JPS58176974A - Preparation of semiconductor device - Google Patents

Preparation of semiconductor device

Info

Publication number
JPS58176974A
JPS58176974A JP5989682A JP5989682A JPS58176974A JP S58176974 A JPS58176974 A JP S58176974A JP 5989682 A JP5989682 A JP 5989682A JP 5989682 A JP5989682 A JP 5989682A JP S58176974 A JPS58176974 A JP S58176974A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
deposited
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5989682A
Other languages
Japanese (ja)
Inventor
Shinpei Tanaka
田中 伸平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5989682A priority Critical patent/JPS58176974A/en
Publication of JPS58176974A publication Critical patent/JPS58176974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a MOS semiconductor element having stabilized gate dielectric strength by forming two-level or three-level silicon gate electrodes with different deposition methods. CONSTITUTION:A gate insulating film 2 consisting of a SiO2 film on a field insulating film 4 deposited over a semiconductor substrate 1, a polycrystalline silicon film 5 is deposited thereon by the vacuum deposition method, and moreover a polycrystalline silicon film is deposited thereon by the CVD method. Thereafter, such film is patterned by the photo processing and a gate electrode and gate insulating film 2 consisting of two-level polycrystalline silicon films 5, 6 are formed by the dry etching method. In succession, source and drain are formed by well known method and a MOS semiconductor element can be obtained. When such two-level polycrystalline silicon film is formed, since a polycrystalline silicon film 5 formed as the under layer is deposited, a gate dielectric strength is not deteriorated, and since the uppermost polycrystalline silicon film 6 is deposited by the CVD method, invasion of chemical solution is rejected through a dense film and thereby a gate insulating film can be kept stable.

Description

【発明の詳細な説明】 ■ 発明の技術分身 本発明は半導体装置の製造方法に関し、特にMIS形半
導体素子のシリコンゲート電極の形成方法の改普に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technique of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a modification of a method for forming a silicon gate electrode of an MIS type semiconductor element.

(至)従来技術と問題点 IC,LSI、ToるいはVLSIなどの記憶囲路、論
理回路はその大半がMIS形(昔通はMO8JIでTo
ll、以下ではMOS形で代表して説明する)半導体素
子から構成されておシ、第1図はこのよう1上MO8形
素子の基本構造を示す 公知のように、半導体基板1上
にゲート絶縁膜2を介してゲート電極8が設けられるが
、素子自身は高密度化されて小型化し、ゲート絶縁膜も
数lOOλ程度とうすく形成され、またゲート電極も同
様に薄く形成されるよう罠なってきてお夛、品質面でそ
れに起因する種々の問題がある。
(To) Conventional technology and problems Most of the memory circuits and logic circuits of IC, LSI, TO or VLSI are MIS type (old-time experts call it MO8JI)
Figure 1 shows the basic structure of such a MO8 type element.As is known, a gate insulator is provided on a semiconductor substrate 1. A gate electrode 8 is provided through the film 2, but as the device itself has become more dense and smaller, the gate insulating film has become thinner, on the order of several 100λ, and the gate electrode has become similarly thin. However, there are various problems caused by this in terms of quality.

そのうち、ゲート絶縁耐圧劣化の問題は初期から良く検
討されており、例えば1μミニウムゲート電極はシリコ
ンゲート電極よプゲート耐圧の良い素子であることも知
られている。しかしながら、LSIのように高集積化す
るためには、ゲートセルファフィン工程を採用しようと
するとゲート電極に耐熱性が要求され、ま九多層配線構
造にする必要があるから、軟かいアルミニウムを用いる
ことは囃しく、’リコンゲー)tllが用いられること
が多い。
Among these, the problem of gate dielectric breakdown voltage deterioration has been well studied from the beginning, and it is also known that, for example, a 1 μm gate electrode has a higher gate breakdown voltage than a silicon gate electrode. However, in order to achieve high integration such as LSI, if a gate cell fin process is used, the gate electrode must have heat resistance, and a multilayer wiring structure is required, so soft aluminum is used. It is a noisy sound, and 'recon game) tll is often used.

本発明はそのyリコンゲート電Iiの被着方法に係り、
多結晶シリコン形成には通常蒸着法、スパッタ法、ある
いは化学気相成長(CVD)法があるが、これら何れの
形成法も利点と欠点とを併せもっている。即ち、CVD
法で被着したシリコンゲート電極を有する半導体素子F
i耐圧劣化が激しくて、その他の蒸着又はスパッタで被
膚形成したゲート電極より劣る。一方、蒸着法で被着し
た多結晶シリコンからなるゲー)t−は無定形でアモル
ファス状態に近く、且つポーラスな膜である。そのため
、製造工程中に、弗酸浴数などがゲート電極に浸み込ん
で、直下の二酸化シリコン(Sj−0,)膜からなるゲ
ート絶縁膜をG4蝕し、同様に耐圧劣化させたり、また
スレーVHIWド電圧vthを変動させる。また、スパ
ッタ法は蒸着法と類似の膜質が形成される。
The present invention relates to a method for depositing the y recongate electrode Ii,
Polycrystalline silicon is usually formed by vapor deposition, sputtering, or chemical vapor deposition (CVD), but each of these methods has both advantages and disadvantages. That is, CVD
Semiconductor device F with a silicon gate electrode deposited by a method
The breakdown voltage deteriorates significantly and is inferior to other gate electrodes formed by vapor deposition or sputtering. On the other hand, a film made of polycrystalline silicon deposited by vapor deposition is amorphous, close to an amorphous state, and porous. Therefore, during the manufacturing process, the hydrofluoric acid bath and other substances seep into the gate electrode, corrode the gate insulating film made of silicon dioxide (Sj-0,) directly below, and cause breakdown voltage degradation as well. The slave VHIW voltage vth is varied. Further, the sputtering method forms a film quality similar to that of the vapor deposition method.

(C)  発明の目的 本発明はこのような問題点を解消し、安定したゲート絶
縁耐圧かえられるMOS形半導体素子の製造方法を提案
するものである。
(C) Object of the Invention The present invention solves these problems and proposes a method of manufacturing a MOS type semiconductor device that can stabilize the gate dielectric breakdown voltage.

(1)発明の構成 このような目的は、ゲート絶縁膜上に蒸着法わるいはス
パッタ法によ)多結晶シリコン膜を形成し、更にその上
にCVD法により多結晶シリコン膜を被着して、併せて
ゲート電極にする製造方法によって達成することができ
る。
(1) Structure of the Invention The object is to form a polycrystalline silicon film on a gate insulating film by vapor deposition or sputtering, and then deposit a polycrystalline silicon film thereon by CVD. This can be achieved by a method of manufacturing a gate electrode as well.

(f13)  発明の実施例 第2図ないし第4図は本元明にか\る一央厖例の工程順
断面図をボしている。先づ第2図に示すように半導体基
板t2ii−m択賑化17てフィールド絶縁膜4を形成
した後、膜厚700AのS) (J g膜からなるゲー
ト絶縁膜2を形成する。
(f13) Embodiments of the Invention Figures 2 through 4 are cross-sectional views of the process steps of an example by Akira Honmoto. First, as shown in FIG. 2, after a field insulating film 4 is formed on a semiconductor substrate t2ii-m selection layer 17, a gate insulating film 2 made of a 700 Å thick film is formed.

次いで、第3図に示すようにその上面に蒸着法によって
膜厚2000Aの多結晶シリコン膜5を被着し、更にそ
の上にCVD法によって同じく膜厚2000Aの多結晶
シリコン膜6を被着する。これらの多結晶シリコン膜は
例えば燐などをドープした導電膜であり、最初に真空蒸
着装置内で燐を含む多結晶シリコンを蒸着させる。続い
てCVD装置に入れて初めにその表面を僅かにエツチン
グして清浄化し、次いでフォスフインを含むモノシフン
(SiH4)を導入し分解して被着させる。
Next, as shown in FIG. 3, a polycrystalline silicon film 5 with a thickness of 2000 Å is deposited on the upper surface by a vapor deposition method, and a polycrystalline silicon film 6 with a thickness of 2000 Å is further deposited on top of this by a CVD method. . These polycrystalline silicon films are, for example, conductive films doped with phosphorus or the like, and polycrystalline silicon containing phosphorus is first deposited in a vacuum deposition apparatus. Subsequently, it is placed in a CVD apparatus, and its surface is first slightly etched and cleaned, and then monosiphne (SiH4) containing phosphine is introduced, decomposed, and deposited.

次いで、第4図に示すようにフォトプロセスを用いてパ
ターンユングし、二層の多結晶Vリコン1115.6か
らなるゲート電極およびゲート絶縁膜2を形成する。そ
れKは、レジスト膜マスク(図示せず)を被数し、四弗
化炭素(フレオン)と酸素との混合ガスによってドライ
エツチングを行なう方法を用いる。
Next, as shown in FIG. 4, a pattern is formed using a photo process to form a gate electrode and gate insulating film 2 made of two layers of polycrystalline V silicon 1115.6. This method uses a resist film mask (not shown) and performs dry etching using a mixed gas of carbon tetrafluoride (Freon) and oxygen.

以下、公知の製法によってソース、ドレインを形成し、
MOS形半導体素子に仕上げるが、このような二層の多
結晶Vリコン膜にすると、下層の多結晶シリコン膜5は
蒸着して被着している丸めゲート耐圧の劣化がなくなり
、また上層の多結晶シリコン膜6はCVD法で被着し九
膜であるからち密な膜で薬品**の浸入を阻止し、製造
中にゲート絶縁膜を安定に保つ。且つ、気相成長し九ド
ープド多結晶Vリコン膜・は同じくドープした蒸着膜よ
)電子やホールの易動度が大きい丸め、電気伝導度が改
善される効果ももっている。
Thereafter, the source and drain are formed by a known manufacturing method,
A MOS type semiconductor device is finished, but if such a two-layer polycrystalline silicon film is used, the lower layer polycrystalline silicon film 5 will be vapor-deposited and the rounded gate breakdown voltage will not deteriorate, and the upper layer polycrystalline silicon film 5 will not deteriorate. Since the crystalline silicon film 6 is deposited by the CVD method and is a dense film, it prevents penetration of chemicals** and keeps the gate insulating film stable during manufacturing. In addition, the vapor-phase grown nine-doped polycrystalline V silicon film (similarly to a doped vapor deposited film) has the effect of rounding, which has a high mobility of electrons and holes, and improves electrical conductivity.

また、第6図は他の実施例の工程途中図で、上記実施例
の第8図に対応する工程図を示しているが、上記例のよ
うに蒸着法で多結晶Vリコン膜iを形成し、次いで(4
D法で多結晶シリコン膜6を形成した後、更にその上に
蒸着法で多結晶Vリコン膜7を形成する。このように三
層に積層したダート電極も同じく上記の利点がえられる
In addition, FIG. 6 is a process diagram of another example, and shows a process diagram corresponding to FIG. 8 of the above example. and then (4
After forming the polycrystalline silicon film 6 by the D method, a polycrystalline V silicon film 7 is further formed thereon by the vapor deposition method. The dirt electrodes laminated in three layers in this manner also provide the above advantages.

尚、上記例において蒸着法の代りにスパッタ法で多結晶
シリコン膜を被着しても蒸着法と変わりなく、同様の効
果かえられる。
Incidentally, in the above example, even if the polycrystalline silicon film is deposited by sputtering instead of the vapor deposition method, the same effect as the vapor deposition method can be obtained.

(イ)発明の効果 上記実施例から明らかなように1本発明はシリコンゲー
ト電極を二層あるいは三層と被着法を変えて積層する形
成方法で、ゲート絶縁耐圧を改善し、安定したvthを
えることができて、半導体装置の品質向上に著しく・貢
献する龜のである。
(B) Effects of the Invention As is clear from the above embodiments, the present invention improves gate dielectric breakdown voltage and achieves stable vth by using a method of laminating silicon gate electrodes in two or three layers using different deposition methods. It is a tool that significantly contributes to improving the quality of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMOS形半導体素子の基本構造図、第2図ない
し第4図は本発明Kか覧る一実施例OIl造工程順断面
図、第5図は他の実施例の一工程途中図である。図中、
1は半導体基板、2はゲート絶縁膜、Sはゲート電極、
4はフィールド絶縁膜。 5.1は蒸着法による多結晶yリコン膜、6はCVD沫
による多結晶V9コン膜を示す。 第1図 第2図
Fig. 1 is a basic structural diagram of a MOS type semiconductor device, Figs. 2 to 4 are sequential cross-sectional views of an oil manufacturing process according to an embodiment of the present invention, and Fig. 5 is an intermediate step diagram of another embodiment. It is. In the figure,
1 is a semiconductor substrate, 2 is a gate insulating film, S is a gate electrode,
4 is a field insulating film. 5.1 shows a polycrystalline Y-recon film made by vapor deposition, and 6 shows a polycrystalline V9-recon film made by CVD. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] MIS形半導体素子のゲート絶縁膜を形成し先後、その
表面に蒸着法あるいはスパッタ法により多結晶yリコン
膜を形成し、更にその上に化学気相成長法により多結晶
シリコン膜を被着して、併せてゲート電極にする工程が
含まれてなることを特徴とする半導体装置の製造方法。
After forming the gate insulating film of the MIS type semiconductor device, a polycrystalline silicon film is formed on its surface by vapor deposition or sputtering, and then a polycrystalline silicon film is deposited on top of it by chemical vapor deposition. A method for manufacturing a semiconductor device, comprising the steps of forming a gate electrode.
JP5989682A 1982-04-09 1982-04-09 Preparation of semiconductor device Pending JPS58176974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5989682A JPS58176974A (en) 1982-04-09 1982-04-09 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5989682A JPS58176974A (en) 1982-04-09 1982-04-09 Preparation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58176974A true JPS58176974A (en) 1983-10-17

Family

ID=13126332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5989682A Pending JPS58176974A (en) 1982-04-09 1982-04-09 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58176974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452720A2 (en) * 1990-04-02 1991-10-23 National Semiconductor Corporation A semiconductor structure and method of its manufacture
JPH07200089A (en) * 1993-12-28 1995-08-04 Konami Kk Joy stick
WO2001020684A1 (en) * 1999-09-14 2001-03-22 General Semiconductor, Inc. Trench dmos transistor having improved trench structure
US6781196B2 (en) 2002-03-11 2004-08-24 General Semiconductor, Inc. Trench DMOS transistor having improved trench structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452720A2 (en) * 1990-04-02 1991-10-23 National Semiconductor Corporation A semiconductor structure and method of its manufacture
EP0452720A3 (en) * 1990-04-02 1994-10-26 Nat Semiconductor Corp A semiconductor structure and method of its manufacture
JPH07200089A (en) * 1993-12-28 1995-08-04 Konami Kk Joy stick
WO2001020684A1 (en) * 1999-09-14 2001-03-22 General Semiconductor, Inc. Trench dmos transistor having improved trench structure
US6781196B2 (en) 2002-03-11 2004-08-24 General Semiconductor, Inc. Trench DMOS transistor having improved trench structure

Similar Documents

Publication Publication Date Title
US6077754A (en) Methods of forming a silicon nitride film, a capacitor dielectric layer and a capacitor
JPH07112020B2 (en) EPROM cell manufacturing method
JPH05136132A (en) Method for alleviating step in multilayered structure of semiconductor element and semicon- for alleviating step in multilayered structure
JPH03203351A (en) Manufacture of semiconductor device
JPH04206569A (en) Manufacture of semiconductor device
JPS63104371A (en) Semiconductor memory integrated circuit and manufacture thereof
JPH0563156A (en) Manufacture of semiconductor device
US20040077141A1 (en) Capacitor and fabrication method thereof
JP3344786B2 (en) Method for manufacturing capacitor electrode of semiconductor memory cell
JPS58176974A (en) Preparation of semiconductor device
JP2001053251A (en) Manufacture of semiconductor device
US5723371A (en) Method for fabricating a thin film transistor having a taper-etched semiconductor film
JPS6230494B2 (en)
JPH0797583B2 (en) Method for forming interlayer insulating film
JPS63168034A (en) Formation of multilayer gate electrode of semiconductor device
JPH0575056A (en) Manufacture of semiconductor element
JPH02228034A (en) Semiconductor device and manufacture thereof
JPH0314232A (en) Manufacture of semiconductor device
JPH04162578A (en) Manufacture of dielectric tunnel structure
JPH02156563A (en) Semiconductor integrated circuit
JPS5863158A (en) Manufacture of semiconductor device
JPH01225352A (en) Manufacture of semiconductor device
JPH0684901A (en) Method of manufacturing semiconductor device
JPS60257554A (en) Semiconductor integrated circuit
JPH03208367A (en) Manufacture of semiconductor device