JPS58225133A - Corona discharge treatment of plastic formed product surface - Google Patents

Corona discharge treatment of plastic formed product surface

Info

Publication number
JPS58225133A
JPS58225133A JP10821982A JP10821982A JPS58225133A JP S58225133 A JPS58225133 A JP S58225133A JP 10821982 A JP10821982 A JP 10821982A JP 10821982 A JP10821982 A JP 10821982A JP S58225133 A JPS58225133 A JP S58225133A
Authority
JP
Japan
Prior art keywords
gas
corona discharge
electrode
discharge treatment
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10821982A
Other languages
Japanese (ja)
Other versions
JPH0225935B2 (en
Inventor
Tsutomu Isaka
勤 井坂
Hiromu Nagano
煕 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10821982A priority Critical patent/JPS58225133A/en
Publication of JPS58225133A publication Critical patent/JPS58225133A/en
Publication of JPH0225935B2 publication Critical patent/JPH0225935B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/12Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment in an environment other than air

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To effectively perform titled treatment without requiring any large equipment and a large quantity of a shielding gas, by blowing at a specific speed a mixed gas with a composition other than that of the air on the corona discharge-treating surface of a plastic formed product. CONSTITUTION:For example, a plastic film 6 is fed from the direction of B to the metal drum 1 revolving in the direction of A, and is drawn out in the direction C. Along with shielding from the air the entire corona-discharged space containing the discharge electrode 3 using a cover 2, while providing the electrode 3 with a gas ejecting exit 5 and blowing an inert gas (e.g., N2, CO2) on the film surface through a gas-feeding tube 4 to replace the ambient air by the inert gas, a high-frequency voltage is applid between the electrode 3 connected to a high voltage generator and the drum 1 covered with the film 6 such as of polyester, thus performing the objective corona discharge treatment.

Description

【発明の詳細な説明】 本発明は、コロナ放電処理効果を実生産レベルにおいて
十分満足し得る程度迄改善向上させる方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving the corona discharge treatment effect to the extent that it can be fully satisfied at the actual production level.

プラスチック成形物の放電処理は古くから行逐われてい
る技術であり、特にポリエチレンフィルムやポリプロピ
レンフィルム等のプラスチックフィルム(V −)を含
む、以下同様)の表面改質には欠くことのできない技術
となっている。又後述する梱々のプラスチック成形物に
ついても、品質改善の為の有用な手段と考えられており
、今後益益適用範囲が拡大してい(ものと期待されてい
る。
Electric discharge treatment of plastic molded products is a technology that has been practiced for a long time, and is especially indispensable for surface modification of plastic films (V-) such as polyethylene films and polypropylene films (hereinafter the same shall apply). It has become. In addition, the plastic molded products described below are considered to be a useful means for improving quality, and the scope of application of these benefits is expected to expand in the future.

しかしその為にはコロナ放電処理による処理効率自体を
向上し、その可能性を探求する必要示あシこれ迄にも広
範囲に亘る改善研究が展開されているが、未だ十分とは
言えかい。
However, in order to achieve this, it is necessary to improve the treatment efficiency itself by corona discharge treatment and explore its possibilities.Although extensive improvement research has been carried out so far, it cannot be said that it is sufficient.

例えば特公昭4g−17747には、有機溶剤を放電部
に供給することによって放電面にお行る化学変化を促進
する技術が記載されているが、プラスチック成形物中へ
の残留溶剤が問題とされる現今の状況にはそぐわない。
For example, Japanese Patent Publication No. 4g-17747 describes a technique for promoting chemical changes on the discharge surface by supplying an organic solvent to the discharge section, but residual solvent in the plastic molded product is a problem. It is not suitable for the current situation.

又JOURNAL 0FAPI’LIED POLYM
ER5CIENCE VOL15  PP1865〜1
87fi(1971)には、不活性ガス算囲気下でコ四
す放電処理を行なうことが記載され、プラスチック成形
物の表面に対する活性化又は劣化等の影響が示唆される
に及び大気雰囲気を例えば低酸素雰囲気に置き換えてコ
ロナ放電処理を行なう技術も提案される様になったが、
従来の方法、例えば特公昭F)6−18881号の方法
では、大量の不活性ガスが必要になってコスト高を招く
という問題があシ、又特開昭57−28684号の方法
(走行フィルムに対する不活性雰囲気下のコロナ放電技
術)では、フィルムに随伴して巻込まれる大剣を遮断す
る為に特殊なシールド構造が[求されて装置まわシが複
雑になるが、それでも不に甘んじなければならなかった
。その為、フィルムを例にとって説明すれば、高速処理
、ができない為に生産性が著しるしく低下するという欠
点があシ、他方低速処理にして処理効果を高めようとす
れば表面損傷による外観不良が発生したシブロッキング
の増大を招く等の欠陥が現われ、実生産のレベルにおい
ては全く不満足なものと言う他ない。
Matata JOURNAL 0FAPI'LIED POLYM
ER5CIENCE VOL15 PP1865~1
87fi (1971), it is described that the electric discharge treatment is performed under an inert gas atmosphere, and if the effect of activation or deterioration on the surface of the plastic molded product is suggested, the atmospheric atmosphere may be reduced, for example. Techniques for performing corona discharge treatment in place of an oxygen atmosphere have also been proposed;
Conventional methods, such as the method disclosed in Japanese Patent Publication No. 6-18881 (1988), require a large amount of inert gas, leading to high costs; (Corona discharge technology under an inert atmosphere) requires a special shield structure to block the large sword that is entrained by the film, which complicates the equipment operation, but we must not be complacent. did not become. For this reason, taking film as an example, it has the disadvantage that productivity is significantly reduced because it cannot be processed at high speed.On the other hand, if you try to increase the processing effect by using low speed processing, the appearance will be poor due to surface damage. This leads to defects such as an increase in shiblocking caused by the occurrence of oxidation, and it can only be said that it is completely unsatisfactory at the level of actual production.

本発明はこの様な状況に着目してなされたものであって
、特殊且つ大がかシな装置が要求されず又シールド用に
大量のガスを消費しなくとも良い様な技術の開発をめざ
し鋭意研究の結果完成されたものである。しかして本発
明に係るコロナ放電処理法とは、少なくとも1対の対向
!極が配設されてなるコロナ放電処理装置に、プラスチ
ック成形物を連続的に搬入してコロナ放電処理を行なう
方法において、放電(Jlltffti又はその近傍か
らプラスチック成形物の処理面に空電組成以外の組成か
らなる単独又は混合気体〔具体的には空気から空電組成
の一部を適当量除いたものや、空電へ空電組成の一部を
適当量追加したもの、更にはN2+H2m A ’ +
 C02m 012等の単独又は混合ガス等を包含する
が(但し空電組成は除()以下便宜的に不活性ガスと略
記する〕を吹付けなからコロナ放電熱伸を行なうもので
あシ、しかもこの吹イ1速度途、上記プラスチック成形
物搬入速度の1係以上と定めた点に要旨を有するもので
ある、。
The present invention was made with attention to this situation, and aims to develop a technology that does not require special and large-scale equipment and does not require the consumption of large amounts of gas for shielding. It was completed as a result of intensive research. However, the corona discharge treatment method according to the present invention requires at least one pair of opposing! In a method of carrying out corona discharge treatment by continuously transporting plastic moldings into a corona discharge treatment apparatus in which electrodes are arranged, discharge (electrostatic discharge from Jlltffti or its vicinity onto the treated surface of the plastic molding) is performed. Single or mixed gas consisting of the composition [specifically, air with a suitable amount of a part of the static charge composition removed, a part of the static charge composition added with an appropriate amount to static electricity, and furthermore, N2 + H2m A' +
It involves spraying a single or mixed gas such as C02m012 (excluding static composition (hereinafter abbreviated as inert gas for convenience)), and performs corona discharge heat stretching. The gist of this is that one speed of the blower is determined to be at least one factor of the speed at which the plastic molded article is introduced.

本発明方法が適用されるプラスチック成形物と    
  ・1しては、上述のフィルムやシートの他に繊維、
バイブ、テープ、織物、不織布等の長尺物が挙げられ、
これら長尺物をコロナ放電処理装置に対して長手方向に
搬入し且つ通過させてコロナ放電処理を行なう場合に本
発明を適用すれば、その効果はもつとも劇的に発揮され
るが、その他の成形物であっても、一定の速度で移行さ
せながらコロナ放電、処理を加えるものであれば、本発
明を適用することによって多大の技術的効果を得ること
ができる。又該成形物を構成するポリマーとしては、ポ
リアミド、線伏ポリエステル、ポリオレフィン、ポリカ
ーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リアクリロニトリル、ポリスチレン、ポリビニルアルコ
ール等の熱可塑性樹脂;フェノール樹脂、尿素樹脂、メ
クミン樹脂、不飽和ポリエステル樹脂、フラン樹脂等の
* ?+Ij’化性VFJII11が用いられる。尚こ
れらの樹脂を用いてなる成形物中には、安定剤、滑剤、
耐ブロッキング剤、防曇剤、紫外線吸収剤、難溶剤、透
明化削、酸化防出剤、耐光剤、帯電防止剤、染料、顔料
等の添加剤が含有されていても良く、′コロナ放電の実
施に悪影響を及はさない素材は単独及び複合の如何を問
わず全て本発明の対象として含まれる。
Plastic molded products to which the method of the present invention is applied
・In addition to the above-mentioned films and sheets, fibers,
Examples include long items such as vibrators, tapes, woven fabrics, and non-woven fabrics.
If the present invention is applied to the case where these long objects are conveyed longitudinally into a corona discharge treatment device and passed through it to perform corona discharge treatment, the effect will be dramatically exhibited, but other molding Even if it is a material, if it is subjected to corona discharge and treatment while moving at a constant speed, great technical effects can be obtained by applying the present invention. Polymers constituting the molded product include thermoplastic resins such as polyamide, linear polyester, polyolefin, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polystyrene, and polyvinyl alcohol; phenolic resin, urea resin, and mecumin resin. , unsaturated polyester resin, furan resin, etc. *? +Ij'-forming VFJII11 is used. In addition, stabilizers, lubricants,
Additives such as anti-blocking agents, anti-fogging agents, ultraviolet absorbers, refractory agents, transparency removers, antioxidants, light stabilizers, antistatic agents, dyes, pigments, etc. All materials that do not adversely affect implementation are included in the scope of the present invention, regardless of whether they are used singly or in combination.

以下実施例図面に準拠しつつ本発明の構成及び作用効果
を明らかにしていくが、図面に示す放電側電極の構造や
配列、更にはカバーの形秋等は代表例であるに過ぎず、
又図面ではプリスチツクフイルムへの適用例を示したに
過ぎないから、これらの説明の趣旨に反しないという条
件の下で設計を変更することは本発明の技術的範囲に含
まれる。
The structure and effects of the present invention will be clarified below based on the drawings of the embodiments, but the structure and arrangement of the discharge side electrodes, the shape of the cover, etc. shown in the drawings are only representative examples.
Further, since the drawings merely show an example of application to a plastic film, it is within the technical scope of the present invention to change the design on the condition that it does not go against the spirit of these descriptions.

第1図は本発明の実施概念を示す要部断面図、第2図は
放[側電極の一部を示す斜視図であって、図中の1は金
属ドラム、2は電極カバー8は放電gIll電、ItM
、4はガス供給管、5はガス噴出口、6は走行フィルム
を示す。即ちフィルム6は矢印A方向に回転する金属ド
ラム1に対して矢印B方向から導入され、更に矢印C方
向へ引出されて行くが、図示しない高電圧発生機に接続
されている放を側Wi、極8と、ポリエステル、エポキ
シ仙脂、セラミック、クロルスフレホン化ポリエグーレ
ン、EPヲバー等でカバーされた金属ドラム1との…1
に数白KC/Sの高周波で数千ないし敵方Vの高1!庄
をかけることによって発生する高圧コロナの影響を受け
、例えば自然の大気中であればオゾンや酸化窒素が生成
してフィルム60表面にカルボニル基やカルボキシル基
を生ぜしめることによシ表面が極性化される。しかし本
図例においてはコロナ放電の雰囲気全体を[極力バー2
によって大観から遮断すると共に、放電側’FtW8に
ガス噴出口5を設はフィルム60表面に向けて不活性ガ
スを吹付ける様に構成し・ているので、不活性ガスの種
類に応じた種々の効果(例えばN2ガスであれば窒素含
有基の形成による接着性、特に含窒素物体との接着性の
向上および放電々極の有効放電面積拡大による処理効率
の向上CO2ガスであればコロナ放電効率の改善による
接着性の一層の向上等)を得ることができる。冑図示し
た放電側型FM8は、その゛概念を第2図に示す卯〈放
電面側に向けて開口するガス噴出口5が、該1を極8の
長手方向(被処理フィルムの幅方向)に沿ってスリット
状に形成され、且つ該スリット底部には適当間隔を置い
てガス供給管4が連通されている。従ってガス供給管4
を通して加圧下に供給された不活性ガスはスリット部内
で長手方向に分散されガス噴出口5からほぼ均等に噴出
されるので、コロナ放電部の雰囲気が不活性ガスに置換
される。尚スリットの長手方向両端(図の手前側及び向
う側、但し向う側は図に現われていない。)には、該端
面からのガス拡散を防止する目的で適当な蓋板を取付け
ることもある。
FIG. 1 is a cross-sectional view of a main part showing the concept of implementing the present invention, and FIG. 2 is a perspective view showing a part of the discharge side electrode, in which 1 is a metal drum, 2 is an electrode cover 8, and gIllden, ItM
, 4 is a gas supply pipe, 5 is a gas outlet, and 6 is a running film. That is, the film 6 is introduced from the direction of arrow B into the metal drum 1 rotating in the direction of arrow A, and is further pulled out in the direction of arrow C. A pole 8 and a metal drum 1 covered with polyester, epoxy resin, ceramic, chlorsphlephonated polyegulene, EP evaporation, etc...1
The high frequency of several white KC/S is several thousand or the enemy V's high 1! Under the influence of the high-pressure corona generated by applying pressure, for example, in the natural atmosphere, ozone and nitrogen oxide are generated, creating carbonyl groups and carboxyl groups on the surface of the film 60, and the surface becomes polarized. be done. However, in this example, the entire atmosphere of corona discharge is
At the same time, the gas outlet 5 is installed on the discharge side 'FtW8 to spray inert gas toward the surface of the film 60, so various types of gas can be used depending on the type of inert gas. Effects (for example, in the case of N2 gas, the formation of nitrogen-containing groups improves adhesion, especially with nitrogen-containing objects, and that the effective discharge area of the discharge electrode is expanded, improving treatment efficiency. In the case of CO2 gas, it improves corona discharge efficiency. further improvement in adhesion, etc.) can be obtained. The concept of the illustrated discharge side type FM8 is shown in FIG. It is formed into a slit shape along the slit, and gas supply pipes 4 are connected to the bottom of the slit at appropriate intervals. Therefore, the gas supply pipe 4
The inert gas supplied under pressure through the corona discharge section is dispersed in the longitudinal direction within the slit section and is ejected almost uniformly from the gas ejection ports 5, so that the atmosphere in the corona discharge section is replaced with inert gas. Appropriate cover plates may be attached to both longitudinal ends of the slit (the front side and the opposite side in the figure, however, the opposite side is not shown in the figure) for the purpose of preventing gas diffusion from the end faces.

しかし矢印B方向に沿って相当の高速度で進入してくる
フィルム60表面には、若干ながら随伴空電層が形成さ
れておシ、コロナ放電部の雰囲気が不活性ガスによって
置換されても、フィルム6の表面自体は相変らず大気雰
囲気を保持したtまになっておシ、不活性ガスをただ漫
然と噴出させるだけのときは、本発明の効果を享受する
ことができない。そこで不活性ガスを第8図に示す如く
強く噴出させ随伴空気層7を噴気流8によって破壊分散
させれば、コロナ放電部の雰囲気を不活性      
1.1ガスによっては埋完全に置換させることができる
のではないかと考え種々検討した。その結果随伴空気層
7の進入速度が重要な因子であることを見出し、該空気
層7の移動速度(プラスチック成形物の搬入速度)に対
して少なくとも11以上、咥ましくはlO係以上、更に
好ましくは40q6以上の速度で噴究流8を形成すれば
、随伴空気層を実用上の不都合がない程度に迄破壊分散
することができるということを見出した。伺ブリスチツ
ク成形物の搬入速度は、一般に1〜500m/分である
However, a slight static layer is formed on the surface of the film 60 that enters at a fairly high speed in the direction of arrow B, and even if the atmosphere in the corona discharge section is replaced with an inert gas, The surface of the film 6 itself still retains an atmospheric atmosphere, and the effects of the present invention cannot be enjoyed if the inert gas is simply spouted out aimlessly. Therefore, if the inert gas is strongly ejected as shown in Figure 8 and the accompanying air layer 7 is destroyed and dispersed by the jet stream 8, the atmosphere in the corona discharge area can be made inert.
1.1 We thought that it might be possible to completely replace the gas depending on the gas, and various studies were conducted. As a result, it was found that the intrusion speed of the accompanying air layer 7 was an important factor, and it was found that the moving speed of the air layer 7 (input speed of the plastic molded product) is at least 11 or more, preferably 10 or more, and It has been found that by forming the jet flow 8 preferably at a speed of 40q6 or more, the entrained air layer can be destroyed and dispersed to the extent that there is no practical problem. The conveying speed of the brick molded product is generally 1 to 500 m/min.

この様な条件を採用することによって随伴空電層を破壊
分散させることができる様になシ、且つ同時にコロナ放
電部の近傍を不活性ガス雰囲気で曵 保護することが可能となるので、第1図に示したMLm
カバー2は、雰囲気保持用としての機能よシも、むしろ
電極8を機械的な衝撃から保護するという゛機能と随伴
流を少しでも抑制する機能の方が強く期待される様にな
る。従って本発明の実施に当っては、時に電極カバー2
を取外すとともあシ得るが、不活性ガスの消費量を抑制
する為には、雰囲気保持用としての機能を改めて見直す
ことが望ましく、例えば第4図に示す如くカバー2の下
・端(フィルム0111 )を絞ると同時に、導c#1
0から不活性ガスをカバー2内へ導入すれば、該ガスは
斜面9の内面に沿って収束される様に矢印方向へ流れ、
カバー2の入口においてガスカーテン効果が発揮される
。即ち随伴空気層の侵入が入口側で遮断され、′WIL
極カバー2の価値が一段と向上する。
By adopting such conditions, it becomes possible to destroy and disperse the accompanying static layer, and at the same time, it becomes possible to protect the vicinity of the corona discharge part from being flooded with an inert gas atmosphere. MLm shown in the figure
The cover 2 is expected to have a function of protecting the electrode 8 from mechanical impact and a function of suppressing the accompanying flow as much as possible, rather than having a function of maintaining the atmosphere. Therefore, when implementing the present invention, sometimes the electrode cover 2
It may be easier to remove the cover, but in order to reduce the amount of inert gas consumed, it is desirable to reconsider its function as an atmosphere retainer.For example, as shown in Figure 4, the lower end of the cover 0111) at the same time, the guide c#1
When inert gas is introduced into the cover 2 from 0, the gas flows in the direction of the arrow so as to be converged along the inner surface of the slope 9.
A gas curtain effect is produced at the entrance of the cover 2. In other words, the intrusion of the accompanying air layer is blocked on the inlet side, and 'WIL
The value of Goku Cover 2 will further improve.

但しフィルム6の出口側(第4図の右イル1)についテ
ハカバー2内のガスが走行フィルム6に随(? して排
出されていくので、シール性ないし大観侵入嬉魯断電牛
については入口(Illはどの配L#、をする16魁t
1生は無い≠5、前述の様に不活性ガス消曽1を少なく
するという意味においては入口側と同様の配油を払うこ
とは有意義である。尚カバー2の入口側及び出口側にお
ける上述のシール機能を最低限1gにおいて発揮する為
には、フィルムの走行速度に対して少なくと鳴O12嗟
以上、好ましくはlO係以上の速度でフィルム面に放出
させることがytまれる。尚不活性ガスの噴出速度につ
いては、ガス噴出口す及びカバー2の出入口のいずれに
ついCも下限側のみを述べたが上限については賽質十制
限を設ける必要はなく、せいぜい噴出量と噴出効果の見
合い並びに経済性から、前者については走行速度の10
倍以下、好ましくは5倍以下、又後者については走行速
度の10倍以下、好首しくは5倍以下を一応の目安と考
えれば良い。
However, on the exit side of the film 6 (right side 1 in Figure 4), the gas inside the cover 2 is discharged along with the running film 6, so there is a problem with the sealing performance or the intrusion at the entrance. (Ill do which number, 16
1 life≠5, and as mentioned above, in the sense of reducing the amount of inert gas quenched 1, it is meaningful to distribute oil in the same way as on the inlet side. In order to exhibit the above-mentioned sealing function on the inlet and outlet sides of the cover 2 at a minimum of 1 g, the film surface must be applied at a speed of at least 12 mm or more, preferably 10 times or more relative to the film running speed. It is possible to release it. Regarding the ejection speed of inert gas, only the lower limit side has been described for both the gas ejection port and the inlet/outlet of the cover 2, but there is no need to set a strict limit on the upper limit, and at most the ejection amount and ejection effect are limited. For the former, the travel speed is 10
As a rough guideline, the travel speed should be at most 10 times, preferably 5 times or less, the traveling speed.

第fi〜26図は本発明において用いられる放電011
1[極の各神構造例及び該構造における噴出ガスの挙動
を示す説明図で、実施例を網羅的に示すものではないか
ら、これらを適当に組合わせることは本発明を実施する
者の自由に委ねられる。
Figures fi to 26 show the discharge 011 used in the present invention.
1 [This is an explanatory diagram showing examples of each structure of the poles and the behavior of ejected gas in the structure, and does not exhaustively show examples, so it is at the discretion of the person implementing the present invention to combine these appropriately. It is left to the.

第6図は前に示した電極と同一構造のもので、不活性ガ
スC以下単にガスという)は矢印の様に噴−出されてい
(。第6図の例ではガス噴出口5を、フィルム進入方向
と対向する様に、換言すればフィルム上の随伴空9cN
Iの進入に対してガスを真向から吹付ける様に、入口側
C図では左側)へ偏向されている。又電極8の入口側及
び出口側(図では右側)に沿って矢印り及びEで示す様
にガスを流すことも有意義であシ、場合によっては第1
8図にも示す様に、それだけで本発明の目的が達成され
ることもある。従って第18図を本発明の実施例と考え
、以下の例においても必要によシミ極に沿ったガス流の
形成を補助的又は主たる構成として付加することがある
。第7図は電fM8の先端に、導電性を有する金属焼結
体スチールウールあるいは金網の様な多孔質のガス拡散
材料で形成されたガス拡散電極(以下単に拡散電極とい
う)3′を付加した例である。この場合ガス噴出口6は
拡散電W33′に対するガス供給口としての機能を発揮
するものであシ、ガスは電極の先端全体から噴出される
。従ってガスの噴出は滑らかとなり、コロナ放電部にお
けるガス雰囲気が安定するという効果が得られる。第8
図は、第7図の例に対して電極に沿うガス流の形成を付
加した例である。第9図は電極を前後(図の左右、以下
同じ)に分割し、前方側に第7図と同一構成からなるガ
ス噴出電極を配すると共に後方側にガス噴出機能の無い
通常     ′i電極を設け、これらを一体化したも
のである。この例は、随伴空気層を進入の初期に破壊拡
散させようという考えに基づいて設計されたものである
Figure 6 has the same structure as the electrode shown previously, and inert gas C (hereinafter simply referred to as gas) is ejected as shown by the arrow (in the example in Figure 6, the gas outlet 5 is connected to the film). In other words, the accompanying air 9cN on the film is opposite to the approach direction.
It is deflected to the left side in Figure C of the entrance side so that the gas is blown directly against the entrance of I. It is also useful to flow the gas along the inlet and outlet sides (right side in the figure) of the electrode 8 as shown by arrows and E;
As shown in FIG. 8, the object of the present invention may be achieved by this alone. Therefore, FIG. 18 is considered to be an embodiment of the present invention, and in the following examples as well, the formation of a gas flow along the stain electrode may be added as an auxiliary or main component if necessary. Figure 7 shows a gas diffusion electrode (hereinafter simply referred to as a diffusion electrode) 3' made of a porous gas diffusion material such as conductive metal sintered steel wool or wire mesh added to the tip of the electric fM8. This is an example. In this case, the gas ejection port 6 functions as a gas supply port for the diffusion electrode W33', and the gas is ejected from the entire tip of the electrode. Therefore, the gas is ejected smoothly and the gas atmosphere in the corona discharge section is stabilized. 8th
The figure shows an example in which the formation of a gas flow along the electrodes is added to the example of FIG. 7. In Figure 9, the electrode is divided into front and rear parts (left and right in the figure, the same below), with a gas ejection electrode having the same configuration as in Fig. 7 on the front side, and a normal 'i electrode without a gas ejection function on the rear side. These are integrated. This example was designed based on the idea of destroying and diffusing the accompanying air layer at the beginning of the approach.

第10図は電極を8分割し、中央部に第7図のガス噴出
電極を設け、前後の両端に通常1極を配置した例、第1
1図は中央に通常電極を配すると共に前後の両端にガス
噴出電極を配置した例で、その構成は全く逆である。し
かしいずれも随伴空気層を破壊拡散しコロナ放電部の雰
囲気を保護するという効果は同程度に発揮する。第12
図は、第11図における中央の通常電極に、第5図と同
一構成のガフ噴出口5を設けた例であり、上記効果は更
に顕著に発揮される。第18図は既に説明した。
Figure 10 shows an example in which the electrode is divided into eight parts, the gas ejection electrode of Figure 7 is provided in the center, and one pole is normally placed at both the front and rear ends.
Figure 1 shows an example in which a normal electrode is placed in the center and gas ejection electrodes are placed at both front and rear ends, and the configuration is completely reversed. However, both methods exhibit the same effect of destroying and diffusing the accompanying air layer and protecting the atmosphere of the corona discharge section. 12th
The figure shows an example in which the central normal electrode in FIG. 11 is provided with a gaff outlet 5 having the same configuration as that in FIG. 5, and the above effect is even more pronounced. FIG. 18 has already been explained.

第14図は電極80前後上方にガス噴出パイプllを配
置し九個で、パイプ11から真下に噴出されたガスは電
極に沿って下降し、第6.18図について述べたのと同
様の効果を発揮する。同第6゜18図及び第8図の例で
はパイプ11を設けない例として説明したが、これらの
例では、例えば電極カバー(既述)の上方から電極まわ
シ全体に向けてガスを噴出することによって上述の各ガ
ス流を形成することができる。しかし第14図の例では
パイプ11によって集中的にガスを噴出させているので
少波のガスを効果的に利用することができる。
Fig. 14 shows nine gas ejection pipes 11 arranged above and before the electrode 80, and the gas ejected directly below from the pipe 11 descends along the electrode, producing the same effect as described in Fig. 6.18. demonstrate. Although the examples shown in FIGS. 6-18 and 8 are explained as examples in which the pipe 11 is not provided, in these examples, gas is ejected from above the electrode cover (described above) toward the entire electrode cover. Each of the above-mentioned gas flows can be formed by this. However, in the example shown in FIG. 14, gas is ejected in a concentrated manner through the pipe 11, so that small waves of gas can be effectively utilized.

第16〜28図は、一方でガスの噴出を行ない他方でこ
れを吸引するという方式の例であシ、ガスを噴出すると
いう面から見る限シ既述の例と異なるところは無いが、
このガスを他の部分から吸引する為、1つには噴出後の
ガスが倫制的に特定方向へ移動されてコ四す放電部の保
−が強化され。
Figures 16 to 28 are examples of a method in which gas is ejected on one side and sucked on the other, and there is no difference from the previously described examples in terms of ejecting gas.
In order to suck this gas from other parts, one reason is that the gas after being blown out is moved in a specific direction, thereby strengthening the protection of the discharge part.

2つには噴出ガスの一部が回収され、場合によってはそ
の一部をそのまま噴出ガス中に混合再使用することもで
きるのでガスコストの低減を図ることができる、等の効
果が得られる。但し吸引(Illが大気圧以下になると
随伴穴電層をそのtttt棒の下端側進引込む恐れがあ
るので大電圧以上に保持する必要がある。まず第15図
は一方をガス噴出口5、他方をガス吸引口5′とした例
であり、前者から噴出されたガスの一部は随伴空電層の
破壊分散の為に消費され、残部はフィルム上を併走して
コaす放電部の雰囲気を形成した後ガス吸引口5′から
回収されていく。第16図は噴出口5.吸引口5′に焼
結金属を添装した例、第17.18図は第11.12図
に対応し夫々図の様にガスを噴出及び吸引させた例であ
シ、いずれも前述の各効果が十分に発揮される。
Second, a part of the ejected gas is recovered, and in some cases, it can be mixed and reused as is in the ejected gas, so that the gas cost can be reduced. However, if the suction (Ill) becomes less than atmospheric pressure, there is a risk that the associated hole electrode layer will be pulled toward the lower end of the tttt rod, so it is necessary to maintain it at a high voltage or higher. This is an example in which the gas suction port 5' is used, and a part of the gas ejected from the former is consumed for destruction and dispersion of the accompanying static layer, and the remaining part runs parallel to the film to create the atmosphere of the discharge section that forms the core a. After forming, the gas is collected from the gas suction port 5'. Fig. 16 shows an example in which sintered metal is added to the ejection port 5 and suction port 5', and Figs. 17 and 18 correspond to Figs. 11 and 12. However, the above-mentioned effects are fully exhibited in both examples in which gas is ejected and sucked as shown in the figure.

第19図は’Fl棒8の前後にプレー)12.12を接
近配設した例であシ、プレー)12の下端部に膨みを持
たせると共にガス噴出パイプ11を配設する。そしてt
&8とプレー)12の間隙内を上方から吸引して上方へ
のガス流を形成する様にしながらパイプ11よりガスを
噴出させると、噴出ガスの一部は前述の膨み部から放出
゛され、特に入口側では随伴空気層を破壊拡散する。そ
して内部は電極8の下面を豊った後、又は直接上方へ吸
引されていく。第20図は′ffL捧8の中央に第15
図と同様のガス吸引口5′を形成した例、第21肉はそ
の前面に焼結金属を添設した例、第22肉は入口側にの
みプレート12を設け、プレー)12の電極80間隙か
らガスを噴出させると共に′FiL極8の底部全面から
もガスを噴出させ、一方プレー)12の膨み部にガス吸
引管14を臨オせて噴出ガスを吸引させる例で、この例
では随伴空気層の一部が吸引管14内へ押込まれていく
。@2B図は第12.18図の髪形例で、元々一体のガ
ス電極8の先端に焼結金属を添装し、中央のガス哨出口
5については焼結金属の先端まで崗通させて形成し、両
脇のガス吸引口5′は焼結金属の手前で止めている。ぞ
して噴出口5を出たガスは矢印の様に流れて吸引口5′
から回収されていくが、遂に吸引口5′側からガスを噴
出させ噴出口541J1からガスを吸引する椰に変更し
ても良い。
FIG. 19 shows an example in which the plate 12.12 is disposed close to the front and rear of the Fl rod 8. The lower end of the plate 12 is bulged and a gas ejection pipe 11 is provided. and t
&8 and play) When gas is ejected from the pipe 11 while sucking the inside of the gap 12 from above to form an upward gas flow, a part of the ejected gas is released from the aforementioned bulge, Particularly on the inlet side, the accompanying air layer is destroyed and diffused. Then, the inside fills the lower surface of the electrode 8, or is sucked directly upward. Figure 20 shows the 15th mark in the center of 'ffL dedication 8.
An example in which a gas suction port 5' similar to the one shown in the figure is formed, the 21st plate is an example in which sintered metal is attached to the front side, and the 22nd plate is provided with a plate 12 only on the inlet side, and the plate 12 has an electrode 80 gap. In this example, gas is ejected from the bottom of the FiL pole 8, and gas is also ejected from the entire bottom of the FiL pole 8, while the gas suction pipe 14 is placed over the swollen part of the plate 12 to suck the ejected gas. A portion of the air layer is pushed into the suction tube 14. Figure @2B is an example of the hairstyle shown in Figure 12.18, in which sintered metal is added to the tip of the gas electrode 8, which was originally integrated, and the central gas outlet 5 is formed by passing the sintered metal through to the tip. However, the gas suction ports 5' on both sides are stopped in front of the sintered metal. The gas that exits the spout 5 flows in the direction of the arrow and reaches the suction port 5'.
However, the gas may be finally ejected from the suction port 5' side and the gas may be sucked from the spout port 541J1.

@24〜26図は電極2本を夫々独立させて併設した例
を示し、第6〜28図に示した電極をそのまま2本又は
8本以上併設するか、複数電極の相互関係を利用するこ
とによって前述の各効果を更に顕著なものとすることが
推奨される。まず第24図は無加工の電極を2本並べ、
その開から下向きにガスを流し、図の如くガスを噴出さ
せる例であシ、第25図は第20 、24図の考えを応
用し第20図における、ガス吸引口5′を電極の両脇に
構成したものである。最後に第26図は第7は1の電極
と第6図の電極を、ガス吸引間隙16を残す様に2本並
べた例であシ、噴出ガスは矢印で示す方向に流れる。
@Figures 24 to 26 show examples in which two electrodes are installed independently, and two or eight or more of the electrodes shown in Figures 6 to 28 may be installed as they are, or the mutual relationship of multiple electrodes may be utilized. It is recommended that each of the above-mentioned effects be made more remarkable by the following. First, in Figure 24, two unprocessed electrodes are lined up,
This is an example in which gas flows downward from the opening and the gas is ejected as shown in the figure. Figure 25 is an example in which the idea of Figures 20 and 24 is applied, and the gas suction ports 5' in Figure 20 are connected to both sides of the electrode. It is composed of Finally, FIG. 26 is an example in which two electrodes, the seventh electrode and the second electrode in FIG. 6, are arranged so as to leave a gas suction gap 16, and the ejected gas flows in the direction shown by the arrow.

上記各実施例では電極の下端を平担なものとして説明し
たが、鋭角又は鈍角吠に尖らせたもの、半球状に丸味を
もたらせたもの、あるいはこれらをフィルム通過方向へ
2段以上に繰返えさせたもの(例えば鋸歯状等・・・・
・・)であってもよく、要は通過するプラスチック成形
物のコロナ放電処理面に対して不活性ガスを吹付ける上
で不都合のない構成であれはどの様な電極積重であって
も良い。
In each of the above embodiments, the lower end of the electrode was explained as being flat, but it may be pointed at an acute angle or an obtuse angle, rounded into a hemispherical shape, or in two or more steps in the film passing direction. Repeated patterns (e.g. serrations, etc.)
), in short, any electrode stacking may be used as long as it does not cause any inconvenience in spraying inert gas against the corona discharge treated surface of the plastic molded material passing through. .

本発明の構成は上述の通シであるが、コロナ放電処理効
果を高める為の手段を別途付加することは自由であシ、
該手段が公知であるか否かを問わず全て本発明に含まれ
る。この様な手段としては、プラスチック成形物をコロ
ナ放電と同時期、又は前もって加温することが例示され
、具体的には火炎によって予備処理を施すことや、プラ
スチック成形物がフィルムの様な長尺物である場合に予
め調温ロールを通して長尺物を予熱したシ、金属ドラム
そのものを温めておくことが推奨される。もつとも本発
明においては、吹付けるべき不活性ガスが電極との接触
によって十分予熱されているので、上記の手段を付加し
なくともコロナ放電処理効果は極めて高いものが得られ
る。
Although the configuration of the present invention is as described above, it is free to add additional means to enhance the corona discharge treatment effect.
All such means are included in the present invention, regardless of whether they are known or not. Examples of such means include heating the plastic molded product at the same time as the corona discharge or in advance.Specifically, pretreatment with flame, or if the plastic molded product is a long piece such as a film. If the object is a metal drum, it is recommended to preheat the long object through a temperature control roll or warm the metal drum itself. However, in the present invention, since the inert gas to be blown is sufficiently preheated by contact with the electrode, an extremely high corona discharge treatment effect can be obtained without adding the above-mentioned means.

次に本発明の実施例及び比較例を説明する。Next, examples and comparative examples of the present invention will be described.

第1図の装置を用いてアイツタクチイックポリプロピレ
ン(但しポリオキシエチレンアルキルアミン=0.6重
量係混合)の2軸延伸フイルム(1’Nさ20 # t
n )のコロナ放電処理を行なった。処理条件及び結果
は第1表に示す。伺比較例1として大電中でコロナ放電
処理(窒素ガス吹付けなし)〜 を行ない、又比較例2として電極カバー内に窒素ガスを
注入しつつ(但し窒素ガス吹付けを行なわないで)コロ
ナ放電処理を行なった。夫4の処3Jp条件及び結果は
第1表に併記した。
Using the apparatus shown in Fig. 1, a biaxially stretched film (1'N 20 #t) of tactical polypropylene (polyoxyethylene alkylamine = 0.6 weight ratio mixed)
n) corona discharge treatment was performed. The treatment conditions and results are shown in Table 1. As Comparative Example 1, corona discharge treatment (without nitrogen gas spraying) was performed in a large electric current, and as Comparative Example 2, corona discharge treatment was performed while nitrogen gas was injected into the electrode cover (but without nitrogen gas spraying). A discharge treatment was performed. Husband 4's 3Jp conditions and results are also listed in Table 1.

実施例においては、比較例1.2と同一電圧であっても
面電流が得られておυ又接着特性においても極だって優
秀な結果が得られた。特に比較例2(単なる低酸累算囲
気)よりも明らかに良好な結果が得られた。
In the example, even at the same voltage as in Comparative Example 1.2, a surface current was obtained, and extremely excellent results were obtained in terms of adhesive properties. In particular, clearly better results were obtained than in Comparative Example 2 (simply a low acid cumulative atmosphere).

尚電極カバー内の酸素濃度を1係に高めて実施例及び比
申父例2を両実験したところ、比較例2では比較例1並
みの結果になったが、実施例でtよ良好な結果が持続さ
れた。
In addition, when the oxygen concentration in the electrode cover was increased to 1% and both the Example and Comparative Example 2 were tested, the results in Comparative Example 2 were similar to those in Comparative Example 1, but the results in Example were better than t. was sustained.

本発明の構成は以上述べた通りであるから、以下要約し
て述べる様な種々の効果が得られる。
Since the configuration of the present invention is as described above, various effects can be obtained as summarized below.

fl)ブリスチツク成形物の表面に随伴してコロナ放電
処理部に搬入されてぐる大気層が、該岩面へ吹付けられ
る不活性ガスによって確実に破壊分散される。従ってコ
ロナ放電部の雰囲気中に大−i−/+1混入することは
極めて少なくなυ、ガス縫が少な(ても確実に所望算囲
気が形成される。        ”1(2)一方吹付
はガスは大剣及び酸素以外のガスであるから、コロナ放
電算囲気からは大剣が放遂され、且つ酸素濃度が低いも
のとなり、放wL雰囲気巾の酸素濃度が低くなる。
fl) The atmospheric layer carried into the corona discharge treatment section along with the surface of the brick molded product is reliably destroyed and dispersed by the inert gas blown onto the rock surface. Therefore, it is extremely unlikely that large -i-/+1 will be mixed into the atmosphere of the corona discharge area. Since it is a gas other than gas and oxygen, the gas is ejected from the corona discharge surrounding atmosphere and the oxygen concentration is low, resulting in a low oxygen concentration in the discharge wL atmosphere width.

(3)従って放電がN極の全面に亘って均一に行なわれ
ることとなシ、有効電、極面積が拡大されると共に、相
位面積当シの電流値及び電力値が増大する。換言すれば
同一電圧の下でも電流が飛躍的に増大し、実効電力密度
の増加によってコロナ放電処理効果が向上する。
(3) Therefore, the discharge is uniformly performed over the entire surface of the N pole, the effective electrode area and the pole area are expanded, and the current value and power value per phase area are increased. In other words, the current increases dramatically even under the same voltage, and the corona discharge treatment effect improves due to the increase in effective power density.

14)又夫々の雰囲気による特有の効果、例え聞2ガス
の存在によるプリスチック成形物表面でのアミノ基やイ
ミノ基の形成効果(酸素遮断性の向上効果)等が極めて
高度に発揮される。
14) In addition, the unique effects of each atmosphere, such as the effect of forming amino groups and imino groups on the surface of the plastic molded product (effect of improving oxygen barrier properties) due to the presence of two gases, are extremely highly exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状況を示す概念図、第2図は本発
明において用いる放電側電極の見取図、第8図は随伴大
気層の破壊状況を示す説明図、第4図は1に極力バーの
一例を示す説明図、第5〜26図は本発明において用い
る電極と噴出ガスの流れを例示的に示す説明図である。
Fig. 1 is a conceptual diagram showing the implementation status of the present invention, Fig. 2 is a sketch of the discharge side electrode used in the present invention, Fig. 8 is an explanatory diagram showing the state of destruction of the accompanying atmospheric layer, and Fig. 4 is as much as possible in 1. An explanatory diagram showing an example of the bar, and FIGS. 5 to 26 are explanatory diagrams illustrating the electrodes used in the present invention and the flow of ejected gas.

Claims (1)

【特許請求の範囲】[Claims] +11少なくとも1対の[1を対向させてなるコロナ#
[処理装置に、プラスチック成形物を連続的に搬入して
コロナ放電処理を行なうに当シ、放電0IIK極又はそ
の近傍からプラスチック成形物のコロナ放電熱増血に向
けて、該プラスチック成形物搬入速度の1チ以上の速度
で、空気組成以外の組成からなる単独又は混合気体を吹
付けながらコロナ放電処理を行なうことを特徴とするプ
ラスチック成形物表面のコロナ放電処理法。
+11 Corona formed by at least one pair of [1 facing each other #
[When plastic moldings are continuously carried into the processing equipment and subjected to corona discharge treatment, the speed at which the plastic moldings are carried is adjusted to increase the corona discharge heat blood of the plastic moldings from the discharge 0IIK pole or its vicinity. 1. A corona discharge treatment method for the surface of a plastic molded article, characterized in that the corona discharge treatment is performed while spraying a single gas or a mixture of gases having a composition other than air at a speed of 1 inch or more.
JP10821982A 1982-06-22 1982-06-22 Corona discharge treatment of plastic formed product surface Granted JPS58225133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10821982A JPS58225133A (en) 1982-06-22 1982-06-22 Corona discharge treatment of plastic formed product surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10821982A JPS58225133A (en) 1982-06-22 1982-06-22 Corona discharge treatment of plastic formed product surface

Publications (2)

Publication Number Publication Date
JPS58225133A true JPS58225133A (en) 1983-12-27
JPH0225935B2 JPH0225935B2 (en) 1990-06-06

Family

ID=14479049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10821982A Granted JPS58225133A (en) 1982-06-22 1982-06-22 Corona discharge treatment of plastic formed product surface

Country Status (1)

Country Link
JP (1) JPS58225133A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578176A1 (en) * 1985-03-04 1986-09-05 Electricite De France Process and device for treating a flat substrate by using corona discharge
JPS61204239A (en) * 1985-03-08 1986-09-10 Idemitsu Petrochem Co Ltd Surface-treatment of polypropylene resin
WO1997014546A1 (en) * 1995-10-13 1997-04-24 Arcotec Oberflächentechnik Gmbh Device for treating flat substrates by a corona station
WO1999006204A1 (en) * 1997-07-30 1999-02-11 Tdz Gesellschaft Für Innovative Oberflächenbehandlung Mbh Corona-type device for treating a substrate surface
JP2006134828A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Plasma processing equipment
US7431897B2 (en) * 2003-01-22 2008-10-07 Eltex Elektrostatik Gmbh Apparatus replacing atmospheric oxygen with an inert gas from a laminar air boundary layer and application of said apparatus
JP6183870B1 (en) * 2016-05-31 2017-08-23 春日電機株式会社 Surface reformer
EP3666376A4 (en) * 2017-08-09 2021-05-05 Kasuga Denki, Inc. Surface modification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838063U (en) * 1971-09-08 1973-05-10
JPS4917854A (en) * 1972-06-09 1974-02-16
JPS5147060A (en) * 1974-10-21 1976-04-22 Takano Denki Kogyo Kk KOSHUHAKORONAHODENSHORISOCHI
JPS5496582A (en) * 1978-01-17 1979-07-31 Toray Ind Inc Method of treating sheets with corona discharge
JPS5723634A (en) * 1980-07-17 1982-02-06 Tokuyama Soda Co Ltd Discharge treating apparatus of plastic film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838063U (en) * 1971-09-08 1973-05-10
JPS4917854A (en) * 1972-06-09 1974-02-16
JPS5147060A (en) * 1974-10-21 1976-04-22 Takano Denki Kogyo Kk KOSHUHAKORONAHODENSHORISOCHI
JPS5496582A (en) * 1978-01-17 1979-07-31 Toray Ind Inc Method of treating sheets with corona discharge
JPS5723634A (en) * 1980-07-17 1982-02-06 Tokuyama Soda Co Ltd Discharge treating apparatus of plastic film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578176A1 (en) * 1985-03-04 1986-09-05 Electricite De France Process and device for treating a flat substrate by using corona discharge
JPS61204239A (en) * 1985-03-08 1986-09-10 Idemitsu Petrochem Co Ltd Surface-treatment of polypropylene resin
JPH0374694B2 (en) * 1985-03-08 1991-11-27
WO1997014546A1 (en) * 1995-10-13 1997-04-24 Arcotec Oberflächentechnik Gmbh Device for treating flat substrates by a corona station
WO1999006204A1 (en) * 1997-07-30 1999-02-11 Tdz Gesellschaft Für Innovative Oberflächenbehandlung Mbh Corona-type device for treating a substrate surface
US7431897B2 (en) * 2003-01-22 2008-10-07 Eltex Elektrostatik Gmbh Apparatus replacing atmospheric oxygen with an inert gas from a laminar air boundary layer and application of said apparatus
JP2006134828A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Plasma processing equipment
JP4576983B2 (en) * 2004-11-09 2010-11-10 セイコーエプソン株式会社 Plasma processing equipment
JP6183870B1 (en) * 2016-05-31 2017-08-23 春日電機株式会社 Surface reformer
WO2017208706A1 (en) * 2016-05-31 2017-12-07 春日電機株式会社 Surface modifying device
KR20190015230A (en) * 2016-05-31 2019-02-13 가스가 덴끼 가부시끼가이샤 Surface modifying device
EP3466660A4 (en) * 2016-05-31 2019-12-25 Kasuga Denki, Inc. Surface modifying device
US10916412B2 (en) 2016-05-31 2021-02-09 Kasuga Denki, Inc. Surface modifying device
EP3666376A4 (en) * 2017-08-09 2021-05-05 Kasuga Denki, Inc. Surface modification device

Also Published As

Publication number Publication date
JPH0225935B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
KR890002565B1 (en) Manufacturing method of high adhesive polyolefin molding
JPS58225133A (en) Corona discharge treatment of plastic formed product surface
JPH0786145B2 (en) Method for treating moving substrate by plasma discharge and apparatus for implementing this method
IL187752A (en) Method and device for producing a nonwoven
KR20070047282A (en) Improved Electroblowing Web Forming Method
JPH07173751A (en) Method for operating fleece forming apparatus for forming belt-like spin fleece from thermoplastic synthetic resin andfleece forming apparatus
US3900538A (en) Method for surface treatment of plastics
DE69708144D1 (en) METHOD FOR DYNAMICALLY SEPARATING TWO ZONES WITH A CLEAN AIR CURTAIN
JPS5825780B2 (en) Manufacturing method of fiber strand pine
KR101999406B1 (en) Labyrinth seal, cleaning unit and method, and solution film-forming method
KR890012898A (en) Method and apparatus for coating a substrate, such as a glassy band, with powder
JPS58225132A (en) Corona discharge treatment of plastic formed product
KR20030022003A (en) Web heat treatment apparatus
JPS5723634A (en) Discharge treating apparatus of plastic film
EP0291026B1 (en) Method and apparatus for making matt and napped polymer materials
RU2198718C1 (en) Method of producing electret fine fibrous filter medium for respirators
JP3292924B2 (en) Continuous plasma grafting method
JPS5966430A (en) Preparation of highly adhesive molded polyolefin article
US3540587A (en) Method for depositing particles
EP0197215B1 (en) Method of activating down and fiber materials
US4676943A (en) Method and apparatus for producing longitudinally stretched thermoplastic film
JP2022081450A (en) A device for processing flexible strip-shaped materials, especially resin thin films, that pass through the processing furnace.
GB1013632A (en) Belt dryer
US3847729A (en) Deep-drawable plastic composite comprising plastic film on fibrous support
US5264989A (en) Apparatus for treating the surface of formed plastic articles using corona discharge