉体塗装を実施した後にポリエチレン接着剤としてLyondell Basell社製のLucalen G3710Eのペレットを押出機とTダイスを用いてシート状の半溶融状態成形して巻き付け被覆を行った。次いで、ポリエチレン被覆にはLyondell Basell社製のLupolen 4552Dのペレットを押出機とTダイスを用いてシート状の半溶融状態成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリエチレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリオレフィン樹脂被覆鋼管を製造した。   The powdered epoxy resin primer (226N 8G manufactured by 3M) is applied to the heated steel pipe with the aim of 200 μm, and then pellets of Lucalen G3710E manufactured by Lyondell Basell are used as the polyethylene adhesive. Using a T-die, a sheet-like semi-molten state was formed and wound and coated. The polyethylene coating was then coated by wrapping a Lupolen 4552D pellet made by Lyondell Basell into a sheet-like semi-molten state using an extruder and a T-die. The adhesive film thickness was adjusted to 0.2 mm, and the polyethylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polyolefin resin-coated steel pipe.

〔陰極剥離試験〕
製造したポリオレフィン被覆鋼管を長さ方向に150mm、円周方向に8分割して試験片を作製した。作製した1水準に対して3個の試験片をISO 21809のAnnex H に示される方法で試験片中央の被覆にドリルで穴を開けた後に試験用セルを立て、内部に3%食塩水電解液を満たした後に全体を80℃のオーブンに入れて温度を制御し、銀塩化銀電極に対して−1.45Vの陰極防食を鋼材露出部に施した。試験を28日行った後にポリオレフィン被覆を除去し、穴を中心として8方向にカッターでプライマーに切り込みを入れ、プライマーを疵穴部からはつって容易に剥離する陰極剥離部分を露出させた。剥離直径を4方向で測定して平均し、初期穴からの剥離距離を算出した値で15mm以下を合格とした。
[Cathode peeling test]
The manufactured polyolefin-coated steel pipe was 150 mm in the length direction and divided into 8 in the circumferential direction to prepare test pieces. After drilling a hole in the coating at the center of the test piece according to the method shown in Annex H of ISO 21809, a test cell is set up with 3% of the prepared standard and 3% saline electrolyte inside After satisfying the above, the whole was placed in an oven at 80 ° C. to control the temperature, and the steel material exposed portion was subjected to cathodic protection of −1.45 V against the silver-silver chloride electrode. After the test was conducted for 28 days, the polyolefin coating was removed, the primer was cut with a cutter in 8 directions centered on the hole, and the cathode peeled portion that was easily peeled by exposing the primer from the pothole portion was exposed. The peel diameter was measured in four directions and averaged, and the value obtained by calculating the peel distance from the initial hole was determined to be 15 mm or less.

実施例での試験結果を表1、比較例の試験結果を表2に示す。
同一被覆材料を用いた場合、陰極剥離距離は鋼材の下地処理とプライマーの加熱温度、膜厚で決定される。今回の試験ではこれらの因子を揃えても、1段加熱の比較例7に対して、2段加熱の実施例1及び実施例4〜6では陰極剥離試験性能が向上した。また、一段目の加熱温度を変えた場合に実施例4〜6の100〜160℃が良好で、本発明の温度範囲から外れる比較例2及び3では陰極剥離が大きくなることがわかる。また、比較例4及び5の様に周波数が高く、誘導電流浸透深さが浅い場合には粗度の影響が大きくなって規格性能を満足することが出来ない。
Table 1 shows the test results in Examples, and Table 2 shows the test results in Comparative Examples.
When the same coating material is used, the cathode peeling distance is determined by the base treatment of the steel material, the heating temperature of the primer, and the film thickness. In this test, even when these factors were prepared, the performance of cathode peeling test was improved in Example 1 and Examples 4 to 6 of the two-stage heating as compared with Comparative Example 7 of the one-stage heating. Moreover, when the heating temperature of the 1st step | paragraph is changed, 100-160 degreeC of Examples 4-6 is favorable, and it turns out that cathode peeling becomes large in the comparative examples 2 and 3 which remove | deviate from the temperature range of this invention. Further, when the frequency is high and the induced current penetration depth is shallow as in Comparative Examples 4 and 5, the influence of roughness becomes large and the standard performance cannot be satisfied.

以上の表1及び表2の結果からも明らかなように、本発明の誘導加熱を2段以上の間欠で行う方法で、かつ加熱温度域を調整することで、鋼材の高周波誘導加熱における悪影響を減じることが出来ることから、要求される陰極剥離に対して高い性能を有するポリオレフィン被覆鋼管を製造することが可能である。   As is clear from the results of Table 1 and Table 2 above, the method of performing the induction heating of the present invention intermittently in two or more stages and adjusting the heating temperature range can adversely affect the high frequency induction heating of the steel material. Since it can be reduced, it is possible to produce a polyolefin-coated steel tube having high performance against the required cathode peeling.

1 鋼管
2 誘導加熱用コイル
3 誘導加熱用コイル
4 粉体エポキシ樹脂プライマーの塗装装置
5 接着剤塗布装置
6 ポリオレフィン塗布装置
7 水冷
8 一般的な誘導加熱用コイル
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Induction heating coil 3 Induction heating coil 4 Powder epoxy resin primer coating device 5 Adhesive coating device 6 Polyolefin coating device 7 Water cooling 8 General induction heating coil

Claims (1)

鋼管にポリオレフィンを被覆するために被覆前に鋼管を誘導加熱する際、誘導加熱を2段以上の間欠で行い、1段目の加熱温度が100〜160℃、2段目以降の加熱温度が200〜260℃であって、誘導加熱の周波数が3000Hz以下であることを特徴とするポリオレフィン被覆鋼管の誘導加熱方法。   When the steel pipe is induction-heated before coating to coat the polyolefin with the steel pipe, induction heating is intermittently performed in two or more stages, the first stage heating temperature is 100 to 160 ° C., and the second and subsequent stage heating temperatures are 200. A method for induction heating of a polyolefin-coated steel pipe, which is -260 ° C and the frequency of induction heating is 3000 Hz or less.
JP2016130314A 2016-06-30 2016-06-30 Induction heating method for polyolefin coated steel pipe Active JP6692233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016130314A JP6692233B2 (en) 2016-06-30 2016-06-30 Induction heating method for polyolefin coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130314A JP6692233B2 (en) 2016-06-30 2016-06-30 Induction heating method for polyolefin coated steel pipe

Publications (2)

Publication Number Publication Date
JP2018001547A true JP2018001547A (en) 2018-01-11
JP6692233B2 JP6692233B2 (en) 2020-05-13

Family

ID=60947121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130314A Active JP6692233B2 (en) 2016-06-30 2016-06-30 Induction heating method for polyolefin coated steel pipe

Country Status (1)

Country Link
JP (1) JP6692233B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063759A (en) * 2018-10-16 2020-04-23 Jfeスチール株式会社 Manufacturing method of inner surface-coated steel pipe
CN115071018A (en) * 2022-05-18 2022-09-20 安徽杰蓝特新材料有限公司 Automatic change carat pipe production facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063759A (en) * 2018-10-16 2020-04-23 Jfeスチール株式会社 Manufacturing method of inner surface-coated steel pipe
CN115071018A (en) * 2022-05-18 2022-09-20 安徽杰蓝特新材料有限公司 Automatic change carat pipe production facility
CN115071018B (en) * 2022-05-18 2023-12-26 安徽杰蓝特新材料有限公司 Automatic change cla pipe production facility

Also Published As

Publication number Publication date
JP6692233B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
KR101494721B1 (en) Method for manufacturing of coating steel pipe including grit blasting process and coating steel pipe manufactured by the same
JP2018001547A (en) Induction heating method for polyolefin-coated steel pipe
CN109174593A (en) A kind of spraying method improving plastic-coated steel antiseptic property
CN106510476B (en) Cookware
JP2018176053A (en) Method for producing polyolefin resin-coated steel pipe
JP5233493B2 (en) Manufacturing method of inner surface coated steel pipe
JP7285667B2 (en) Method for manufacturing cast-iron pipe and method for preventing surface corrosion of cast-iron pipe
JP6803799B2 (en) Manufacturing method of coated steel pipe
KR102025710B1 (en) Method for manufacturing hot dip aluminum plated steel sheet
JP2020032366A (en) Powder coating method of powder epoxy resin coating, and manufacturing method of powder coated steel pipe
JP6863356B2 (en) Manufacturing method of inner coated steel pipe
JP2020151702A (en) Method for manufacturing metal pipe
JP6871794B2 (en) Manufacturing method of anticorrosion coated metal tube
JP2988302B2 (en) Polyolefin-coated steel pipe and method for producing the same
JP2019055540A (en) Method of producing polyolefin resin coated steel pipe having weld bead
JP6583012B2 (en) Polyolefin-coated steel pipe and method for producing the same
JP2008229428A (en) Manufacturing method of plated steel sheet excellent in corrosion resistance and coating material adhesion
JP4501394B2 (en) Manufacturing method of resin-coated steel pipe with excellent corrosion resistance
JP6766404B2 (en) 4-layer polyolefin resin coated steel pipe
CN109513586A (en) A kind of electrostatic coating method of plastic-coated steel
JP2015214349A (en) Inner surface-coated metal drum and method of manufacturing the same
JP2013036250A (en) Open-close structure for manhole with anticorrosion film formed, and anticorrosion film formation method
JP2007268796A (en) Inner surface coated steel pipe for water piping
JP2018161857A (en) Manufacturing method of inner surface coated steel tube
JP4321262B2 (en) Production method of primer-coated resin-coated steel pipe with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250