JPS5965452A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5965452A
JPS5965452A JP17506982A JP17506982A JPS5965452A JP S5965452 A JPS5965452 A JP S5965452A JP 17506982 A JP17506982 A JP 17506982A JP 17506982 A JP17506982 A JP 17506982A JP S5965452 A JPS5965452 A JP S5965452A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon film
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17506982A
Other languages
Japanese (ja)
Other versions
JPH0220147B2 (en
Inventor
Seiji Ueda
誠二 上田
Kunihiko Asahi
旭 国彦
Jun Fukuchi
福地 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP17506982A priority Critical patent/JPS5965452A/en
Publication of JPS5965452A publication Critical patent/JPS5965452A/en
Publication of JPH0220147B2 publication Critical patent/JPH0220147B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To supress generation of gap to be easily formed between layers, uniformly form an inter-layer insulating film and improve inter-layer insulating strength by depositing a thin polycrystalline silicon film on the entire part of main surface including the first polycrystalline silicon film and by oxidizing it in manufacture of double-layer polycrystalline silicon. CONSTITUTION:A silicon dioxide film 3 and a silicon nitride film 4 are formed, a first polycrystalline silicon film 5 is formed by growth method, a polycrystalline silicon film 13 is deposited by etching and it is oxidized. An inter-layer inslating film 14 and a silicon dioxide film 15 are formed uniformly by the growth method. Thereby, abnormality at the end part can be improved drastically. Moreover, growth of grain of polycrystalline silicon film 5 and generation of protrusion can also be reduced considerably. The silicon dioxide film 15, a silicon nitride film 4 and a silicon dioxide film 3 are removed by the etching, a second gate oxide film 7, a second polycrystalline silicon film 8 are formed by growth method, and a pattern is also formed. Shape of the overlapping region of the first and second polycrystalline silicon films 5, 8 are improved and an interlayer insulating film 14 is formed uniformly.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は21層多結晶シリコン構造を有するMO8集
積回路装置を形成する際に、前記2層の多結晶シリコン
の層間絶縁耐圧の向上、及び第1の多結晶シリコン層の
段差形状を改善して、アルミ配線などの断線、ブリッジ
などの防止を可能にした半導体装置の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is directed to improving the interlayer dielectric breakdown voltage of the two layers of polycrystalline silicon and the first The present invention relates to a method for manufacturing a semiconductor device, which improves the step shape of a polycrystalline silicon layer, thereby making it possible to prevent disconnections and bridges in aluminum wiring, etc.

従来例の構成とその問題点 近時、MOSダイナミックメモリーの大容量(K 集&
ft )化に伴い、メモリーセルザイズの縮小化が要望
されているが、メモリーセルの容量の増加、いわゆる高
集積化は動作上、メモリー−レルサイズの縮小に比例し
ては縮小できない。このだめメモリー+ルザイズの縮小
と合わせてメモリーセルを構成する容量部分の絶縁膜を
薄くする必要が生じる。従来、絶縁膜として一般に用い
られた熱酸化膜は膜厚がsonm程度までは均一・な良
質の膜形成が可能であったが、膜厚がこれより薄くなる
と、ピンホールなどが発生し易く、膜質の低下が著しい
。また、多結晶シリコン’ 、 l!il A411i
点金属などをゲート電1jに用いる2層ゲー” Jr’
j aで、第2ゲート酸化膜もゲート長の縮小にともな
って一段とうすくなる。例えば、2層多結晶シリコンゲ
ート電極構造では第1と第2の多結晶シリコンで形成さ
れる2層ゲート間の層間絶縁膜は、第2ゲート電極下の
絶縁膜形成としての基板の熱酸化と同時に、第1多結晶
シリコン膜の表面部を酸化することにより形成していた
が、第2ゲート酸化膜が薄くなると、この工程は採用で
きなくなる。縮小化に対応して、メモリーセルの容量部
を構成する絶縁膜は二酸化珪素と、高誘電体であるチノ
化珪素膜の二層構造とし、また多結晶シリコン層間の層
間絶縁膜を少なくとも2o○〜300nmとするなどの
要望も生ずる。しかし、従来方法では次に示すように層
間絶縁膜を厚く形成することは困煩であった。すなわち
、従来の2M多結晶シリコン構造を例に示す。
Conventional configurations and their problemsRecently, large capacity MOS dynamic memories (K collection &
ft), there is a demand for a reduction in memory cell size, but the increase in memory cell capacity, so-called high integration, cannot be reduced in proportion to the reduction in memory cell size due to operational reasons. In conjunction with the reduction of the memory plus the size, it becomes necessary to thin the insulating film in the capacitor portion that constitutes the memory cell. Conventionally, thermal oxide films commonly used as insulating films have been able to form uniform, high-quality films up to a film thickness of about 1000 yen, but when the film thickness becomes thinner than this, pinholes are likely to occur. The film quality deteriorates significantly. Also, polycrystalline silicon', l! il A411i
2-layer game using point metal etc. for gate electrode 1j"Jr'
ja, the second gate oxide film also becomes thinner as the gate length is reduced. For example, in a two-layer polycrystalline silicon gate electrode structure, the interlayer insulating film between the two-layer gate formed of first and second polycrystalline silicon is formed by thermal oxidation of the substrate to form an insulating film under the second gate electrode. At the same time, it was formed by oxidizing the surface portion of the first polycrystalline silicon film, but if the second gate oxide film becomes thin, this process cannot be used. In response to miniaturization, the insulating film constituting the capacitive part of the memory cell has a two-layer structure of silicon dioxide and a silicon tinodide film, which is a high dielectric constant, and the interlayer insulating film between the polycrystalline silicon layers has a thickness of at least 2° There are also requests for a range of 300 nm to 300 nm. However, in the conventional method, it is difficult to form a thick interlayer insulating film as described below. That is, a conventional 2M polycrystalline silicon structure will be taken as an example.

第1図に理想状態での2層多結晶シリコン構造の断面図
を示す。同図において、1は半導体基板、2は選択酸化
法によ膜形成された二酸化珪素膜、3.4はメモリーセ
ルの容量部を構成する絶縁膜であり、本例ではそれぞれ
二酸化珪素膜、チッ化珪素膜の2層絶縁膜である。5は
礒1層多結晶シリコン膜よシなる第1電極、6は層間絶
縁膜、7は第2ゲ−1−酸化膜、8は、第2層多結晶シ
リコン膜よシなる第2電極、9はN+拡散層、 1oは
層間絶縁膜、11はアルミニウム電極、12は素子の保
護膜である。
FIG. 1 shows a cross-sectional view of a two-layer polycrystalline silicon structure in an ideal state. In the figure, 1 is a semiconductor substrate, 2 is a silicon dioxide film formed by a selective oxidation method, and 3.4 is an insulating film constituting a capacitor part of a memory cell. It is a two-layer insulating film made of silicon oxide film. 5 is a first electrode made of a single-layer polycrystalline silicon film; 6 is an interlayer insulating film; 7 is a second gate-oxide film; 8 is a second electrode made of a second-layer polycrystalline silicon film; 9 is an N+ diffusion layer, 1o is an interlayer insulating film, 11 is an aluminum electrode, and 12 is a protective film for the element.

次に、この半導体装置の層間絶縁膜の形成工程について
、第2図(a)〜(d)に従って説明する。まず第2図
(a)の如く、半導体基板1に選択酸化法によりフィー
ルド酸化膜2を形成し、二酸化珪素膜3、チノ化珪素膜
4、多結晶シリコン膜6を順次堆積し、さらに、多結晶
シリコン膜6に対してはリンを蒸着し、熱拡散法により
、シート抵抗を約40Ω/口とする。
Next, a process for forming an interlayer insulating film of this semiconductor device will be explained with reference to FIGS. 2(a) to 2(d). First, as shown in FIG. 2(a), a field oxide film 2 is formed on a semiconductor substrate 1 by a selective oxidation method, a silicon dioxide film 3, a silicon tinide film 4, and a polycrystalline silicon film 6 are sequentially deposited. Phosphorus is evaporated onto the crystalline silicon film 6, and the sheet resistance is set to about 40Ω/hole by thermal diffusion.

次に第2図(b)の如く、多結晶シリコン膜6を写真食
刻法により第1電極の形状にパターン形成した後、この
多結晶シリコン膜6の表rf++4c熱酸化して、二酸
化珪素膜6を形成する。他の部分はチッ化珪素膜4によ
って覆われているため、酸化膜は成長しない。多結晶シ
リコン膜5を酸化すると、多結晶シリコン膜表面は、均
一には酸化されず、端部A、  Bが図の如く、多結晶
シリコン膜6と、チノ化珪素膜4との境界部に酸化膜の
りすい部分が生じ、間隙ができる。この現象は多結晶シ
リコン膜の酸化膜厚を厚くする程、より発生しやすくな
り、大きな間隙が生じる。この間隙は高温で酸化すると
、やや発生しにくくなるが、高温では、多結晶シリコン
のダレインサイズが大きくなり、かつ表面に突起が発生
し、酸化膜欠陥の原因となシ、第1.第2多結晶シリコ
ン層間の絶縁性能を著しく低下させるという別の問題が
ある。さらに次工程で第2ゲート絶縁膜形成のために、
チッ化珪素膜4、二酸化珪素膜3を除去するとき、この
間隙部分にエツチング液が入り込み、さらにこの部分の
二酸化珪素膜6の厚さはさらに薄くなり、層間絶縁性が
ますます低下する。また、このような部分は洗浄効果も
悪く、特性劣化の原因となる。
Next, as shown in FIG. 2(b), the polycrystalline silicon film 6 is patterned into the shape of the first electrode by photolithography, and then the surface of the polycrystalline silicon film 6 is thermally oxidized to form a silicon dioxide film. form 6. Since the other parts are covered with the silicon nitride film 4, no oxide film grows. When the polycrystalline silicon film 5 is oxidized, the surface of the polycrystalline silicon film is not oxidized uniformly, and the edges A and B are located at the boundary between the polycrystalline silicon film 6 and the silicon tinide film 4, as shown in the figure. Areas where the oxide film is susceptible to slipping occur, creating gaps. This phenomenon occurs more easily as the oxide film thickness of the polycrystalline silicon film becomes thicker, and larger gaps are created. This gap becomes somewhat less likely to occur when oxidized at high temperatures, but at high temperatures, the dale size of polycrystalline silicon increases and protrusions are generated on the surface, which can cause oxide film defects. Another problem is that the insulation performance between the second polycrystalline silicon layers is significantly reduced. Furthermore, in the next step to form the second gate insulating film,
When the silicon nitride film 4 and the silicon dioxide film 3 are removed, the etching solution enters into this gap, and the thickness of the silicon dioxide film 6 in this part becomes even thinner, further reducing the interlayer insulation. Further, such a portion has poor cleaning effect and causes deterioration of characteristics.

次に第2図(C)の如く、第2ゲート絶縁M7を形成す
るだめの熱酸化を行い、ついで第2層多結晶シリコン膜
8を堆積し、第1層多結晶シリコンと同様、リン蒸着、
熱拡散をする。この工程では、第2図(b)のAの部分
で多結晶シリコン膜5,8間の層間絶縁耐圧が低下し、
ショー1−も発生しやすくなる。さらに第2図(b)の
Bの部分で間隙に第2層多結晶シリコンのエツチング残
!1187が発生しやすく、この部分では第2層多結晶
シリコン膜8のブリッジが起る。
Next, as shown in FIG. 2(C), thermal oxidation is performed to form the second gate insulator M7, and then a second layer polycrystalline silicon film 8 is deposited, and like the first layer polycrystalline silicon, phosphorus vapor deposition is performed. ,
Performs heat diffusion. In this step, the interlayer dielectric strength voltage between the polycrystalline silicon films 5 and 8 decreases at the part A in FIG. 2(b),
Show 1- also becomes more likely to occur. Furthermore, etching remains of the second layer of polycrystalline silicon in the gap at part B in Fig. 2(b)! 1187 is likely to occur, and bridging of the second layer polycrystalline silicon film 8 occurs in this portion.

次に第2図(d)の如(、N+拡散領域9、層間絶縁膜
10、アルミニウム電極11を形成する。
Next, as shown in FIG. 2(d), an N+ diffusion region 9, an interlayer insulating film 10, and an aluminum electrode 11 are formed.

以上のように従来の2層多結晶シリコン構造を有するM
O8集積回路荘置装おいては、パターンの微細化に伴い
、層間絶縁膜形成過程での前記の問題は避けることがで
きない。
As described above, M with the conventional two-layer polycrystalline silicon structure
In the O8 integrated circuit device, the above-mentioned problem cannot be avoided in the process of forming an interlayer insulating film as the pattern becomes finer.

発明の目的 そこで、本発明は2層の多結晶シリコン間の層間絶縁膜
を均一に形成し、層間絶縁耐圧の向上と、第1多結晶シ
リコンの側面の形状の改善を図ることを可能にする半導
体装置の製造方法を提供するものである。
Purpose of the Invention Therefore, the present invention makes it possible to uniformly form an interlayer insulating film between two layers of polycrystalline silicon, improve the interlayer dielectric breakdown voltage, and improve the shape of the side surface of the first polycrystalline silicon. A method for manufacturing a semiconductor device is provided.

発明の構成 本発明は、半導体基板の一主面に二酸化珪素膜。Composition of the invention The present invention provides a silicon dioxide film on one main surface of a semiconductor substrate.

チッ化珪素膜を重ねて二層絶縁膜を形成する工程と、こ
の二層絶縁膜上に第1の多結晶/リコン膜を堆積する工
程と、前記第1の多結晶シリコン膜を所定の第1電極形
状にパターン形成する工程と、前記第1電極を含む主面
側全面に前記第1の多結晶シリコン膜よりも薄い多結晶
シリコン膜を堆積する工程と、前記薄い多結晶シリコン
膜および前記第1の多結晶シリコン膜の表面層を酸化す
る工程と、全面に第2の多結晶シリコン膜を堆積し、こ
れを第2電極形状にパターン形成する工程からなる半導
体装置の製造方法であり、これによシ、第1電極と第2
電極との層間に形成され易かった間隙の発生を抑え、そ
の要因を除くことができる。
A step of stacking silicon nitride films to form a two-layer insulating film, a step of depositing a first polycrystalline/recon film on the two-layer insulating film, and depositing the first polycrystalline silicon film in a predetermined manner. forming a pattern in the shape of one electrode; depositing a polycrystalline silicon film thinner than the first polycrystalline silicon film over the entire main surface side including the first electrode; A method for manufacturing a semiconductor device, comprising a step of oxidizing a surface layer of a first polycrystalline silicon film, a step of depositing a second polycrystalline silicon film on the entire surface, and patterning it in the shape of a second electrode, By this, the first electrode and the second
It is possible to suppress the occurrence of gaps that are likely to be formed between layers with electrodes, and eliminate the cause thereof.

実施例の説明 以下に、本発明を実施例により詳しくのべるb第3図(
a)〜(q)はこの発明の一実施例である半導体集積回
路装置の製造方法を示す製造工程流れ図で示す。第3図
(a)においては、1は−P型シリコン基板、2は選択
酸化法により形成されたフィールド酸化膜である。次に
第3図(b)の如く、ゲート絶縁膜を構成する二酸化珪
素膜3、チッ化珪素膜4を形成し、さらに、第1多結晶
シリコン膜5を5001m成長し、ついで、これにリン
蒸着することによυ、多結晶シリコン膜5のシート抵抗
を400/口とする。次に、この第1多結晶ンリコン膜
5をレシヌトを用いた写真食刻法によりノ(ターン形成
する。多結晶シリコン膜5のみエツチングし、チノ化珪
素膜4は残し、次いで、第3図(C)の々1]<、その
主面側の全面に薄い多結晶シリコン膜13を約10nm
堆積する。これをSOO°C28驚の高圧でウェット酸
化をし、第3図(d)の如く、層間絶縁膜14を3oo
nm成長する。1この過程で、薄い多結晶シリコン膜1
3は全て酸化され、第1多結晶シリコン膜5の存在しな
いチノ化珪素膜4上に、二酸化珪素膜15が約200人
成長する。従来方法では、第一多結晶シリ:lンの表面
のみを酸化していたが均一に酸化されず、端部に酸化膜
の薄い部分が生じていだが、表面にリン拡散を施してい
ない多結晶シリコン膜13を堆積することにより、酸化
膜14.15は均一に成長し、端部の異常が著しく改善
される。さらに、多結晶シリコン膜5のダレインの成長
及び突起の発生モ、これによりかなり減少する効果が見
られる。なおこの突起の発生は多結晶シリコンのリン濃
度、酸化湿度などの影響を受ける。常圧での高温酸イヒ
よりも、低温高圧酸化が有効である。次に、全面に酸化
膜エッチをすることによシ、二酸化珪素膜16を除去す
る。また、その後、二酸化珪素膜14をマスクとして、
チツ化珪素膜4の露出部分をフレオンガスを用いたプラ
ズマエツチングにより除去する。さらに、この下の二酸
化珪素膜3を約2゜nmを除去すると、第3図(8)の
如くなる。次に、第3図(f)の如く、第2ゲート酸化
7、第2多結晶シリコン膜8を成長し、パターン形成す
る。第1゜第2多結晶シリコン膜6,8の重なりあう部
分の形状は図のように改善され、層間絶縁膜14が26
On、mの厚さで均一に形成される。次に第3図(q)
の如く、N+拡散層9、層間絶縁膜10を形成し、アル
ミニウム電極11、保護膜12を堆積する。
DESCRIPTION OF EMBODIMENTS In the following, the present invention will be described in more detail with reference to embodiments.
Figures a) to (q) are manufacturing process flowcharts showing a method for manufacturing a semiconductor integrated circuit device which is an embodiment of the present invention. In FIG. 3(a), 1 is a -P type silicon substrate, and 2 is a field oxide film formed by selective oxidation. Next, as shown in FIG. 3(b), a silicon dioxide film 3 and a silicon nitride film 4 constituting a gate insulating film are formed, and then a first polycrystalline silicon film 5 is grown to a length of 5001 m, and then phosphorus is added to this film. By vapor deposition, the sheet resistance of the polycrystalline silicon film 5 is set to 400/unit. Next, this first polycrystalline silicon film 5 is formed into a turn by photolithography using a resin. Only the polycrystalline silicon film 5 is etched, leaving the silicon tinide film 4. Then, as shown in FIG. C) No. 1]<, a thin polycrystalline silicon film 13 of about 10 nm is applied to the entire main surface side.
accumulate. This is subjected to wet oxidation at surprisingly high pressure at 28 degrees Celsius to form an interlayer insulating film 14 of 30°C, as shown in Figure 3(d).
grow by nm. 1 In this process, a thin polycrystalline silicon film 1
3 are all oxidized, and about 200 silicon dioxide films 15 are grown on the silicon tinide film 4 where the first polycrystalline silicon film 5 is not present. In the conventional method, only the surface of the first polycrystalline silicon was oxidized, but it was not oxidized uniformly, and a thin oxide film was formed at the edges. By depositing the silicon film 13, the oxide films 14 and 15 grow uniformly, and abnormalities at the edges are significantly improved. Furthermore, the effect of significantly reducing the growth of duplexes and the generation of protrusions in the polycrystalline silicon film 5 can be seen. Note that the occurrence of these protrusions is influenced by the phosphorus concentration of polycrystalline silicon, oxidation humidity, etc. Low-temperature, high-pressure oxidation is more effective than high-temperature acid oxidation at normal pressure. Next, the silicon dioxide film 16 is removed by etching the oxide film over the entire surface. Further, after that, using the silicon dioxide film 14 as a mask,
The exposed portion of the silicon nitride film 4 is removed by plasma etching using Freon gas. Furthermore, when approximately 2 nm of the silicon dioxide film 3 below this is removed, the result is as shown in FIG. 3 (8). Next, as shown in FIG. 3(f), a second gate oxide 7 and a second polycrystalline silicon film 8 are grown and patterned. 1. The shape of the overlapping portion of the second polycrystalline silicon films 6 and 8 is improved as shown in the figure, and the interlayer insulating film 14 is
It is formed uniformly with a thickness of On, m. Next, Figure 3 (q)
As shown in FIG. 1, an N+ diffusion layer 9 and an interlayer insulating film 10 are formed, and an aluminum electrode 11 and a protective film 12 are deposited.

以上のように従来方法では、第1多結晶シ1ノコン膜の
端部の酸化膜の薄い部分での絶縁耐圧のイ氏下、及び多
結晶シリコンのダレインの成長により、表面の突起が発
生し、2層の多結晶シリコン膜間の絶縁耐圧が悪くなり
、又、第1多結晶シリコン膜端部のオーバーハングの部
分で、第2多結晶シリコン膜のエツチング残シが生じて
不良原因となっていたが、本発明により、このような問
題は改善された。
As described above, in the conventional method, protrusions on the surface occur due to the lower dielectric strength of the thin part of the oxide film at the end of the first polycrystalline silicon film and due to the growth of drain of polycrystalline silicon. , the dielectric strength between the two layers of polycrystalline silicon films deteriorates, and etching residues of the second polycrystalline silicon film occur at the overhang portions of the ends of the first polycrystalline silicon film, resulting in defects. However, the present invention has improved this problem.

発明の効果 以上のように本発明に係る製造方法&Li、2層多結晶
シリコン構造において、2層の多結晶シリコン膜間の層
間絶縁耐圧の向上と、ステ、ノブの形状改善を図り、多
層配線において、第2 )j’1の多結晶シリコン膜の
エツチング残り、アルミ配線などのエツチング残りによ
るブリッジ、及び断線の防止が実現でき、とくに、超高
集積度IC(VLSI)の製造に有用な技術である。
Effects of the Invention As described above, in the manufacturing method and Li, two-layer polycrystalline silicon structure according to the present invention, the interlayer dielectric strength voltage between the two layers of polycrystalline silicon films is improved, and the shapes of the stems and knobs are improved, and multilayer wiring is realized. 2) A technology that can prevent bridging and disconnection caused by etching residues of the polycrystalline silicon film of j'1 and etching residues of aluminum wiring, etc., and is particularly useful for manufacturing ultra-highly integrated ICs (VLSIs). It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な2層多結晶シリコン構造を有するMO
3集積回路装置の構造断面図、第2図(&)〜(d)は
従来方法による製造工程図、第3図(a)〜(q)は本
発明の具体的な一実施例にかかるMO8集積回路装置の
製造工程図である。 1・・・・・・半導体基板、3・・・・・・第1ゲート
酸化膜、4・・・・・・チン化珪素膜、5・・・・・・
第1多結晶シリコン層、13・・・・・・薄い多結晶シ
リコン膜、14・・・・・・層間絶縁膜、8・・・・第
2多結晶シリコン層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名41
図 I 第2図 り J 第2図 IC) /41
Figure 1 shows an MO with a general two-layer polycrystalline silicon structure.
3. Structure cross-sectional view of an integrated circuit device, FIGS. 2(&) to (d) are manufacturing process diagrams using a conventional method, and FIGS. 3(a) to (q) are MO8 according to a specific embodiment of the present invention. It is a manufacturing process diagram of an integrated circuit device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 3... First gate oxide film, 4... Silicon tinide film, 5...
First polycrystalline silicon layer, 13...thin polycrystalline silicon film, 14... interlayer insulating film, 8... second polycrystalline silicon layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 41
Figure I 2nd diagram J Figure 2 IC) /41

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板の一主面に二酸化珪素膜、チッ化珪素
膜を重ねて二層絶縁膜を形成する工程と、この二層絶縁
膜上に第1の多結晶シリコン膜を堆積する工程と、前記
第1の多結晶シリコン膜を所定の第1電極形状にパター
ン形成する工程と、前記第1電極を含む全面に前記第1
の多結晶シリコン膜よりも薄い多結晶シリ:17膜を堆
積する工程と、前記の薄い多結晶シリコン膜および第1
の多結晶シリコン膜の表面層を酸化する工程と、全面に
第2の多結晶シリコン膜を堆積し、この第2の多結晶シ
リコン膜を第2電極形状にパターン形成する工程からな
る半導体装置の製造方法。
(1) A step of forming a two-layer insulating film by overlapping a silicon dioxide film and a silicon nitride film on one main surface of a semiconductor substrate, and a step of depositing a first polycrystalline silicon film on this two-layer insulating film. , patterning the first polycrystalline silicon film into a predetermined first electrode shape;
a step of depositing a polycrystalline silicon film thinner than the first polycrystalline silicon film;
A semiconductor device comprising the steps of: oxidizing the surface layer of the polycrystalline silicon film; depositing a second polycrystalline silicon film over the entire surface; and patterning the second polycrystalline silicon film into the shape of a second electrode. Production method.
(2)薄い多結晶シリコン膜と、第1の多結晶シリコン
膜の表面層を酸化した後、前記第1の多結晶シリコン膜
パターンの除かれた領域のチッ化珪素膜上に形成された
薄い二酸化珪素膜を除去し、残存する二酸化珪素膜をマ
スクとして前記領域のチッ化珪素膜を自己整合的にエツ
チングする工程と、熱酸化によシ二酸化珪素膜を形成す
る工程を経た後、第2の多結晶シリコン膜を堆積する特
許請求の範囲第1項に記載の半導体装置の製造方法。
(2) After oxidizing the thin polycrystalline silicon film and the surface layer of the first polycrystalline silicon film, a thin polycrystalline silicon film is formed on the silicon nitride film in the area where the first polycrystalline silicon film pattern is removed. After removing the silicon dioxide film, etching the silicon nitride film in the region in a self-aligned manner using the remaining silicon dioxide film as a mask, and forming a silicon dioxide film by thermal oxidation, a second 2. A method for manufacturing a semiconductor device according to claim 1, wherein a polycrystalline silicon film is deposited.
(3)薄い多結晶シリコン膜と、第1の多結晶シリコン
膜の表面層の熱酸化を高圧気圏中で行う特許請求の範囲
第1項に記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the thin polycrystalline silicon film and the surface layer of the first polycrystalline silicon film are thermally oxidized in a high-pressure atmosphere.
JP17506982A 1982-10-05 1982-10-05 Manufacture of semiconductor device Granted JPS5965452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17506982A JPS5965452A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17506982A JPS5965452A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5965452A true JPS5965452A (en) 1984-04-13
JPH0220147B2 JPH0220147B2 (en) 1990-05-08

Family

ID=15989681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17506982A Granted JPS5965452A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5965452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434098A (en) * 1993-01-04 1995-07-18 Vlsi Techology, Inc. Double poly process with independently adjustable interpoly dielectric thickness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430785A (en) * 1977-08-12 1979-03-07 Fujitsu Ltd Manufacture of semiconductor device
JPS5656641A (en) * 1979-10-13 1981-05-18 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430785A (en) * 1977-08-12 1979-03-07 Fujitsu Ltd Manufacture of semiconductor device
JPS5656641A (en) * 1979-10-13 1981-05-18 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434098A (en) * 1993-01-04 1995-07-18 Vlsi Techology, Inc. Double poly process with independently adjustable interpoly dielectric thickness

Also Published As

Publication number Publication date
JPH0220147B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
JPS60153158A (en) Manufacture of semiconductor device
JP2000022111A (en) Formation of capacitor for semiconductor element using high-temperature oxidation
JPH05299578A (en) Semiconductor device and manufacture thereof
JPH07112020B2 (en) EPROM cell manufacturing method
JP2000174132A (en) Manufacture of semiconductor device
JPS5810861A (en) Semiconductor device and manufacture thereof
US6579753B2 (en) Method of fabricating a semiconductor storage device having a transistor unit and a ferroelectric capacitor
JPS5965452A (en) Manufacture of semiconductor device
JPS59195870A (en) Semiconductor device
JPS60193333A (en) Manufacture of semiconductor device
JPH0454390B2 (en)
JPS6135548A (en) Manufacture of semiconductor device
JP2976904B2 (en) Superconducting field effect element and method for producing the same
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPS58176974A (en) Preparation of semiconductor device
JPS61156850A (en) Semiconductor device and manufacture thereof
JP2538664B2 (en) Method for manufacturing semiconductor device
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPH05183156A (en) Semiconductor device and fabrication thereof
JPH01225352A (en) Manufacture of semiconductor device
JPS63177559A (en) Manufacture of semiconductor element
JPS5889869A (en) Manufacture of semiconductor device
JPS6312169A (en) Manufacture of semiconductor device
JPS58225671A (en) Manufacture of semiconductor device
JPS58124264A (en) Semiconductor device and manufacture thereof