JPS59191737A - Production of highly adhesive polyester molding - Google Patents

Production of highly adhesive polyester molding

Info

Publication number
JPS59191737A
JPS59191737A JP6587883A JP6587883A JPS59191737A JP S59191737 A JPS59191737 A JP S59191737A JP 6587883 A JP6587883 A JP 6587883A JP 6587883 A JP6587883 A JP 6587883A JP S59191737 A JPS59191737 A JP S59191737A
Authority
JP
Japan
Prior art keywords
index
corona discharge
discharge treatment
oxygen
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6587883A
Other languages
Japanese (ja)
Other versions
JPH0561294B2 (en
Inventor
Tsutomu Isaka
勤 井坂
Hiromu Nagano
煕 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP6587883A priority Critical patent/JPS59191737A/en
Priority to FR8405943A priority patent/FR2544324B1/en
Publication of JPS59191737A publication Critical patent/JPS59191737A/en
Priority to US06/824,305 priority patent/US4717516A/en
Publication of JPH0561294B2 publication Critical patent/JPH0561294B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide the titled molding having excellent adhesion to various substrates, by carrying out a corona discharge treatment by spraying a gas having a specified oxygen content on a surface to be treated. CONSTITUTION:In the corona discharge treatment of a molding of a polyester composed of a dibasic acid residue composed of at least 80mol% of terephthalic acid and a glycol residue comprising continuously feeding it to a corona discharge treatment device, a gas contg. 20vol% or less oxygen or a gas mixture thereof is sprayed on the surface of the molding to be subjected to the corona discharge treatment to such an extent that the ratio (DELTA oxygen index/DELTA nitrogen index) of the rates of the changes of oxygen index and nitrogen index in the thin layer within 100Angstrom from the surface of the molding before and after the corona discharge treatment is 1.5-3.5, and the nitrogen index in the thin layer within 100Angstrom from the outermost surface of the molding after the corona discharge treatment is 3 or above, thus producing the titled highly adhesive polyester molding.

Description

【発明の詳細な説明】 本発明は、接着性の良いポリエステル成形物を製造する
方法に関し、詳細にはコロナ放電処理による成形物表層
の原子組成変化を調節することによって]−記ポリエス
テル成形物を得る方lノ、に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polyester molded article with good adhesiveness, and more specifically, by controlling the change in the atomic composition of the surface layer of the molded article by corona discharge treatment. It concerns how to obtain it.

コロナ放電によるプラスチック成形物の表面改質は、 
Hにフィルムを対象とする処理技術として知られ、表面
の活性化による接着性の向」−等の実質的な効果が得ら
れていた。しかしその結果は完全に満足できるものでは
ない。
Surface modification of plastic molded products by corona discharge is
It is known as a processing technique for film, and has achieved substantial effects such as "improving adhesiveness" by activating the surface. However, the results are not completely satisfactory.

木発明者等は特にポリエステル成形物に着目し、例えば
ポリエステルフィルムをコロナ放電処理に伺して表面改
質(特に接着性向上)を図るに)11す、実生産レベル
において十分満足し得る処理効率が(9られる様な方法
を確立しようと考えた。
The wood inventors have focused on polyester molded products, for example, applying corona discharge treatment to polyester films to improve their surface properties (particularly to improve adhesion)11. I thought of establishing a method that would allow (9).

例えばプラスチック成形品のコロナ放電処理法として、
特公昭4B−17747号にみられる如く、放電部に有
機溶剤を供給することによって放電面の化学変化を促進
させる技術があるが、残留溶剤が問題となる成形物への
適用は困難である。
For example, as a corona discharge treatment method for plastic molded products,
As seen in Japanese Patent Publication No. 4B-17747, there is a technique for promoting chemical changes on the discharge surface by supplying an organic solvent to the discharge section, but it is difficult to apply this to molded products where residual solvent is a problem.

又Journal of Applied Polym
er 5cience。
Also Journal of Applied Polym
er 5science.

Vol、15.P、13B5〜1375(+971)に
は不活性ガス雰囲気下でコロナ放電処理を行なう技術が
記載され、処理雰囲気による活性化又は劣化等の影響が
示唆されるに及び、大気雰囲気を例えば低酸素雰囲気に
置き換えて処理を行なう技術も提案される様になってき
た。しかしこの種の従来法では、大量の不活性ガスを必
要とするのでコスト高になるという問題があり、また走
行フィルムに対する不活性雰囲気下のコロナ放電技術で
は、フィルムに随伴して巻込まれる大気を遮断する為に
特殊なシールド棉造が必要で装置まわりが複雑になり、
それでも尚完全乃至略完全な不活性雰囲気が保障される
訳ではなく実質的には低酸素雰囲気が形成されたに過ぎ
ず、低処理レベルに41んじなければならなかった。
Vol, 15. P, 13B5-1375 (+971) describes a technique of performing corona discharge treatment in an inert gas atmosphere, and suggests that the influence of activation or deterioration due to the treatment atmosphere may be caused by changing the atmospheric atmosphere to, for example, a low-oxygen atmosphere. Techniques have also been proposed to perform processing in place of . However, this type of conventional method requires a large amount of inert gas, resulting in high costs.Furthermore, corona discharge technology for running film under an inert atmosphere eliminates atmospheric air entrained by the film. A special shield made of cotton is required to cut it off, making the equipment complex.
Even so, a complete or almost complete inert atmosphere was not guaranteed, and only a substantially low oxygen atmosphere was formed, so a low treatment level had to be maintained.

この様に従来の改善処理法で十分な成果を挙げることが
できない理由は次の様に考えることができる。即ち処理
効率を高める為のポインI・は、放電処理部におけるガ
ス雰囲気にあると考えられるが、従来の改善法では中に
処理系内やチャンバー内のガス雰囲気のみを問題として
おり、被処理物表層部の随伴流(外気)による遮蔽障害
を考慮していない為と思われる。従ってパッチ式の静1
1−状態で処理を行なえば前述の様な障害は軽減される
であろうが、それでは工業生産性が著しく低下して市場
価格が高騰するので、限られた用途にしか実用化するこ
とができない。しかも前述の様な連続処理で処理効果を
高めようとすると、処理速度はいきおい低下せざるを得
なくなるが、それでは被処理物表面が損傷されて外観不
良、接着性不良、ブロッキングの増大等の問題が派生し
てくる。尚従前の大気雰囲気下でのコロナ放電処理では
、被処理物の表面が酸化を受けて表面に酸化劣化物が生
成するので、処理度合を進めても接着性を一定しベル以
」二に向」−させることはできない。
The reason why conventional improvement processing methods cannot achieve sufficient results can be considered as follows. In other words, the key to improving processing efficiency is thought to be the gas atmosphere in the discharge processing section, but conventional improvement methods only address the gas atmosphere within the processing system or chamber; This seems to be because shielding failure due to accompanying flow (outside air) in the surface layer is not taken into consideration. Therefore, patch type static 1
Processing in the 1-state would alleviate the above-mentioned problems, but this would significantly reduce industrial productivity and raise market prices, making it practical only for limited applications. . Moreover, if we try to increase the processing effect through continuous processing as described above, the processing speed will inevitably slow down, but this will damage the surface of the processed object and cause problems such as poor appearance, poor adhesion, and increased blocking. is derived. In conventional corona discharge treatment under atmospheric conditions, the surface of the object to be treated is oxidized and oxidized deterioration products are generated on the surface. ” - cannot be made to do so.

木発明者等はこの様な事情をかねてより3虜し、当初は
従来通りコロナ放電処理技術そのものを改善対象とする
研究を重ねてきた。その結果酸素含有量20容量%以下
の単独組成又は複合組成気体を処理面に吹付けた場合は
、成形物表面の酸素ガス量は極めて微量となり、主とし
て窒素ガスの影響を直接受けた処理効果が得られること
を知り本発明の完成に至ったものである。酸素含有量2
0容量%以下の単独組成又は複合組成気体を吹付けた場
合に、コロナ放電面が主として窒素ガスによる影響を強
く受ける様になる理由については、これを十分に解明し
得ていないが、一応次の様に占えることができる。即ち
コロナ放電部に移送されてくる成形物の表面には、該表
面特性や移送速度によって異なるが相当量の空気が随伴
されており、その組成は、−・般に酸素:21容量%、
窒素=78容量%である。一方成形物表面の随伴空気組
成は、前述の如き通常の手段、例えばチャンバー内の雰
囲気調整等によっては簡単に変更されないが、本発明に
よる前記吹付手段を採用した場合には、吹伺気体が随伴
空気層の一部又は全部を放逐して置換するので随伴空気
層の組成が変化することになる。この変化は酸素21容
量%の空気が酸素20容聞%以下の吹伺ガスによって置
換されることによるものであるから、相対的に酸素濃度
が低下し、主成分として存在する窒素ガスの影響が逆に
増大することになり、従来の大気雰囲気下におけるコロ
ナ放電処理では得られない効果が発揮される。尚」−記
考察で述べた様に様に酸素含有闇が20容早%以下のガ
スを吹イ1ける点にポイントが存在するものであるから
、酸素以外の気体成分としては、窒素ガス、アルゴンガ
ス、ヘリウ1、ガス、)2 mガス等の如何を問わず、
又それらの単独組成であっても良く、いずれの場合も、
窒素ガスによる影響が大きく現われてくることになる。
The wood inventors have been fascinated by this situation for some time, and at first they conducted research aimed at improving the corona discharge treatment technology itself, as usual. As a result, when a single composition or composite composition gas with an oxygen content of 20% by volume or less is sprayed onto the treated surface, the amount of oxygen gas on the surface of the molded product is extremely small, and the treatment effect is mainly affected by the direct influence of nitrogen gas. After learning that this could be obtained, the present invention was completed. Oxygen content 2
The reason why the corona discharge surface becomes strongly influenced mainly by nitrogen gas when a single composition gas or a composite composition gas of 0% by volume or less is sprayed has not been fully elucidated, but the following is tentatively explained. It can be predicted as follows. That is, the surface of the molded product transferred to the corona discharge section is accompanied by a considerable amount of air, although it varies depending on the surface characteristics and the transfer speed, and its composition is generally: - Oxygen: 21% by volume,
Nitrogen = 78% by volume. On the other hand, the composition of the entrained air on the surface of the molded product cannot be easily changed by the above-mentioned ordinary means, such as adjusting the atmosphere in the chamber, but when the blowing means according to the present invention is adopted, the entrained air composition is Since part or all of the air layer is expelled and replaced, the composition of the accompanying air layer changes. This change is due to air containing 21% oxygen by volume being replaced by blowing gas containing less than 20% oxygen by volume, so the oxygen concentration decreases relatively and the effect of nitrogen gas, which is present as the main component, is reduced. On the contrary, it increases, and an effect that cannot be obtained by conventional corona discharge treatment under an atmospheric atmosphere is exhibited. As mentioned in the discussion above, there is a point in blowing gases that contain less than 20% oxygen, so gaseous components other than oxygen include nitrogen gas, Regardless of argon gas, helium gas, )2 m gas, etc.
Alternatively, they may be used alone, and in either case,
The effect of nitrogen gas will become significant.

以1―述べた様なコロナ放電処理技術の改良成果を踏ま
えてポリエステル成形物への適用を試みたところ、ブロ
ッキング性や滑り等の面において不都合な点を生しず、
接着性が顕著に改善され、又高11.λ・高湿下でも接
着性が低下しないということを確認し、本発明を完成す
るに至った。
Based on the improved results of the corona discharge treatment technology as described above, we attempted to apply it to polyester molded products.
The adhesion was significantly improved and the height was 11. It was confirmed that the adhesiveness did not decrease even under λ and high humidity, and the present invention was completed.

即ち本発明の要旨は次の点に存在する。That is, the gist of the present invention lies in the following points.

80モル%以」二がテレフタル酸で構成される二基X酸
残基とグリコール残基とから構成されるポリエステルの
成形物を、少なくとも1対の電極を対向させてなるコロ
ナ放電処理装置へ連続的に移送してコロナ放電処理を行
なうに当り、該成形物のコロナ放電処理面に対して酸素
含有量20容邦%以下の単独組成又は複合組成気体を吹
イづけ、該処理物表面の100A以内の薄層における酸
素指数及び窒素指数のコロナ放電処理前・後における各
変化間の比[Δ酸素指数/Δ窒素指数]を 1.5乃至
−3,5、同じく被処理物表面の最外面から100A以
内の薄層部分におけるコロナ放電処理後の窒素指数を3
以」−とすることを特徴とする高接着性ポリエステル成
形物の製造方法。
80 mol% or more of polyester molded product consisting of two groups of X-acid residues consisting of terephthalic acid and glycol residues is continuously fed to a corona discharge treatment device comprising at least one pair of electrodes facing each other. When carrying out corona discharge treatment by transferring the molded article to the surface of the molded article, a gas of a single composition or a composite composition having an oxygen content of 20% or less is blown onto the corona discharge treated surface of the molded article. The ratio between each change in oxygen index and nitrogen index before and after corona discharge treatment in the thin layer within [Δ oxygen index / Δ nitrogen index] is 1.5 to -3.5, and the outermost surface of the surface of the treated object The nitrogen index after corona discharge treatment in the thin layer part within 100A from
A method for producing a highly adhesive polyester molded article, characterized in that:

(世し酸素指数及び窒素指数は次の方法によって求めた
。即ちESCAスペクトロメーターES−200型(国
際電気株式会社製)を用い、成形品表面の炭素の1s軌
道スペクI・ルから求めた積分強度と、酸素のls軌道
スペクi・ルから有機性窒素の結合エネルギーに対応す
るピークより求めた積分強度との比を算出し、その積分
比に基づいて炭素数100個当りの酸素数を求め、この
値を酸素指数と定義する。又窒素指数についても同様の
方法によって炭素数100個当りの窒素数を求め、これ
を窒素指数と定義する。) 本発明の対象となるポリエステルは、二塩基酸(ただし
該二塩基酸のうち80モル%以上がテレフタル酸である
)残基とグリコール残基とから構成されたポリエステル
である。この二塩基酸残基は主としてテレフタル酸残基
であるが、20モル%以下の他の二塩基酸残基としては
イソフタル酸、フタル酸、アジピン酸、セパチン酸、コ
ハク酸、シュウ酸等の残基があり、又p−ヒドロキシ安
息香酸等のオキシ酸の残基も使用することができる。ま
た、グリコール残基とは、通常のアルキレングリコール
残基であって、エチレングリコール、プロピレングリコ
ール、トリメチレングリコール、テトラメチレングリコ
ール、ヘキサメチレングリコール、シクロヘキサンジメ
タツール等の残基を例示することができるが、特に実用
的にはエチレングリコール、テトラメチレングリコール
、シクロヘキサンジメタツールの残基を使用する。特に
実用的な重合体はポリエチレンテレフタレートまたはポ
リテトラメチレンテレフタレートである。
(The oxygen index and nitrogen index were determined by the following method. Using an ESCA spectrometer ES-200 model (manufactured by Kokusai Electric Co., Ltd.), the integral was determined from the 1s orbital spectrum of carbon on the surface of the molded product. Calculate the ratio between the intensity and the integrated intensity obtained from the peak corresponding to the binding energy of organic nitrogen from the ls orbital spectrum of oxygen, and calculate the number of oxygen per 100 carbon atoms based on the integral ratio. , this value is defined as the oxygen index. Also, regarding the nitrogen index, the number of nitrogen per 100 carbon atoms is determined by the same method and this is defined as the nitrogen index.) The polyester that is the object of the present invention is a dibasic It is a polyester composed of acid residues (80 mol% or more of the dibasic acid is terephthalic acid) and glycol residues. This dibasic acid residue is mainly a terephthalic acid residue, but other dibasic acid residues of up to 20 mol% include isophthalic acid, phthalic acid, adipic acid, cepatic acid, succinic acid, oxalic acid, etc. groups, and also residues of oxyacids such as p-hydroxybenzoic acid can be used. In addition, the glycol residue is a normal alkylene glycol residue, and examples thereof include residues such as ethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, and cyclohexane dimetatool. However, particularly practically, residues of ethylene glycol, tetramethylene glycol, and cyclohexane dimetatool are used. A particularly useful polymer is polyethylene terephthalate or polytetramethylene terephthalate.

本発明の成形物としては、フィルムやシート(以下栄に
フィルムという)がもっとも代表的なものとして例示さ
れ、無延伸フィルム、1軸延伸フイルム、2軸延伸フイ
ルム等に適用されるが、その他の成形物としては、繊維
、パイプ、テープ、織物、不織布等の長尺物が挙げられ
る。
The most typical example of the molded product of the present invention is a film or sheet (hereinafter referred to as a film), and it is applicable to unstretched films, uniaxially stretched films, biaxially stretched films, etc., but other Examples of molded articles include long articles such as fibers, pipes, tapes, woven fabrics, and nonwoven fabrics.

前記ポリエステルを用いて上記成形物を形成する場合、
ポリエステル単独から製造しても良いが、該ポリエステ
ル成形物の性状に悪影響を与えない範囲で他のポリマー
成分を配合してもよく、一般的には全組成物重量に対し
て20重都%以下の範囲で配合する。尚配合しても良い
ポリマー成分は成形物の種類及び性状を考慮して決定す
れば良い。
When forming the molded article using the polyester,
Although it may be produced from polyester alone, other polymer components may be blended within the range that does not adversely affect the properties of the polyester molded product, and generally it is not more than 20% by weight based on the total weight of the composition. Mix within the range. The polymer components that may be blended may be determined in consideration of the type and properties of the molded product.

又ポリマー成分以外に、成形品の種類及び用途を勘案し
て安定剤、滑剤、耐ブロッキング剤、防曇剤、紫外線吸
収剤、難燃剤、透明化剤、酸化防止剤、耐光剤、帯電防
止剤、染料、顔料等の添加剤が含有されていてもよ〈、
コロナ放電の実施に悪影響を及ぼさないものは単独及び
複合の如何を問わず全て本発明の対象として含まれる。
In addition to polymer components, stabilizers, lubricants, anti-blocking agents, antifogging agents, ultraviolet absorbers, flame retardants, clarifying agents, antioxidants, light stabilizers, and antistatic agents are added based on the type and purpose of the molded product. , may contain additives such as dyes and pigments.
All materials that do not adversely affect the performance of corona discharge are included in the scope of the present invention, regardless of whether they are used singly or in combination.

上記の如き材料からなるポリエステル組成物を用いてポ
リエステル成形物を製造するに当っては、各成形物毎に
夫々公知となっている方法に従えば良く、製造手段の特
異性によって本発明の範囲から逸脱することはない。従
って成形物の製造法は自由に選択すれば良いが、本発明
の適用される代表的な成形物はフィルムであるから、該
フィルムの製造法について説明すると次の通りである。
In producing a polyester molded article using a polyester composition made of the above-mentioned materials, a known method may be followed for each molded article, and the scope of the present invention may be determined depending on the specificity of the manufacturing method. There is no deviation from this. Therefore, the method for producing the molded product may be freely selected, but since the typical molded product to which the present invention is applied is a film, the method for producing the film will be explained as follows.

即ちI−記組成物原料を、通常のポリエステルフィルム
成膜法、例えばT−グイ法やインフレーション法によっ
て成膜することにより、まず未延伸フィルムが成形され
る。そしてこれを1軸又は2輔方向に延伸すれば強度的
に満足できるフィルムが得られる。そして次に述べるコ
ロナ放電処理は、延伸工程の後段において、製膜全工程
のうちの1つとして実施しても良く、場合によって1±
いったん巻取られた製品を再び置換えながらコロナ放電
を施す方法を採用することもある。
That is, an unstretched film is first formed by forming a film from the raw material of the composition in I- by a normal polyester film forming method, such as the T-Guy method or the inflation method. If this is stretched in one or two directions, a film with satisfactory strength can be obtained. The corona discharge treatment described below may be performed as one of the entire film forming process at the latter stage of the stretching process, and in some cases, the corona discharge treatment
Sometimes a method is adopted in which corona discharge is applied while replacing the product once it has been rolled up.

本発明では上記ポリエステル成形物を処理対象とし、少
なくとも1対の電極を対向させてなるコロナ放電処理装
置に前記成形物を連続的に移送して表面処理を行なうが
、この処理に当たり処理面に対して酸素含有量20容量
%以下の単独組成又は複合組成の気体[具体的には空気
から酸素の一部を適当量除いたものや、空気へ酸素以外
のものを適当♀追加したもの、更にはN2弔独又はこれ
にH2、Ar、CO2,Xe、Kr、CI2、NH3、
NOX等の不活性ガスやイオン性ガスを混合したもの等
(以下便宜上不活性ガスと略記する)]を吹伺ける。吹
(−1速度は特に限定されないが、好ましくは前記ポリ
エステル成形物の移送速1朗の1%以−」二とする。そ
して後に詳述する如く、被処理表面の最外面から100
A以内の薄層部分におけるコロナ放電処理前・後の酸素
指数及び窒素指数の関係を厳密に規定することによって
、各種素材(例えば金属;各種インキ、殊にセルローヌ
系インキや水性インキ等;樹脂、例えば塩化ビニリデン
系単独又は共重合体や官能基含有樹脂等)との接着性が
極めて優れたポリエステル成形物を得ることができる。
In the present invention, the above-mentioned polyester molded product is treated, and the molded product is continuously transferred to a corona discharge treatment device having at least one pair of electrodes facing each other for surface treatment. A gas with a single composition or a composite composition with an oxygen content of 20% by volume or less [specifically, a gas from which an appropriate amount of oxygen has been removed from air, a gas from which an appropriate amount of something other than oxygen has been added to air, and N2 or H2, Ar, CO2, Xe, Kr, CI2, NH3,
A mixture of inert gas such as NOX or ionic gas (hereinafter abbreviated as inert gas for convenience) can be blown. The blowing speed is not particularly limited, but is preferably 1% or more of the transfer speed of the polyester molded material.As will be detailed later, the speed is 100% from the outermost surface of the surface to be treated.
By strictly specifying the relationship between the oxygen index and nitrogen index before and after corona discharge treatment in the thin layer part within A, various materials (e.g. metals; various inks, especially cellulone inks, water-based inks, etc.); resins, For example, it is possible to obtain a polyester molded product having extremely excellent adhesion to vinylidene chloride (single or copolymers, functional group-containing resins, etc.).

以下実施例図面に準拠しつつ本発明の構成及び作用効果
を明らかにしていくが、図面に示す放電側電極の構造や
配列、更にはカバーの形状等は代1 表側であるに過ぎず、又図面ではプラスチックフィルム
への適用例を示したに過ぎないから、これらの説明の趣
旨に反しないという条件の下で設計を変更することは本
発明の技術的範囲に含まれる。
The structure and effects of the present invention will be clarified below based on the drawings of the embodiments, but the structure and arrangement of the discharge side electrodes, the shape of the cover, etc. shown in the drawings are only representative. Since the drawings merely show an example of application to a plastic film, it is within the technical scope of the present invention to change the design on the condition that it does not go against the spirit of these descriptions.

第1図は本発明の実施概念を示す要部断面図、第2図は
放電側電極の一部を示す斜視図であって、図中の1は金
属ドラム、2は電極カバー、3は放電側電極、4はガス
供給管、5はガス噴出1−1.6は走行フィルムを示す
。即ちフィルム6は矢印A方向に回転する金属ドラム1
に対して矢印B方向から導入され、更に矢印C方向へ引
出されて行くが、図示しない高電圧発生機に接続されて
いる放電側電極3と、ポリエステル、エポキシ樹脂、セ
ラミック、クロルスルホン化ポリエチレン、EPラバー
、シリコンゴム等でカバーされた金属ドラム1との間に
数百KC/Sの高周波で数千ないし数百Vの高電圧をか
けることによって発生する高圧コロナの影響を受け、例
えば自然の大気中であればオゾンや酸化窒素が生成して
フィル2 ムロの表面にカルボニル基やカルボキシル基を生せしめ
ることにより表面が極性化される。一方従来例であれば
、大気中の酸素によってフィルム表面に接着性を阻害す
る酸化劣化物が生成する。しかし木図例であれば、コロ
ナ放電の雰囲気全体を電極カバー2によって大気から遮
断すると共に、放電側電極3にガス噴出口5を設はフィ
ルム6の表面に向けて不活性ガスを吹伺ける様に構成し
ているので、随伴空気層中の酸素含有邦が実質的に減少
し、それによって前述の障害が解消され、又窒素ガスの
影響が大きく現われることによってフィルム6表層部へ
のコロナ放電効果が最大限に高められる。
FIG. 1 is a sectional view of a main part showing the implementation concept of the present invention, and FIG. 2 is a perspective view showing a part of the discharge side electrode, in which 1 is a metal drum, 2 is an electrode cover, and 3 is a discharge side electrode. The side electrodes, 4 are gas supply pipes, 5 are gas jets 1-1.6 are running films. That is, the film 6 is attached to the metal drum 1 rotating in the direction of arrow A.
The discharge side electrode 3 is introduced from the direction of arrow B and further pulled out in the direction of arrow C, and is connected to a high voltage generator (not shown), and the discharge side electrode 3 is connected to a high voltage generator (not shown), and polyester, epoxy resin, ceramic, chlorosulfonated polyethylene, Under the influence of high-pressure corona generated by applying a high voltage of several thousand to several hundred V at a high frequency of several hundred KC/S between the metal drum 1 covered with EP rubber, silicone rubber, etc., If it is in the atmosphere, ozone and nitrogen oxides are generated and carbonyl groups and carboxyl groups are formed on the surface of the film, thereby polarizing the surface. On the other hand, in the conventional example, oxygen in the atmosphere generates oxidized deterioration products on the film surface that inhibit adhesion. However, in the tree example, the entire corona discharge atmosphere is isolated from the atmosphere by the electrode cover 2, and a gas outlet 5 is provided on the discharge side electrode 3 to blow inert gas toward the surface of the film 6. Since the nitrogen gas is configured in a similar manner, the oxygen content in the entrained air layer is substantially reduced, thereby eliminating the above-mentioned problem, and the influence of nitrogen gas is greatly increased, thereby reducing corona discharge to the surface layer of the film 6. The effect can be maximized.

この状況を更に詳述すれば、次の通りである。This situation will be explained in more detail as follows.

即ち矢印B方向に沿って相当の高速度で進入してくるフ
ィルム6の表面には、若干ながら随伴空気層が形成され
ており、コロナ放電部の雰囲気が不活性ガスによって置
換されても、フィルム6の表面自体は相変らず大気雰囲
気になっている。従って本発明を実施するに当っては、
第3図に示す如く不活性カスをフィルム表面へ強く吹伺
け、随伴空気層7を噴気流8により破裂分散させること
によって、フィルム表面の随伴空気層7におけるガス組
成を変更して窒素ガスの比率を高める。又場合によって
はその表面を不活性ガスでほぼ完全に置換する。随伴空
気層7を破裂分散させて」−記効果を得るのに必要な噴
気流8の流速は被処理物の形状や寸法及び処理装置への
搬入速度等によって変わるので一律に決めることはでき
ないが、実験の結果随伴空気層7の進入速度(換言すれ
ば被処理物の搬入速度)を基準にして定めるのが最も好
ましいことが分かった。即ち不活性ガスの噴気流速を被
処理物の搬入速度の1%以上、好ましくは10%以上、
更に好ましくは40%以」二にしてやれば、随伴空気層
7を実質」二の不都合がない程度にまで破壊分散させる
ことができる。尚噴出ガスのフィルムへの吹伺角度は有
効角度を求めて自由に選び得る。被処理物の搬入速度は
一般に1〜500m/分程度である。
In other words, a slight entrained air layer is formed on the surface of the film 6 that enters at a fairly high speed along the direction of arrow B, and even if the atmosphere in the corona discharge section is replaced with an inert gas, the film The surface of 6 is still in an atmospheric atmosphere. Therefore, in carrying out the present invention,
As shown in FIG. 3, by strongly blowing inert scum onto the film surface and bursting and dispersing the entrained air layer 7 with the jet stream 8, the gas composition in the entrained air layer 7 on the film surface is changed and nitrogen gas is Increase the ratio. In some cases, the surface is almost completely replaced with an inert gas. The flow velocity of the jet stream 8 necessary to obtain the effect described above by bursting and dispersing the accompanying air layer 7 cannot be determined uniformly because it varies depending on the shape and size of the object to be treated, the speed at which it is carried into the processing equipment, etc. As a result of experiments, it was found that it is most preferable to determine the speed based on the speed of entry of the entrained air layer 7 (in other words, the speed of transport of the material to be treated). That is, the inert gas jet velocity is set to 1% or more, preferably 10% or more, of the conveyance speed of the material to be treated.
More preferably, by increasing the amount to 40% or more, the entrained air layer 7 can be destroyed and dispersed to such an extent that the disadvantages described above are not substantially eliminated. The angle at which the ejected gas blows onto the film can be freely selected depending on the effective angle. The speed at which the material to be processed is carried in is generally about 1 to 500 m/min.

この様な条件を採用することによって随伴空気層を破壊
分散させることがせきる様になり、11つ同時にコロナ
放電部の近傍を不活性カス雰囲気で保護することが可能
となるので、te1図に示した電極カバー2は、雰囲気
保持用としての機能よりも、むしろ電極3を機械的な衝
幣から保護するという機能が第1義的となり、随伴流を
抑制する機能が第2義的になる。従って本発明の実施に
当っては、時に電極カバー2を取外すこともあり得るが
、不活性ガスの消費量を抑制する為には、雰囲気保持用
としての機能を改めて見直すことが望ましく、例えば第
4図に示す如くカッへ−2の下端(フィルム側)を絞る
と同時に、導管10から不活性ガスをカバー2内へ導入
すれば、該ガスは斜面9の内面に沿って収束される様に
矢印方向へ流れ、カバー2の入11においてガスカーテ
ン効果が発揮される。即ち随伴空気層の侵入が入■1側
で遮断され、電極カバー2の価値が一段と向上する。
By adopting such conditions, the accompanying air layer can be destroyed and dispersed, and the vicinity of the 11 corona discharge parts can be protected with an inert gas atmosphere at the same time. The electrode cover 2 shown has a primary function of protecting the electrode 3 from mechanical impact rather than an atmosphere maintenance function, and a secondary function of suppressing the accompanying flow. . Therefore, when implementing the present invention, the electrode cover 2 may be removed from time to time, but in order to suppress the amount of inert gas consumed, it is desirable to reconsider its function as an atmosphere-maintaining device. As shown in Fig. 4, if the lower end (film side) of the cup 2 is squeezed and at the same time inert gas is introduced into the cover 2 from the conduit 10, the gas will be converged along the inner surface of the slope 9. The gas flows in the direction of the arrow, and a gas curtain effect is exerted at the entrance 11 of the cover 2. That is, the intrusion of the accompanying air layer is blocked on the input side 1, and the value of the electrode cover 2 is further improved.

更に第5図に示す如く特に入[1部に延長カバー11を
設は成形物表面に接近させておけばカバー5 2内から洩出してくる不活性ガスが延長カバー11内に
充満されることになるので、カバー11から進入してき
た随伴空気層も、カバー11内を進行するにつれて少し
ずつ破壊分散される。従ってコロナ放電雰囲気部に到達
して時点では、不活性ガスによる置換度が極めて高くな
り、本発明の効果が一層顕著に発揮される。又第5図の
装置を用いる場合は、延長カバー11から不活性ガスを
吹伺けることもでき、この場合の吹付角度も自由に選定
できるが、いぜれにしてもフィルム導入部で直接不活性
ガスが吹付けられるので随伴空気層に対する置換効率は
極めて高い。
Furthermore, as shown in FIG. 5, if the extension cover 11 is placed close to the surface of the molded product, the extension cover 11 will be filled with inert gas leaking from inside the cover 52. Therefore, the accompanying air layer entering from the cover 11 is also destroyed and dispersed little by little as it progresses inside the cover 11. Therefore, upon reaching the corona discharge atmosphere, the degree of substitution with the inert gas becomes extremely high, and the effects of the present invention are more significantly exhibited. When using the device shown in Fig. 5, it is also possible to blow inert gas from the extension cover 11, and in this case the blowing angle can be freely selected, but in any case, the inert gas can be blown directly at the film introduction part. Since active gas is blown, the replacement efficiency for the entrained air layer is extremely high.

他方フィルム6の出口側(第4図の右側)についてはカ
バー2内のガスが走行フィルム6に随伴して排出されて
いくので、シール性ないし大気侵入遮断性については入
口側はどの配慮をする必要は無いが、前述の様に不活性
ガス消費量を少なくするという意味においては入口側と
同様の配慮を払うことは有意義である。尚カバー2の入
口側及び出[J側における上述のシール機能を最低限度
に6 おいて発揮する為には、フィルムの走行速度に対して少
なくとも0.2%以」二、好ましくは10%以」−の速
度でフィルム面に放出させることが望まれる。尚不活性
ガスの噴出速度については、ガス噴出口5及びカバー2
の出入[1のいずれについても下限側のみを述べたが−
に限については実質」二制限を設ける必要はなく、経済
性と最終製品の要求品質との兼ね合いで適当に決めれば
よい。
On the other hand, on the exit side of the film 6 (the right side in Figure 4), the gas inside the cover 2 is discharged along with the traveling film 6, so what considerations should be taken on the entrance side regarding sealing performance or air intrusion barrier properties? Although not necessary, it is meaningful to take the same consideration as on the inlet side in terms of reducing the amount of inert gas consumed as described above. In order to achieve the above-mentioned sealing function at the inlet and outlet sides of the cover 2 to the minimum level, the film running speed should be at least 0.2%, preferably 10% or more. It is desirable to release the film onto the film surface at a speed of -. Regarding the jetting speed of inert gas, please refer to the gas jetting port 5 and the cover 2.
The entry and exit of
It is not really necessary to set a limit on the amount of water, and it may be determined appropriately based on the balance between economical efficiency and the required quality of the final product.

以」−の様な処理条件を設定することによってコロナ放
電の処理効果が高められ、接着性が大幅に改善されるが
、こうした効果を常時安定して発揮させる為には、被処
理物の処理前・後における表面特性諸元を定量的に把握
しておく必要があると考え更に研究を進めた。その結果
、(1)被処理物表面のl OOA以内の薄層における
酸素指数及び窒素指数のコロナ放電処理部e後における
変化量の比[Δ酸素指数/Δ窒素指数]、及び(2)同
じ〈フィルム表面100A以内の薄層におけるコロナ放
電処理後の窒素指数をByに管理しておくことにより、
高度の接着性を保障し得ることが判明した。即ち」−記
判明した事実とは、前記(1)については[Δ酸素指数
/Δ窒素指数1が1.5乃至−3,5となる様、また前
記(2)については処理後の窒素指数が3以]二となる
様に、コロナ放電の処理条件及び処理雰囲気を厳密にコ
ントロールすることにより、例えば金属、各種印刷イン
キ(特にセルロース系インキや水性インキ等)、塩化ビ
ニリデン系単独又は共重合樹脂や官能基含有樹脂等の各
種合成樹脂等との接着性を飛躍的に高めることができる
ということであり、以下更に詳述する。
By setting the processing conditions as described below, the processing effect of corona discharge can be enhanced and the adhesion properties can be greatly improved. We proceeded with further research, believing that it was necessary to quantitatively understand the surface characteristics before and after. As a result, (1) the ratio of the amount of change in the oxygen index and nitrogen index after the corona discharge treatment part e in the thin layer within 1 OOA of the surface of the workpiece [Δoxygen index/Δnitrogen index], and (2) the same <By controlling the nitrogen index after corona discharge treatment in a thin layer within 100A of the film surface to By,
It has been found that a high degree of adhesion can be guaranteed. In other words, the facts found in (1) above are that [Δoxygen index/Δnitrogen index 1 is 1.5 to -3.5, and in (2) above, the nitrogen index after treatment is By strictly controlling the processing conditions and processing atmosphere of corona discharge, we can make it possible to reduce This means that the adhesiveness with various synthetic resins such as resins and functional group-containing resins can be dramatically improved, and will be described in more detail below.

まず本発明で規定する[窒素指数≧3]という要件を満
たすポリエステル成形物は、従来の処理条件でも時とし
て得ることができ、又公知の窒素ガス雰囲気下でのコロ
ナ放電処理によっても実現可能である。しかしながら先
に説明した如く少なくとも連続処理を対象とする従来法
で上記の様な高レベルの窒素指数を確保する為には大規
模な設備を要するので、工業的規模での実用化は困難で
あった。これに対し本発明の方法を採用すれば、比較的
簡単な設備で窒素指数を容易に3以」−まで高めること
ができる。一方プラスチック材の各種素材との接着性が
、ESCA法で求められる窒素指数により単純に決まっ
てくるという報告もある。しかしかかる報告は接着性に
及ぼす影響の内一つの側面のみをとらえたものにすぎな
い。ちなみに素材に対してN成分をブレンドすれば窒素
指数は増大するが、N含有成分である帯電防止剤や滑剤
を混合するだけでは接着性は向上せず、むしろ低下する
という事実を考えれば、窒素指数の増大が接着性と直ち
に結びつくものでないことは明白である。そこで接着性
に影響を与える他の要因についても検討を行なったとこ
ろ、前記[Δ酸素指数/Δ窒素指数]により算出される
値がコロナ放電処理効果即ち接着性向」二効果をほぼ正
確に表わし、この値が1.5乃至−3,5となる様な処
理を受けたものは目的にかなう高レベルの接着性を発揮
するという事実が確認された。ちなみに処理後における
表層部100A以内の窒素指数が仮に3以」−を示すも
のであっても、[Δ酸素指数/Δ窒素9 指数]が1.5を越えるとコロナ放電処理効果が不十分
で高レベルの接着性を得ることができない。
First, a polyester molded article that satisfies the requirement of [nitrogen index ≧3] specified in the present invention can sometimes be obtained under conventional treatment conditions, and can also be realized by known corona discharge treatment in a nitrogen gas atmosphere. be. However, as explained earlier, it is difficult to put it into practical use on an industrial scale, as large-scale equipment is required to ensure such a high level of nitrogen index, at least with the conventional method, which is intended for continuous processing. Ta. On the other hand, if the method of the present invention is adopted, the nitrogen index can be easily increased to 3 or more with relatively simple equipment. On the other hand, there are also reports that the adhesion of plastic materials to various materials is simply determined by the nitrogen index determined by the ESCA method. However, such reports capture only one aspect of the influence on adhesion. By the way, if you blend N components into the material, the nitrogen index will increase, but if you consider the fact that just mixing antistatic agents and lubricants, which are N-containing components, will not improve the adhesion, but will actually decrease it, the nitrogen index will increase. It is clear that an increase in index does not directly correlate with adhesion. Therefore, we also investigated other factors that affect adhesion, and found that the value calculated by [Δ oxygen index / Δ nitrogen index] almost accurately represents the corona discharge treatment effect, that is, the adhesion propensity effect. It has been confirmed that those treated to give this value of 1.5 to -3.5 exhibit a high level of adhesion suitable for the purpose. Incidentally, even if the nitrogen index within 100A of the surface layer after treatment is 3 or more, if [Δoxygen index/Δnitrogen 9 index] exceeds 1.5, the corona discharge treatment effect is insufficient. High levels of adhesion cannot be achieved.

こうした意味から、本発明の処理法を採用し、且つ前記
窒素指数が3以上、[Δ酸素指数/Δ窒素指数]が1.
5乃至−3,5となる様に処理条件をコントロールする
ことが必須となる。尚この比を−3,5より小さくする
ことは実質的に極めて困難であった。
In this sense, the treatment method of the present invention is adopted, and the nitrogen index is 3 or more, and [Δoxygen index/Δnitrogen index] is 1.
It is essential to control the processing conditions so that the ratio is between 5 and -3.5. Incidentally, it was practically extremely difficult to make this ratio smaller than -3.5.

ところで[Δ酸素指数/Δ窒素指数1については、ポリ
エステルを構成する酸素原子、配合され得る他のポリマ
ー中の酸素原子若しくは各種添加剤中の固有の酸素原子
等が不活性ガスによって放出除去されたり、或は不活性
ガス中の窒素原子によって置換除去されること等が原因
となって上に述べた如く結果的にマイナスの値を示す場
合がある。このヤイナス領域、一般的には−140〜0
の領域になると、接着力の経時変化が極めて僅かとなり
、又耐ブロッキング性が向上するという好ましい結果が
得られる。
By the way, [Δ oxygen index / Δ nitrogen index 1] indicates that the oxygen atoms constituting the polyester, the oxygen atoms in other polymers that may be blended, or the inherent oxygen atoms in various additives are released and removed by the inert gas. , or may be replaced and removed by nitrogen atoms in the inert gas, resulting in a negative value as described above. This Yanas area is generally -140 to 0
In this range, favorable results can be obtained in that the change in adhesive strength over time becomes extremely small and the blocking resistance is improved.

本発明は概略以上の様に構成されており、コロ0 す放電処理条件を規定すると共に、処理前・後における
表層部の酸素指数及び窒素指数の変化量から処理効果を
常時把握する様にしたので、各種素材との接着性に優れ
たポリエステル成形物を確実に得ることが可能にな−)
だ。特に接着性の改善効果は、高温・高湿下での長期間
露出後においても発揮され、又接着性の改善された表層
は母層部分から簡単に剥離されることもないから、例え
ば成形物がフィルムである場合に巻取保存中に」−記表
層が裏面側へ転位するということもなく、又フィルム包
装物として実際に応用した場合に印刷インキがはがれて
いくという心配もない。又他のフィルム基材との接着性
も向」−するから、積層されたフィルムが長期保存後に
剥離するということもない。
The present invention is roughly constructed as described above, and in addition to specifying the discharge treatment conditions, the treatment effect can be constantly grasped from the amount of change in the oxygen index and nitrogen index of the surface layer before and after treatment. This makes it possible to reliably obtain polyester molded products with excellent adhesion to various materials.
is. In particular, the effect of improving adhesion is exhibited even after long-term exposure to high temperature and high humidity, and the surface layer with improved adhesion is not easily peeled off from the base layer, so for example, molded When it is a film, there is no possibility that the surface layer will be transferred to the back side during winding and storage, and there is no worry that the printing ink will peel off when it is actually applied as a film package. Furthermore, since the adhesive properties with other film base materials are also improved, there is no possibility that the laminated film will peel off after long-term storage.

次に実験を掲げて本発明の効果を明らかにする。尚実験
例で採用した表面特性の評価法は次の通りである。
Next, experiments will be carried out to clarify the effects of the present invention. The method for evaluating surface properties adopted in the experimental examples is as follows.

(^)ヘイズ JIS−に−8714により測定 (B)ラミネート強度 セロファンインキを用いて印刷した後ポリエチレンイミ
ンをコーティングし、乾燥後290’C!の低密度ポリ
プロピレンを厚さ30ILmとなる様に溶融押出法でラ
ミネートする。その直後、又は種々の条件で保存又は処
理した後、フィルムとポリプロピレン層の間を剥閘しそ
の接着強度を測定する。尚剥離条件は、180度剥離、
速度200mm/分とする。
(^) Haze Measured according to JIS-8714 (B) Lamination strength After printing with cellophane ink, coating with polyethyleneimine and drying at 290'C! of low-density polypropylene is laminated using a melt extrusion method to a thickness of 30 ILm. Immediately after storage or treatment under various conditions, the adhesive strength between the film and the polypropylene layer is measured by peeling the film and the polypropylene layer. The peeling conditions are 180 degree peeling,
The speed is 200 mm/min.

但し清水処理、レトルト処理品はインシアネート系接着
剤を用いてラミネートし、ラミネート後40°Cで2日
間エージングしてから評価した。
However, products treated with fresh water and retort were laminated using an incyanate adhesive, and after lamination, they were aged at 40°C for 2 days before evaluation.

込工及±辺厘り遣 ポリエチレンテレフタレート樹脂[極限粘度0.65 
dl/g ]を280°Cで溶融押出成形し、引続いて
未延伸フィルムを90°Cで縦方向に3.2倍、95℃
で横方向に3.5倍延伸し、更に230℃で3秒間熱固
定を行ない、厚さ12ルmの2軸延伸フイルムを得た。
Polyethylene terephthalate resin [intrinsic viscosity 0.65]
dl/g ] at 280°C, and the unstretched film was then heated to 90°C by 3.2 times in the machine direction and 95°C.
The film was stretched 3.5 times in the transverse direction and further heat-set at 230° C. for 3 seconds to obtain a biaxially stretched film with a thickness of 12 μm.

上記で得られたフィルムを、第1表の本発明例(+) 
 、 (2)に示す条件のコロナ放電処理に伺した。又
第1表の比較例(1)は、コロナ放電部を単に窒素ガス
雰囲気で保護した場合であり、第1表の比較例(2)は
、コロナ放電部を大気雰囲気下とした場合である。第1
表にはESCA値を併記した。
The film obtained above was used as the invention example (+) in Table 1.
, We conducted corona discharge treatment under the conditions shown in (2). Furthermore, Comparative Example (1) in Table 1 is a case where the corona discharge part is simply protected in a nitrogen gas atmosphere, and Comparative Example (2) in Table 1 is a case where the corona discharge part is in an air atmosphere. . 1st
The ESCA values are also listed in the table.

コロナ放電処理されたフィルムについてヘイズ及びラミ
ネート強度を求めたところ、第2表に示す様な結果が得
られた。
When the haze and laminate strength of the corona discharge treated film were determined, the results shown in Table 2 were obtained.

3 第1表 4 第   2    表・  (1) 第    2    表   (2) 第    2    表   (3) 7 第1.2表に見られる通り、本発明のコロナ放電処理フ
ィルムは[Δ酸素指数/Δ窒素指数]が1.5以下(特
にマイナスの値)となりラミネート強度が顕著に改善さ
れている。
3 Table 1 4 Table 2 (1) Table 2 (2) Table 2 (3) 7 As seen in Table 1.2, the corona discharge treated film of the present invention has a ratio of [Δoxygen index/Δnitrogen] index] was 1.5 or less (especially a negative value), and the laminate strength was significantly improved.

次に本発明例(2)のフィルムをイソプロピルアルコー
ルで洗浄し、洗浄後のフィルムを評価した(第3表)。
Next, the film of Inventive Example (2) was washed with isopropyl alcohol, and the film after washing was evaluated (Table 3).

8 第3表8 Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施状況を示す概念図、第2図は本発
明で用いられる放電側電極を例示する見取り図、第3図
は随伴空気層の破壊状況を示す説明図、第4.5図は電
極カバーの一例を示す説明図である。 1・・・金属ドラム   2・・・電極カバー3・・・
放電側電極   5・・・ガス噴出口6…フイルム 出願人 東洋紡績株式会社 1 205−
Fig. 1 is a conceptual diagram showing the implementation status of the present invention, Fig. 2 is a sketch diagram illustrating the discharge side electrode used in the present invention, Fig. 3 is an explanatory diagram showing the state of destruction of the accompanying air layer, and Fig. 4.5. The figure is an explanatory diagram showing an example of an electrode cover. 1... Metal drum 2... Electrode cover 3...
Discharge side electrode 5... Gas outlet 6... Film applicant Toyobo Co., Ltd. 1 205-

Claims (1)

【特許請求の範囲】 80モル%以上がテレフタル酸で構成される二塩基酸残
基とグリコール残基とから構成されるポリエステルの成
形物を、少なくとも1対の電極を対向させてなるコロナ
放電処理装置へ連続的に移送してコロナ放電処理を行な
うに当り、該成形物のコロナ放電処理面に対して酸素含
有量20容量%以下の単独組成又は複合組成気体を吹付
け、該処理物表面の100A以内の薄層における酸素指
数及び窒素指数のコロナ放電処理前・後における各変化
量の比[Δ酸素指数/Δ窒素指数]を 1.5乃至−3
,5、同しく被処理物表面の最外面から100A以内の
薄層部分におけるコロナ放電処理後の変素指数を3以上
とすることを特徴とする高接着性ポリエステル成形物の
製造方法。 (但し酸素指数及び窒素指数は次の方法によって求めた
。即ちESCAスペクトロメーターES−200型(国
際電気株式会ン1製)を用い、成形品表面の炭素のIS
軌道スペクトルから求めた積分強度と、酸素のIS軌道
スペクトルからイ1機性窒素の結合エネルギーに対応す
るピークより求めた積分強度との比を算出し、その積分
比に基づいて炭素数100個当りの酸素数を求め、この
値を酸素指数と定義する。又窒素指数についても同様の
方法によって炭素数100個当りの窒素数を求め、これ
を窒素指数と定義する。)
[Claims] Corona discharge treatment in which a polyester molded product composed of dibasic acid residues and glycol residues, of which 80 mol% or more is terephthalic acid, is faced with at least one pair of electrodes. When continuously transferring to the apparatus and performing corona discharge treatment, a single composition gas or a composite composition gas having an oxygen content of 20% by volume or less is sprayed onto the corona discharge treatment surface of the molded article. The ratio of the amount of change in the oxygen index and nitrogen index before and after corona discharge treatment in a thin layer within 100 A [Δoxygen index/Δnitrogen index] is 1.5 to -3.
, 5. A method for producing a highly adhesive polyester molded article, which is characterized in that the thin layer portion within 100 A from the outermost surface of the object to be treated has a transformation index of 3 or more after corona discharge treatment. (However, the oxygen index and nitrogen index were determined by the following method. That is, using an ESCA spectrometer ES-200 model (manufactured by Kokusai Electric Co., Ltd.),
Calculate the ratio between the integrated intensity obtained from the orbital spectrum and the integrated intensity obtained from the peak corresponding to the binding energy of organic nitrogen from the IS orbital spectrum of oxygen, and based on the integral ratio, Find the number of oxygen atoms and define this value as the oxygen index. Regarding the nitrogen index, the number of nitrogen per 100 carbon atoms is determined by the same method, and this is defined as the nitrogen index. )
JP6587883A 1983-04-13 1983-04-13 Production of highly adhesive polyester molding Granted JPS59191737A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6587883A JPS59191737A (en) 1983-04-13 1983-04-13 Production of highly adhesive polyester molding
FR8405943A FR2544324B1 (en) 1983-04-13 1984-04-13 PROCESS FOR INCREASING THE ADHESION OF THE SURFACE OF A POLYESTER SHAPED PRODUCT AND PRODUCT OBTAINED BY THIS PROCESS
US06/824,305 US4717516A (en) 1983-04-13 1986-01-30 Production of polyester shaped product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6587883A JPS59191737A (en) 1983-04-13 1983-04-13 Production of highly adhesive polyester molding

Publications (2)

Publication Number Publication Date
JPS59191737A true JPS59191737A (en) 1984-10-30
JPH0561294B2 JPH0561294B2 (en) 1993-09-06

Family

ID=13299673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6587883A Granted JPS59191737A (en) 1983-04-13 1983-04-13 Production of highly adhesive polyester molding

Country Status (1)

Country Link
JP (1) JPS59191737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059308A (en) * 2008-09-03 2010-03-18 Fujimori Kogyo Co Ltd Surface-modified resin film and method for modifying surface of resin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550034A (en) * 1978-10-05 1980-04-11 Toray Ind Inc Surface-treatment of plastic
JPS5649737A (en) * 1979-10-01 1981-05-06 Tokuyama Soda Co Ltd Corona discharge treatment of plastic film
JPS5723634A (en) * 1980-07-17 1982-02-06 Tokuyama Soda Co Ltd Discharge treating apparatus of plastic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550034A (en) * 1978-10-05 1980-04-11 Toray Ind Inc Surface-treatment of plastic
JPS5649737A (en) * 1979-10-01 1981-05-06 Tokuyama Soda Co Ltd Corona discharge treatment of plastic film
JPS5723634A (en) * 1980-07-17 1982-02-06 Tokuyama Soda Co Ltd Discharge treating apparatus of plastic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059308A (en) * 2008-09-03 2010-03-18 Fujimori Kogyo Co Ltd Surface-modified resin film and method for modifying surface of resin film

Also Published As

Publication number Publication date
JPH0561294B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
KR890002565B1 (en) Method for preparing high adhesive polyolefin
US4717516A (en) Production of polyester shaped product
US7166342B2 (en) Thermoplastic resin film and process for producing the same
AU3534999A (en) Heat-shrinkable multilayer film
KR101418134B1 (en) Polyamide-based laminated biaxially-stretched film, and vopor-deposited polyamide-based laminated resin film
WO2017130952A1 (en) Method for manufacturing semiconductor package, and mold-releasing film for semiconductor package manufacturing process
JPS59191741A (en) Production of highly adhesive, laminar polyester molding
JPS59191737A (en) Production of highly adhesive polyester molding
JPS59191738A (en) Production of highly adhesive composite polyester molding
JP7310342B2 (en) Film, packaging bag composed of said film, laminate comprising said film and packaging bag composed of said laminate
JPH0251450B2 (en)
JP5084983B2 (en) Barrier film and laminated material using the same
JPS5966430A (en) Preparation of highly adhesive molded polyolefin article
JPH0561295B2 (en)
JPS58225133A (en) Corona discharge treatment of plastic formed product surface
JP7338153B2 (en) Gas barrier vapor deposited film, gas barrier laminate, gas barrier packaging material, gas barrier packaging material, and method for producing gas barrier vapor deposited film
JPH059459B2 (en)
JP4372966B2 (en) Barrier film and laminated material using the same
JP3716006B2 (en) Manufacturing method of laminated film
JP4372965B2 (en) Barrier film and laminated material using the same
JP3329020B2 (en) Olefin resin molded product with gas barrier properties
JP2003246033A (en) Laminated polyester film and its production method
JPH11198280A (en) Laminate and its manufacture
JPH03162420A (en) Production of multi-layer laminate
JP2003026237A (en) Packaging material for flaked dried-bonito and flaked dried-bonito package using the same