JPS628448B2 - - Google Patents
Info
- Publication number
- JPS628448B2 JPS628448B2 JP57107400A JP10740082A JPS628448B2 JP S628448 B2 JPS628448 B2 JP S628448B2 JP 57107400 A JP57107400 A JP 57107400A JP 10740082 A JP10740082 A JP 10740082A JP S628448 B2 JPS628448 B2 JP S628448B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- corona discharge
- electrode
- hood
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 48
- 208000028659 discharge Diseases 0.000 claims description 23
- 238000003851 corona treatment Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 12
- 239000004033 plastic Substances 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 17
- 239000012298 atmosphere Substances 0.000 description 16
- 239000011261 inert gas Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000010137 moulding (plastic) Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/10—Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
- B29C59/12—Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment in an environment other than air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Description
本発明は、コロナ放電処理効果を実生産レベル
において十分満足し得る程度迄改善向上させる方
法に関するものである。
プラスチツク成形物の放電処理は古くから行な
われている技術であり、特にポリエチレンフイル
ムやポリプロピレンフイルム等のプラスチツクフ
イルム(シートを含む、以下同様)の表面改質に
は欠くことのできない技術となつている。又後述
する種々のプラスチツク成形物についても、品質
改善の為の有用な手段と考えられており、今後益
益適用範囲が拡大していくものと期待されてい
る。しかしその為にはコロナ放電処理による処理
効率自体を向上し、その可能性を探求する必要が
ありこれ迄にも広範囲に亘る改善研究が展開され
ているが、未だ十分とは言えない。
例えば特公昭48−17747には、有機溶剤を放電
部に供給することによつて放電面における化学変
化を促進する技術が記載されているが、プラスチ
ツク成形物中への残留溶剤が問題とされる現今の
状況にはそぐわない。又JOURNAL OF
APPLIED POLYMER SCIENCE Vol 15PP1365
〜1375(1971)には、不活性ガス雰囲気下でコロ
ナ放電処理を行なうことが記載され、プラスチツ
ク成形物の表面に対する活性化又は劣化等の影響
が示唆されるに及び大気雰囲気を例えば低酸素雰
囲気に置き換えてコロナ放電処理を行なう技術も
提案される様になつたが、従来の方法、例えば特
公昭56−18381号の方法では、大量の不活性ガス
が必要になつてコスト高を招くという問題があ
り、又特開昭57−23634号の方法(走行フイルム
に対する不活性雰囲気下のコロナ放電技術)で
は、フイルムに随伴して巻込まれる大気を遮断す
る為に特殊なシールド構造が要求されて装置まわ
りが複雑になるが、それでも不活性ガスの送給量
は不必要に多くなり、なおかつ完全もしくは略完
全な不活性雰囲気は形成されず、低処理レベルに
甘んじなければならなかつた。その為、フイルム
を例にとつて説明すれば、高速処理ができない為
に生産性が著じるしく低下するという欠点があ
り、他方低速処理にして処理効果を高めようとす
れば表面損傷による外観不良が発生したりブロツ
キングの増大を招く等の欠陥が現われ、実生産の
レベルにおいては全く不満足なものと言う他な
い。
本発明はこの様な状況に着目してなされたもの
であつて、特殊且つ大がかりな装置が要求されず
又シールド用に大量のガスを消費しなくとも良い
様な技術の開発をめざし鋭意研究の結果完成され
たものである。しかして本発明に係るコロナ放電
処理方法とは、少なくとも1対の電極が対向配置
されると共に放電側電極がフードによつて囲繞さ
れてなるコロナ放電処理装置は、プラスチツク成
形物を連続的に搬入してコロナ放電処理を行なう
に当り、前記フード内に空気又は酸素以外のガス
体を導入する一方、該ガス体を放電側電極の側面
又は底面から前記フード外へ積極的に排出しなが
らコロナ放電処理を行なう点に要旨を有するもの
である。
本発明方法が適用されるプラスチツク成形物と
しては、上述のフイルムやシートの他に繊維、パ
イプ、テープ、織物、不織布等の長尺物が挙げら
れ、これら長尺物をコロナ放電処理装置に対して
長手方向に搬入し且つ通過させてコロナ放電処理
を行なう場合に本発明を適用すれば、その効果は
もつとも劇的に発揮されるが、その他の成形物で
あつても、一定の速度で移行させながらコロナ放
電処理を加えるものであれば、本発明を適用する
ことによつて多大の技術的効果を得ることができ
る。又該成形物を構成するポリマーとしては、ポ
リアミド、線状ポリエステル、ポリオレフイン、
ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビ
ニリデン、ポリアクリロニトリル、ポリスチレ
ン、ポリビニルアルコール等の熱可塑性樹脂;フ
エノール樹脂、尿素樹脂、メラミン樹脂、不飽和
ポリエステル樹脂、フラン樹脂等の熱硬化性樹脂
が用いられる。尚これらの樹脂を用いてなる成形
物中には、安定剤、滑剤、耐ブロツキング剤、防
曇剤、紫外線吸収剤、難燃剤、透明化剤、酸化防
止剤、耐光剤、帯電防止剤、染料、顔料等の添加
剤が含有されていても良く、コロナ放電の実施に
悪影響を及ぼさない素材は単独及び複合の如何を
問わず全て本発明の対象として含まれる。
以下実施例図面に準拠しつつ本発明の構成及び
作用効果を明らかにしていくが、図面に示す放電
側電極の構造や配列、更にフードの形状等は代表
例であるに過ぎず、又図面ではプラスチツクフイ
ルムへの適用例を示したに過ぎないから、これら
の説明の趣旨に反しないという条件の下で設計を
変更することは本発明の技術的範囲に含まれる。
第1図は本発明の実施概念を示す要部断面図、
第2図は放電側電極の見取図であつて、図中の1
は金属ドラム、2は電極フード、3は放電側電
極、4はガス排出管、5はガス吸入口、6は走行
フイルムを示す。即ちフイルム6は矢印A方向に
回転する金属ドラム1に対して矢印B方向から導
入され、更に矢印C方向へ引出されて行くが、図
示しない高電圧発生機に接続されている放電側電
極3と、ポリエステル、エポキシ樹脂、セラミツ
ク、クロルスルホン化ポリエチレン、EPラバー
等でカバーされた金属ドラム1との間に数百
KC/Sの高周波で数千ないし数万Vの高電圧を
かけることによつて発生する高圧コロナの影響を
受け、例えば自然の大気中であればオゾンや酸化
窒素が生成してフイルム6の表面にカルボニル基
やカルボキシル基を生ぜしめることにより表面が
極性化される。しかし本図例においてコロナ放電
の雰囲気全体を電極フード2によつて大気から遮
断すると共に、電極フード2上部に設けた開口部
7から不活性ガスをフード2内に導入して無酸素
雰囲気とし、更に放電側電極3にガス吸入口5を
設け前記雰囲気ガスを該吸入口5からフード外へ
積極的に排出する様に構成しているので、不活性
ガスの種類に応じた種々の効果(たとえばN2ガ
スであれば窒素含有基の形成による酸素遮断性の
向上、CO2ガスであればコロナ放電効率の改善に
よる接着性の一層の向上等)を得ることができ
る。尚図示した放電側電極3は、その概念を第2
図に示す如く、放電面側に向けて開口するガス吸
入口5が、該電極3の長手方向(被処理フイルム
の幅方向)に沿つてスリツト状に形成され、且つ
該スリツト底部には適当間隔を置いてガス排出管
が連通されており、更に該ガス排出管5の末端は
ガス吸引ポンプ(図示せず)に連絡されている。
尚スリツトの長手方向両端(図の手前側及び向う
側、但し向う側は図に現われていない)には、該
端面からのガス吸引を防止する目的で適当な蓋板
を取付けることもある。
ところで矢印B方向に沿つて相当の高速度で進
入してくるフイルム6の表面には、若干ながら随
伴空気層が形成されており、従来の様に単にフー
ド内を不活性ガス雰囲気としただけでは、フイル
ム6の表面自体は相変らず空気雰囲気を保持した
ままになつており本発明で得られる様な効果を享
受することはできない。
しかるに上記構成を採ることによつて、第3図
に示す様に放電側電極3のフイルム進入側におい
ては、ガス吸入口5への吸入気流K1が狭隘な放
電間隙へ絞込まれる様に形成されており、該吸入
気流K1によつて随伴空気層8はエジエクター的
に巻き込まれ撹乱されたり、あるいは該気流K1
の吸入圧によつて放電間隙手前ではみ出る様に撹
乱される。そしてガス吸入口5下部付近におい
て、放電間隙に吸込まれた撹乱状態の随伴空気層
は、フイルム6送出側からの吸入気流K2と対立
して一層撹乱され、両気流K1,K2と共にガス吸
入口5へ吸引される。この様にして随伴空気層8
を破壊解消させることができる様になり、且つ同
時にコロナ放電部の少なくとも半分(フイルム進
行の後半側)を完全な不活性ガス雰囲気として保
ち得ることが可能となる。
第4〜10図は本発明において用いられる放電
側電極の各種構造例及び該構造における吸入ガス
の挙動を示す説明図で、実施例を網羅的に示すの
ではないから、これらを適当に組合わせることは
本発明を実施する者の自由に委ねられる。
第4図は前に示した電極と同じ構造のもので、
不活性ガス(以下単にガスという)は矢印の様に
吸入される。第5図の例ではガス吸入口をフイル
ム進入方向と対向する方向に偏向させている。こ
れにより、入口側(図では左側)からの吸入気流
はガス吸入口5へ流入し易くなり、随伴空気層の
撹拌及び除去が第4図の例より一層十分に行なわ
れる。又出口側(図の右側)からの吸入気流通過
距離、換言すれば随伴空気層の除去された放電区
域が長くなるのでコロナ放電がより良好に行なわ
れる。第6図は電極3の先端に導電性を有する金
属焼結体あるいはスチールウールの様な多孔質材
料で形成されたガス収集電極(以下単に収集電極
という)3′を付加した例である。この場合、収
集電極3′はガス吸入口5へのガス収集口として
の機能を発揮するものであり、ガスは収集電極
3′の先端全体から吸入されガス吸入口5へ集ま
りフード外へ排出される。従つて随伴空気層の除
去が滑らかに且つ完全に行なわれ、コロナ放電部
におけるガス雰囲気が安定するという効果が得ら
れる。第7図は電極を前後(図の左右、以下同
じ)に分割し、前方側に第6図と同一構成からな
るガス収集電極を配すると共に、後方側にガス吸
入機能を持たない通常電極を設け、これらを一体
化したものである。この例は随伴空気層を進入の
初期に破壊除去させようという考えに基づいて設
計されたものであつて、その意味においては第5
図例と同様の効果を期待するものである。第8図
は電極を3分割し、中央部に第6図のガス収集電
極を設け、前後の両端に通常電極を配置した例、
第9図は中央に通常電極を配すると共に前後の両
端にガス収集電極を配置した例で、その構成は全
く逆である。しかしいずれも随伴空気層を破壊除
去しコロナ放電部の雰囲気を保護するという効果
は同程度に発揮する。第10図は通常電極3のフ
イルム進入側(図面左側)にフイルムに指向した
開口部を有するガス吸入パイプ9を配設した例で
あり、ガス吸入パイプ9へは該パイプのフイルム
進入側(図面左側)から吸入されるガス流K1
と、通常電極のフイルム送出側(図面右側)から
通常電極下部の放電間隙を通り抜けて吸入される
ガス流K2が形成され、これら気流K1,K2によつ
て随伴空気層は撹拌解消され、前記と同様の効果
を発揮する。第11図は通常電極2本を夫々独立
させて併設した例を示し、電極間から吸入ガスを
フード外へ排出するので、不活性ガスは図示する
方向に流れる。
上記各実施例では電極の下流を平担なものとし
て説明したが、鋭角又は鈍角状に尖らせたもの、
半球状に丸味をもたせたもの、あるいはこれらを
フイルム通過方向へ2段以上に繰返えさせたもの
(例えば鋸歯状等……)であつてもよく、要は通
過するプラスチツク成形物のコロナ放電処理面上
で不活性ガス流を形成する上で不都合のない構成
であればどの様な電極構造であつても良い。
本発明の構成は上述の通りであるが、コロナ放
電処理効果を高める為の手段を別途付加すること
は自由であり、該手段が公知であるか否かを問わ
ず全て本発明に含まれる。この様な手段として
は、プラスチツク成形物をコロナ放電と同時期、
又は前もつて加温することが例示され、具体的に
は火炎によつて予備処理を施すことや、プラスチ
ツク成形物がフイルムの様な長尺物である場合に
予め調温ロールを通して長尺物を予熱したり、金
属ドラムそのものを温めておくことが推奨され
る。もつとも本発明においては、吸入される不活
性ガスが電極との接触によつて予熱されるので、
上記の手段を付加しなくともコロナ放電処理効果
は極めて高いものが得られる。
次に本発明の実施例及び比較例を説明する。
第1図の装置を用いてアイソタクテイツクポリ
プロピレン(但しポリオキシエチレンアルキルア
ミン:0.6重量%混合)の2軸延伸フイルム(厚
さ20μm)のコロナ放電処理を行なつた。処理条
件及び結果は第1表に示す。尚比較例1として大
気中でコロナ放電処理(窒素ガス吹付けなし)を
行ない、又比較例2として電極カバー内に窒素ガ
スを注入しつつ(但し窒素ガス吹付けを行なわな
いで)コロナ放電処理を行なつた。夫々の処理条
件及び結果は第1表に併記した。
The present invention relates to a method for improving the corona discharge treatment effect to a degree that is sufficiently satisfactory at the actual production level. Electric discharge treatment of plastic molded products is a technology that has been used for a long time, and is indispensable for surface modification of plastic films (including sheets, hereinafter the same), such as polyethylene films and polypropylene films. . The various plastic molded products described below are also considered to be a useful means for improving quality, and the range of benefits and applications is expected to expand in the future. However, for this purpose, it is necessary to improve the processing efficiency itself by corona discharge treatment and explore its possibilities.Although extensive improvement research has been carried out so far, it cannot be said to be sufficient. For example, Japanese Patent Publication No. 48-17747 describes a technique for promoting chemical changes on the discharge surface by supplying an organic solvent to the discharge section, but residual solvent in the plastic molding is a problem. It doesn't suit the current situation. Mata JOURNAL OF
APPLIED POLYMER SCIENCE Vol 15PP1365
1375 (1971), it is described that corona discharge treatment is performed in an inert gas atmosphere, and it is suggested that the influence of activation or deterioration on the surface of plastic molded products may occur. Techniques for performing corona discharge treatment have also been proposed, but conventional methods, such as the method disclosed in Japanese Patent Publication No. 56-18381, require a large amount of inert gas, resulting in high costs. In addition, the method of JP-A No. 57-23634 (corona discharge technology under an inert atmosphere for a running film) requires a special shield structure to block the atmosphere that is entrained by the film, making it difficult to use the device. Although the surroundings become complicated, the amount of inert gas fed is unnecessarily large, and a complete or almost complete inert atmosphere is not formed, so a low treatment level has to be satisfied. For this reason, taking film as an example, it has the disadvantage that high-speed processing is not possible, resulting in a significant drop in productivity.On the other hand, if you try to increase the processing effect by using low-speed processing, the appearance of the film due to surface damage. Defects such as defects and increased blocking occur, and it can only be said to be completely unsatisfactory at the level of actual production. The present invention has been made with attention to this situation, and is the result of intensive research aimed at developing a technology that does not require special and large-scale equipment and does not require the consumption of large amounts of gas for shielding. The result is complete. However, the corona discharge treatment method according to the present invention is a corona discharge treatment apparatus in which at least one pair of electrodes are arranged facing each other, and the discharge side electrode is surrounded by a hood, in which plastic molded articles are continuously carried in. When performing corona discharge treatment, a gas other than air or oxygen is introduced into the hood, and the gas is actively discharged from the side or bottom of the discharge side electrode to the outside of the hood while corona discharge is performed. The gist of this is that it performs processing. Plastic molded articles to which the method of the present invention is applied include, in addition to the above-mentioned films and sheets, long articles such as fibers, pipes, tapes, woven fabrics, and nonwoven fabrics. If the present invention is applied to corona discharge treatment by transporting the molded product in the longitudinal direction and passing it through, the effect will be dramatically exhibited, but even with other molded products, the process can be carried out at a constant speed. As long as the corona discharge treatment is applied while the process is being carried out, great technical effects can be obtained by applying the present invention. Polymers constituting the molded product include polyamide, linear polyester, polyolefin,
Thermoplastic resins such as polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polystyrene, and polyvinyl alcohol; thermosetting resins such as phenolic resin, urea resin, melamine resin, unsaturated polyester resin, and furan resin are used. In addition, molded products made using these resins contain stabilizers, lubricants, anti-blocking agents, antifogging agents, ultraviolet absorbers, flame retardants, clarifying agents, antioxidants, light stabilizers, antistatic agents, and dyes. All materials that may contain additives such as pigments and do not adversely affect the implementation of corona discharge are included as objects of the present invention, whether alone or in combination. The configuration and effects of the present invention will be clarified below based on the drawings of the embodiments, but the structure and arrangement of the discharge side electrodes, the shape of the hood, etc. shown in the drawings are only representative examples. Since only an example of application to plastic film is shown, it is within the technical scope of the present invention to change the design on the condition that it does not go against the spirit of these descriptions. FIG. 1 is a sectional view of the main parts showing the implementation concept of the present invention,
Figure 2 is a sketch of the discharge side electrode, and 1 in the figure.
2 is a metal drum, 2 is an electrode hood, 3 is a discharge side electrode, 4 is a gas discharge pipe, 5 is a gas inlet, and 6 is a running film. That is, the film 6 is introduced from the direction of arrow B into the metal drum 1 rotating in the direction of arrow A, and is further pulled out in the direction of arrow C. , several hundred metal drums covered with polyester, epoxy resin, ceramic, chlorosulfonated polyethylene, EP rubber, etc.
Under the influence of the high-pressure corona generated by applying a high voltage of several thousand to tens of thousands of volts with the high frequency of KC/S, for example, in the natural atmosphere, ozone and nitrogen oxide are generated and the surface of the film 6 is affected. The surface becomes polarized by generating carbonyl or carboxyl groups on the surface. However, in this example, the entire corona discharge atmosphere is isolated from the atmosphere by the electrode hood 2, and an inert gas is introduced into the hood 2 through the opening 7 provided at the top of the electrode hood 2 to create an oxygen-free atmosphere. Further, since the discharge side electrode 3 is provided with a gas inlet 5 and configured to actively exhaust the atmospheric gas from the inlet 5 to the outside of the hood, various effects depending on the type of inert gas (for example, With N 2 gas, it is possible to improve oxygen barrier properties due to the formation of nitrogen-containing groups, and with CO 2 gas, it is possible to obtain further improvement in adhesiveness due to improvement in corona discharge efficiency. The illustrated discharge side electrode 3 is based on the concept of the second
As shown in the figure, a gas inlet 5 that opens toward the discharge surface is formed in the shape of a slit along the longitudinal direction of the electrode 3 (width direction of the film to be processed), and the bottom of the slit is provided with appropriate intervals. A gas exhaust pipe is connected to the gas exhaust pipe 5, and the end of the gas exhaust pipe 5 is connected to a gas suction pump (not shown).
In addition, appropriate cover plates may be attached to both longitudinal ends of the slit (the front side and the opposite side in the figure, however, the opposite side is not shown in the figure) for the purpose of preventing gas suction from the end faces. By the way, a small amount of entrained air layer is formed on the surface of the film 6 that enters at a fairly high speed along the direction of arrow B, and it is not possible to simply create an inert gas atmosphere inside the hood as in the past. However, the surface of the film 6 itself still retains the air atmosphere and cannot enjoy the effects obtained by the present invention. However, by adopting the above configuration, as shown in FIG. 3, on the film entry side of the discharge side electrode 3, the intake air flow K1 to the gas intake port 5 is formed to be narrowed into a narrow discharge gap. The accompanying air layer 8 is drawn in and disturbed by the intake airflow K 1 like an ejector, or the airflow K 1
The suction pressure causes the discharge to be disturbed so that it protrudes in front of the discharge gap. Near the bottom of the gas inlet 5, the disturbed accompanying air layer sucked into the discharge gap is further disturbed as it opposes the intake airflow K2 from the delivery side of the film 6, and together with both airflows K1 and K2 , the gas It is sucked into the suction port 5. In this way, the accompanying air layer 8
At the same time, it becomes possible to maintain at least half of the corona discharge area (the latter half of the film advance) as a complete inert gas atmosphere. Figures 4 to 10 are explanatory diagrams showing various structural examples of the discharge-side electrode used in the present invention and the behavior of the intake gas in the structures, and are not exhaustive examples, so they may be combined appropriately. This is left to the discretion of the person implementing the invention. Figure 4 shows the same structure as the electrode shown previously.
Inert gas (hereinafter simply referred to as gas) is inhaled as shown by the arrow. In the example shown in FIG. 5, the gas inlet is deflected in a direction opposite to the direction in which the film enters. As a result, the intake airflow from the inlet side (the left side in the figure) can easily flow into the gas inlet 5, and the entrained air layer can be more thoroughly stirred and removed than in the example shown in FIG. Furthermore, since the passage distance of the intake airflow from the outlet side (right side in the figure), in other words, the discharge area from which the accompanying air layer is removed becomes longer, corona discharge is performed better. FIG. 6 shows an example in which a gas collection electrode (hereinafter simply referred to as collection electrode) 3' made of a porous material such as a conductive metal sintered body or steel wool is added to the tip of the electrode 3. In this case, the collecting electrode 3' functions as a gas collecting port to the gas inlet 5, and gas is sucked in from the entire tip of the collecting electrode 3', collects at the gas inlet 5, and is discharged to the outside of the hood. Ru. Therefore, the accompanying air layer is removed smoothly and completely, resulting in the effect that the gas atmosphere in the corona discharge section is stabilized. In Figure 7, the electrode is divided into front and rear parts (left and right in the figure, the same below), with a gas collection electrode having the same configuration as in Figure 6 on the front side, and a normal electrode without a gas suction function on the rear side. These are integrated. This example was designed based on the idea of destroying and removing the accompanying air layer at the beginning of the approach, and in that sense it is the fifth example.
The same effect as the example shown is expected. Figure 8 shows an example in which the electrode is divided into three parts, the gas collection electrode of Figure 6 is placed in the center, and normal electrodes are placed at both front and rear ends.
FIG. 9 shows an example in which a normal electrode is arranged in the center and gas collection electrodes are arranged at both front and rear ends, and the configuration is completely reversed. However, both methods exhibit the same effect of destroying and removing the accompanying air layer and protecting the atmosphere of the corona discharge section. FIG. 10 shows an example in which a gas suction pipe 9 having an opening facing the film is provided on the film entrance side (left side in the drawing) of the electrode 3; gas flow K 1 taken in from the left side)
Then, a gas flow K 2 is formed which is normally drawn from the film delivery side of the electrode (right side of the drawing) through the discharge gap at the bottom of the electrode, and the accompanying air layer is agitated and dissolved by these air flows K 1 and K 2 . , exhibits the same effect as above. FIG. 11 shows an example in which two normal electrodes are installed independently of each other, and since the intake gas is discharged from between the electrodes to the outside of the hood, the inert gas flows in the direction shown in the figure. In each of the above embodiments, the downstream side of the electrode was explained as being flat, but it may be pointed at an acute angle or an obtuse angle.
It may be a hemispherical shape with roundness, or a shape in which these are repeated in two or more stages in the film passing direction (for example, a sawtooth shape, etc.), in short, the corona discharge of the plastic molding passing through it. Any electrode structure may be used as long as it is not inconvenient for forming an inert gas flow on the processing surface. Although the structure of the present invention is as described above, it is free to separately add means for enhancing the corona discharge treatment effect, and all such means are included in the present invention regardless of whether such means are known or not. As such a method, the plastic molding is exposed to corona discharge at the same time.
Alternatively, preheating is exemplified, and specifically, pretreatment with flame or, if the plastic molding is a long object such as a film, heating the long object by passing it through a temperature control roll beforehand is exemplified. It is recommended to preheat the drum or warm the metal drum itself. However, in the present invention, since the inert gas to be inhaled is preheated by contact with the electrode,
An extremely high corona discharge treatment effect can be obtained even without adding the above-mentioned means. Next, examples and comparative examples of the present invention will be described. A biaxially stretched film (thickness: 20 μm) of isotactic polypropylene (mixed with 0.6% by weight of polyoxyethylene alkylamine) was subjected to corona discharge treatment using the apparatus shown in FIG. The treatment conditions and results are shown in Table 1. As Comparative Example 1, corona discharge treatment was performed in the atmosphere (without nitrogen gas spraying), and as Comparative Example 2, corona discharge treatment was performed while nitrogen gas was injected into the electrode cover (but without nitrogen gas spraying). I did this. The respective treatment conditions and results are also listed in Table 1.
【表】
実施例においても、比較例1、2と同一電圧で
あつても高電流が得られており、又接着特性にお
いても極だつて優秀な結果が得られた。特に比較
例2(単なる低酸素雰囲気)よりも明らかに良好
な結果が得られた。
尚電極カバー内の酸素濃度を1%に高めて実施
例及び比較例2を再実験したところ、比較例2で
は比較例1並みの結果になつたが、実施例では良
好な結果が持続された。
本発明の構成は以上述べた通りであるから、以
下要約して述べる様な種々の効果が得られる。
(1) プラスチツク成形物の表面に随伴してコロナ
放電処理部に搬入されてくる大気層は、放電側
電極の側面又は底面に設けた開口部へ吸入され
るガス流に撹拌され、且つ該ガスと共にガス吸
入口へ吸込まれてフード外へ排出されるので確
実に破壊解消される。従つて空気の混入しない
放電区間を、少ないガス量によつて確実に形成
することができる。
(2) その結果、単位面積当りの電流値及び電力値
が飛躍的に増大し、実効電力密度の増加によつ
てコロナ放電処理効果が向上する。
(3) 又布々の雰囲気による特有の効果、例えば
N2ガスの存在によるプラスチツク成形物表面
でのアミノ基やイミノ基の形成効果(酸素遮断
性の向上効果)等が極めて高度に発揮される。[Table] In the examples, high current was obtained even at the same voltage as in Comparative Examples 1 and 2, and extremely excellent results were obtained in terms of adhesive properties. In particular, clearly better results were obtained than in Comparative Example 2 (simple low-oxygen atmosphere). In addition, when we re-experimented the example and comparative example 2 by increasing the oxygen concentration in the electrode cover to 1%, the results in comparative example 2 were similar to those in comparative example 1, but the good results in the example were maintained. . Since the configuration of the present invention is as described above, various effects can be obtained as summarized below. (1) The atmospheric layer carried into the corona discharge treatment section along with the surface of the plastic molded article is stirred by the gas flow sucked into the opening provided on the side or bottom of the discharge side electrode, and the gas is At the same time, the gas is sucked into the gas inlet and discharged outside the hood, ensuring that it is destroyed and eliminated. Therefore, a discharge section in which air is not mixed can be reliably formed using a small amount of gas. (2) As a result, the current value and power value per unit area increase dramatically, and the corona discharge treatment effect improves by increasing the effective power density. (3) Also, the unique effects of the atmosphere of the cloth, e.g.
Due to the presence of N 2 gas, the effect of forming amino groups and imino groups on the surface of plastic moldings (improving oxygen barrier properties), etc. is exhibited to an extremely high degree.
第1図は本発明の実施状況を示す概念図、第2
図は本発明において用いる放電側電極の見取図、
第3図は随伴空気層の破壊解消状況を示す説明
図、第4〜11図は本発明において用いる電極と
ガスの流れを例示的に示す説明図である。
1……金属ドラム、2……電極フード、3……
放電側電極、4……ガス排出管、5……ガス吸入
口、8……随伴空気層、9……ガス吸入パイプ。
Figure 1 is a conceptual diagram showing the implementation status of the present invention, Figure 2
The figure is a sketch of the discharge side electrode used in the present invention,
FIG. 3 is an explanatory diagram showing how the accompanying air layer is destroyed and resolved, and FIGS. 4 to 11 are explanatory diagrams illustrating the flow of electrodes and gas used in the present invention. 1...metal drum, 2...electrode hood, 3...
Discharge side electrode, 4... Gas exhaust pipe, 5... Gas inlet, 8... Associated air layer, 9... Gas inlet pipe.
Claims (1)
に放電側電極がフードによつて囲繞されてなるコ
ロナ放電処理装置に、プラスチツク成形物を連続
的に搬入してコロナ放電処理を行なうに当たり、
前記フード内に空気及び酸素を除くガス体を導入
する一方、該ガス体を放電側電極の側面又は底面
から該放電側電極の通電方向に沿つて前記フード
外へ積極的に排出しながらコロナ放電処理を行な
うことを特徴とするプラスチツク成形物のコロナ
放電処理方法。1. When carrying out corona discharge treatment by continuously carrying plastic molded articles into a corona discharge treatment apparatus in which at least one pair of electrodes are arranged facing each other and the discharge side electrode is surrounded by a hood,
A gas body excluding air and oxygen is introduced into the hood, and corona discharge is performed while actively exhausting the gas body from the side or bottom surface of the discharge side electrode to the outside of the hood along the current direction of the discharge side electrode. 1. A corona discharge treatment method for plastic molded articles, characterized by carrying out treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10740082A JPS58225132A (en) | 1982-06-21 | 1982-06-21 | Corona discharge treatment of plastic formed product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10740082A JPS58225132A (en) | 1982-06-21 | 1982-06-21 | Corona discharge treatment of plastic formed product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58225132A JPS58225132A (en) | 1983-12-27 |
JPS628448B2 true JPS628448B2 (en) | 1987-02-23 |
Family
ID=14458183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10740082A Granted JPS58225132A (en) | 1982-06-21 | 1982-06-21 | Corona discharge treatment of plastic formed product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58225132A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61168631A (en) * | 1985-01-21 | 1986-07-30 | Mitsubishi Petrochem Co Ltd | Surface treatment of polypropylene film |
JPS61204239A (en) * | 1985-03-08 | 1986-09-10 | Idemitsu Petrochem Co Ltd | Surface-treatment of polypropylene resin |
JP4623269B2 (en) * | 2004-07-09 | 2011-02-02 | 東洋紡績株式会社 | Polypropylene anti-fogging film |
JP4919654B2 (en) * | 2005-11-30 | 2012-04-18 | アイカ工業株式会社 | Stripping prevention method |
JP4667328B2 (en) * | 2006-08-30 | 2011-04-13 | 太平洋マテリアル株式会社 | Concrete peeling prevention method |
JP6421962B1 (en) | 2017-08-09 | 2018-11-14 | 春日電機株式会社 | Surface reformer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917854A (en) * | 1972-06-09 | 1974-02-16 | ||
JPS5550034A (en) * | 1978-10-05 | 1980-04-11 | Toray Ind Inc | Surface-treatment of plastic |
JPS5649737A (en) * | 1979-10-01 | 1981-05-06 | Tokuyama Soda Co Ltd | Corona discharge treatment of plastic film |
JPS5723634A (en) * | 1980-07-17 | 1982-02-06 | Tokuyama Soda Co Ltd | Discharge treating apparatus of plastic film |
-
1982
- 1982-06-21 JP JP10740082A patent/JPS58225132A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4917854A (en) * | 1972-06-09 | 1974-02-16 | ||
JPS5550034A (en) * | 1978-10-05 | 1980-04-11 | Toray Ind Inc | Surface-treatment of plastic |
JPS5649737A (en) * | 1979-10-01 | 1981-05-06 | Tokuyama Soda Co Ltd | Corona discharge treatment of plastic film |
JPS5723634A (en) * | 1980-07-17 | 1982-02-06 | Tokuyama Soda Co Ltd | Discharge treating apparatus of plastic film |
Also Published As
Publication number | Publication date |
---|---|
JPS58225132A (en) | 1983-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4069026A (en) | Filter made of electrostatically spun fibres | |
KR890002565B1 (en) | Method for preparing high adhesive polyolefin | |
US4143196A (en) | Fibre fleece of electrostatically spun fibres and methods of making same | |
CA1326466C (en) | Process and device for surface pre-treatment of plastic by means of an electrical corona discharge | |
JP3735687B2 (en) | Electret filter media charging method | |
JP3501343B2 (en) | Dust removal device | |
JPS628448B2 (en) | ||
JPH0786145B2 (en) | Method for treating moving substrate by plasma discharge and apparatus for implementing this method | |
US20130078368A1 (en) | Fabric comprising shaped conductive monofilament used in the production of non-woven fabrics | |
EP0715536B1 (en) | Filter media having an undulated surface | |
JPS58225133A (en) | Corona discharge treatment of plastic formed product surface | |
US4815714A (en) | Process for the manufacture of microporous film | |
JPS5723634A (en) | Discharge treating apparatus of plastic film | |
JP2006104589A (en) | Method for producing electret felt | |
CN111618010A (en) | Electrostatic precipitator equipment of pyrocondensation membrane processing usefulness | |
JP2000500384A (en) | Flat substrate processing equipment with corona station | |
JP3292924B2 (en) | Continuous plasma grafting method | |
JPH0224855B2 (en) | ||
US345610A (en) | Dust-removing apparatus | |
JP2017133120A (en) | Nonwoven fabric, and dust-collecting filter, culture medium of microorganism or biological tissue, and cosmetic goods | |
US6565022B1 (en) | Apparatus for and method of recycling chopped strand mat edge trim | |
US4676943A (en) | Method and apparatus for producing longitudinally stretched thermoplastic film | |
JPS6350281Y2 (en) | ||
JPH0220196Y2 (en) | ||
US299270A (en) | Joseph julius sachs |