JPS5965409A - Method of producing multilayer thick film resistor - Google Patents

Method of producing multilayer thick film resistor

Info

Publication number
JPS5965409A
JPS5965409A JP57175712A JP17571282A JPS5965409A JP S5965409 A JPS5965409 A JP S5965409A JP 57175712 A JP57175712 A JP 57175712A JP 17571282 A JP17571282 A JP 17571282A JP S5965409 A JPS5965409 A JP S5965409A
Authority
JP
Japan
Prior art keywords
resistor
layer
insulating layer
thick film
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57175712A
Other languages
Japanese (ja)
Inventor
小西川 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57175712A priority Critical patent/JPS5965409A/en
Publication of JPS5965409A publication Critical patent/JPS5965409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は抵抗ペーストを用いて抵抗体を多層に形成した
いわゆる多層厚膜抵抗器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a so-called multilayer thick film resistor in which resistors are formed in multiple layers using a resistor paste.

従来例の構成とその問題点 一般に多層厚膜抵抗器を製造する場合には第1図−9第
2図に示すように先ずセラミック等の基板1に第1層目
の回路パターンを構成する導体層2を印刷、乾燥、焼成
して形成し、上記導体層2間に第、層^抗体3を印刷、
乾燥、焼成して形成する・そしてその後上記抵抗体3に
レーザ光線等を当てて上記抵抗体3の一部に切欠4を形
成し、上記抵抗体3の抵抗値を規定の値に調整し、しか
る後上記抵抗体3を保護し、かつ上の層との区切りをす
るために上記抵抗体3.上記導体層2を含む全面に低誘
電率のガラス質の絶縁層5を印刷。
Conventional Structures and Problems Generally, when manufacturing a multilayer thick film resistor, as shown in Figs. Forming layer 2 by printing, drying, and baking, printing a third layer ^antibody 3 between the conductor layers 2,
Form by drying and firing; and then apply a laser beam or the like to the resistor 3 to form a notch 4 in a part of the resistor 3, and adjust the resistance value of the resistor 3 to a specified value; Thereafter, in order to protect the resistor 3 and separate it from the upper layer, the resistor 3. A glass insulating layer 5 with a low dielectric constant is printed on the entire surface including the conductor layer 2.

乾燥、焼成して形成する。そして、その後、上記絶縁層
5の上面に第2層目の導体層6.抵抗体7をそれぞれ第
1層目と同じように印刷、乾燥、焼成して形成し、第2
層目の抵抗体7に第1層目の抵抗体3と同じように切欠
8を形成してその抵抗値を規定の値に調整する。
Formed by drying and firing. After that, a second conductive layer 6 is formed on the upper surface of the insulating layer 5. The resistors 7 are formed by printing, drying, and baking in the same manner as the first layer, and the second layer
Notches 8 are formed in the resistor 7 of the first layer in the same way as the resistor 3 of the first layer, and the resistance value thereof is adjusted to a specified value.

このようにして、順次第3層目、第4層目と言った具合
に多層に抵抗体を形成し、最後に最も上の層の抵抗体に
これを保護するためのオーバコート用のガラス質の絶縁
層を印刷、乾燥、焼成して形成する。そして最も上の層
の抵抗体に、上記オーバコート用の絶縁層を介してレー
ザ光線を当て、その抵抗値を調整するための切欠を形成
する。
In this way, the resistor is formed in multiple layers, such as the third layer and then the fourth layer, and finally the top layer of the resistor is coated with a glass material for overcoating to protect it. The insulating layer is printed, dried, and fired. Then, a laser beam is applied to the uppermost layer of the resistor through the overcoat insulating layer to form a notch for adjusting the resistance value.

第1図、第2図に示す具体例では抵抗体が2層形成され
ているだけであるため、第2層目の抵抗体7が最も上の
層の抵抗体であり、したがってオーバコート用の絶縁層
9は上記抵抗体7を形成した後、直ちにその上に形成さ
れる。そして、切欠8はオーバコート用の絶縁層9を形
成した後、このオーバコート用の絶縁層9を介して上記
抵抗体7にレーザ光線を当てることにより形成されるの
が普通である。
In the specific example shown in FIGS. 1 and 2, only two layers of resistors are formed, so the resistor 7 in the second layer is the uppermost resistor, and therefore is used for overcoating. The insulating layer 9 is formed immediately after the resistor 7 is formed. The cutout 8 is usually formed by forming an overcoat insulating layer 9 and then applying a laser beam to the resistor 7 through the overcoat insulating layer 9.

ところで従来より使用されているこの種の多層厚膜抵抗
器の製造方法では各層毎に抵抗体を形成し、直ちにその
抵抗値を調整するための切欠を形成しているため、引き
続いて多層に抵抗体を形成する際、一旦調整された抵抗
値が矢幅に狂ってし甘うことがあるという問題があった
。すなわち、第1図、第2図に示す2層の厚膜抵抗器で
も、第1層目の抵抗体3が層間に形成される絶縁層6゜
第2層目の導体層6.抵抗体70度重なる焼成工程にお
いてその抵抗値が大きく変化することがあり、仮に切欠
4によってその抵抗値が正確に規定の値に調整されてい
たとしても最終的にその抵抗値が規定の値より大きくず
れてしまうという問題があった。
By the way, in the conventional manufacturing method of this type of multilayer thick film resistor, a resistor is formed in each layer and a notch is immediately formed to adjust the resistance value. When forming the body, there was a problem in that the resistance value, once adjusted, could go out of order. That is, even in the two-layer thick film resistor shown in FIGS. 1 and 2, the first layer of resistor 3 is formed between the insulating layer 6 and the second conductor layer 6. During the firing process where the resistors overlap by 70 degrees, their resistance value may change significantly, and even if the resistance value is accurately adjusted to the specified value by the notch 4, the resistance value may ultimately be lower than the specified value. There was a problem that there was a large deviation.

発明の目的 本発明は以上のような従来の欠点を除去するものであり
、簡単な構成で抵抗値を正確に規正できる優れた多層厚
膜抵抗器およびその製造方法を提供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks, and provides an excellent multilayer thick film resistor that can accurately regulate the resistance value with a simple configuration, and a method for manufacturing the same.

発明の構成 本発明は各層の導体層、抵抗体を全て形成した後、各層
の抵抗体にレーザ光線を当て、各抵抗体にその抵抗値を
調整するための切欠を形成するように構成したものであ
る。したがって、本発明によれば簡単にかつ容易に正確
に抵抗値を調整することができ、実用上、きわめて有利
であるという利点を有する。
Structure of the Invention The present invention is structured such that after forming all the conductor layers and resistors in each layer, a laser beam is applied to the resistors in each layer to form a notch in each resistor to adjust its resistance value. It is. Therefore, according to the present invention, the resistance value can be adjusted simply and easily, and the present invention has the advantage that it is extremely advantageous in practice.

実施例の説明 第3図、第4図は本発明の多層厚膜抵抗器の一実施例を
示すものであり、第3図、第4図において第1図、第2
図と同一符号を伺したものは第1図、第2図と同一のも
のを示している1、そして、10は層間に形成された絶
縁層6の抵抗体3に対向する部分に形成された透孔、1
1はこの透孔1゜を覆うように上記抵抗体3の上面に形
成されたオーバコート用の絶縁層である。
DESCRIPTION OF EMBODIMENTS FIGS. 3 and 4 show an embodiment of the multilayer thick film resistor of the present invention.
The same reference numerals as in the figures indicate the same parts as in Figs. 1 and 2, 1, and 10, which is formed in the part of the insulating layer 6 formed between the layers facing the resistor 3. Through hole, 1
Reference numeral 1 denotes an insulating layer for overcoat formed on the upper surface of the resistor 3 so as to cover the 1° of the through hole.

尚、オーバコート用の絶縁層9,11は共に抵抗体7,
3に切欠8,4を形成する際に通常使用される波長0.
5〜0.2μmのレーザ光線に対してその吸収率が10
%以上のもので形成されている。
Incidentally, the insulating layers 9 and 11 for overcoating are both resistors 7 and 11.
The wavelength 0.3, which is normally used when forming the notches 8 and 4 in 3.
Its absorption rate is 10 for laser beams of 5 to 0.2 μm.
% or more.

第3図、第4図に示す多層厚膜抵抗器は次のような工程
で製造される。先ず、アルミナ等のセラミック基板1に
第1層目の回路パターンを構成する導体層2を印刷、乾
燥、焼成して形成する。そして、次にこの導体層2,2
間に第1層目の抵抗体3を印刷、乾燥、焼成して形成す
る。その後、上記抵抗体3の全部又は一部を除いて全面
に低誘電率のたとえばガラス等より成る絶縁層6を印刷
The multilayer thick film resistor shown in FIGS. 3 and 4 is manufactured by the following steps. First, a conductor layer 2 constituting a first layer circuit pattern is formed on a ceramic substrate 1 made of alumina or the like by printing, drying, and firing. Then, this conductor layer 2, 2
In between, the first layer of resistor 3 is printed, dried, and fired. Thereafter, an insulating layer 6 made of a low dielectric constant material such as glass is printed on the entire surface of the resistor 3 except for all or part thereof.

乾燥、焼成して形成し、いわゆる上記抵抗体3に対向す
る部分に透孔1oを有する層間の絶縁層6を形成する。
It is formed by drying and firing to form an interlayer insulating layer 6 having a through hole 1o in a portion facing the resistor 3.

そして、その後、この絶縁層・5の上面に第2層目の導
体層6.抵抗体7をそれぞれ第1層目の導体層2.抵抗
体3と同じように別々に印刷、乾燥、焼成して形成する
Thereafter, a second conductive layer 6 is placed on the upper surface of this insulating layer 5. The resistor 7 is connected to the first conductor layer 2. As with resistor 3, they are formed by printing, drying, and firing separately.

第3図、第4図に示す実施例では第2層目が最も上の層
であるため、・この層の抵抗体7を形成した後、上記抵
抗体7の上面及び上記透孔1oを通して露出している第
1層目の抵抗体3の上面にそれぞれレーザ光線の吸収率
が10%以上のオ−バコート用の絶縁層9,11を形成
する。そして、その後、上記抵抗体7,3にそれぞれオ
ーバコート用の絶縁層9,10を介してレーザ光線を当
て、ゲ 上記抵抗体7,3にそれぞれ切欠8.βを形成し上記抵
抗体7,3の抵抗値を規定の値に調整する。
In the embodiment shown in FIGS. 3 and 4, the second layer is the uppermost layer, so that after the resistor 7 of this layer is formed, it is exposed through the upper surface of the resistor 7 and the through hole 1o. Overcoat insulating layers 9 and 11 having a laser beam absorption rate of 10% or more are respectively formed on the upper surface of the first layer resistor 3. Thereafter, a laser beam is applied to the resistors 7 and 3 through the overcoat insulating layers 9 and 10, respectively, and a notch 8 is formed in the resistors 7 and 3, respectively. β is formed and the resistance values of the resistors 7 and 3 are adjusted to a specified value.

このようにすると、第1層目の抵抗体3も層間の絶縁層
らに影響されず正確にその抵抗値を調整することができ
る。すなわち、上記実施例によれば第1層目の抵抗体3
に対向して層間の絶縁層5に透孔10を形成し、ここに
レーザ光線の吸収率が10係以上のオーバコート用絶縁
層11を形成し、しかる後、上記抵抗体3に上記オーバ
コート用絶縁層11を介してレーザ光線を当てるように
しているため、上記層間の絶縁層6が如何なる材質のも
のであろうとも上記レーザ光線が上記層間の絶縁層6に
関係なく常に正確に抵抗体3に照射されることになシ、
抵抗体3に正確に切欠4が形成されることになる。そし
て、上記実施例によれば各層の抵抗体を全て形成した後
、切欠を形成するようにしているため先に形成した倫馳
本が後で形成される層間の絶縁層や導体層、抵抗体等の
焼成工程においてその抵抗値が大きく変化したとしても
最終的に上記切欠によって上記抵抗値の変化を吸収する
ことができ、常に正確な抵抗値の抵抗体を得ることがで
きるという利点を有する。
In this way, the resistance value of the first layer resistor 3 can be adjusted accurately without being affected by the interlayer insulation layers. That is, according to the above embodiment, the first layer resistor 3
A through hole 10 is formed in the interlayer insulating layer 5 opposite to the insulating layer 5, and an overcoat insulating layer 11 having a laser beam absorption coefficient of 10 or more is formed therein, and then the overcoat layer 11 is formed on the resistor 3. Since the laser beam is applied to the resistor through the insulating layer 11, the laser beam always accurately hits the resistor regardless of the material of the insulating layer 6 between the layers. 3. I don't want to be exposed to radiation.
The notch 4 is accurately formed in the resistor 3. According to the above embodiment, the notches are formed after all the resistors in each layer are formed, so that the insulating layer, conductor layer, and resistor formed between the layers that are formed later are the same as those formed earlier. Even if the resistance value changes greatly during the firing process, the change in resistance value can be finally absorbed by the notch, and it has the advantage that a resistor with an accurate resistance value can always be obtained.

尚、第3図、第4図に示す実施例では導体層。Incidentally, in the embodiment shown in FIGS. 3 and 4, the conductor layer.

抵抗体をそれぞれ2層形成しただけであるが、3層、4
層と多層に形成しても同様に構成することができる。ま
た、第3図、第4図に示す実施例では層間の絶縁層6に
透孔10を形成し、ここにオーバコート用の絶縁層11
を形成しているが層間の絶縁層6をオーバコート用絶縁
層9と同じようにレーザ光線の吸収率が10係以上のも
のを用いた場合には上記透孔1o及び上記オーバコート
用絶縁層11を形成しなくても同様に構成することがで
きる。
Although only two layers of each resistor were formed, three layers and four layers were formed.
The same structure can be achieved even if the structure is formed into multiple layers. Further, in the embodiment shown in FIGS. 3 and 4, a through hole 10 is formed in the interlayer insulating layer 6, and an overcoat insulating layer 11 is formed in the through hole 10.
However, if the interlayer insulating layer 6 is made of a material with a laser beam absorption coefficient of 10 or more like the overcoat insulating layer 9, the above-mentioned through hole 1o and the above-mentioned overcoat insulating layer are formed. A similar configuration can be made even if 11 is not formed.

発明の効果 本発明は上記実施例より明らかなように各層の導体層、
抵抗体をそれぞれ層間の絶縁層を介して多層に形成し、
しかる後、上記抵抗体にレーザ光線を当て、上記抵抗体
にその抵抗値を調整するだめの切欠を形成するようにし
たものであり、各層の導体層、抵抗体の焼成工程におい
て先に形成された抵抗体の抵抗値が変化したとしても最
終的に上記切欠によって上記抵抗値の変化を吸収し、正
確に抵抗値を規定の値に調整することができ、簡単にか
つ容易に正確な抵抗値の抵抗体を得ることができるとい
う利点を有する。そして、本発明によれば各層の抵抗体
を形成する毎に切欠を形成する必要がなく、最終的にま
とめて一工程で切欠を形成することができ、その製造も
著しく容易になるという利点を有する。
Effects of the Invention As is clear from the above embodiments, the present invention has a conductor layer of each layer,
The resistor is formed in multiple layers with an insulating layer between each layer,
Thereafter, a laser beam is applied to the resistor to form a notch in the resistor for adjusting its resistance value, which is formed first in the process of firing the conductor layer and resistor of each layer. Even if the resistance value of the resistor changes, the change in resistance value can be absorbed by the notch and the resistance value can be accurately adjusted to the specified value, making it easy to obtain an accurate resistance value. It has the advantage that it is possible to obtain a resistor of Further, according to the present invention, there is no need to form a notch each time a resistor is formed in each layer, and the notches can be formed in one process, which greatly facilitates manufacturing. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多層厚膜抵抗器の概略正面図、第2図は
同抵抗器のムーA′断面図、第3図は本発明の製造方法
によって得られた多層厚膜抵抗器における一実施例の概
略正面図、第4図(は同実施例のB−B’断面図である
。 1・・・・・・基板、2,6・・・・・・導体層、3,
7・・・・・・抵抗層、4゛、8・・・・・・切欠、6
・・・・・・層間絶縁層、9゜11・・・・・・オーバ
コート絶縁層、10・・・・・・透孔。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
FIG. 1 is a schematic front view of a conventional multilayer thick film resistor, FIG. 2 is a cross-sectional view of the same resistor at Mu A', and FIG. 3 is a schematic front view of a conventional multilayer thick film resistor. A schematic front view of the embodiment, FIG. 4 (is a BB' sectional view of the same embodiment. 1...Substrate, 2, 6... Conductor layer, 3,
7... Resistance layer, 4゛, 8... Notch, 6
...Interlayer insulating layer, 9゜11...Overcoat insulating layer, 10...Through hole. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 (1)低誘電率の層間絶縁層を介して多層に各層の導体
層、抵抗体を順次印刷、乾燥、焼成し、すべての層の導
体層、抵抗体を形成した後、上記各層の抵抗体にレーザ
光線を照射し、上記各抵抗体にそれぞれその抵抗値を調
整する切欠を形成するようにした多層厚膜抵抗器の製造
方法。 ?) 低誘電率の層間絶縁層を形成するに際し、その下
に存在する抵抗体の一部又は全部に対向して透孔が形成
されるように上記械抗体の一部又は全部を除いて上記層
間絶縁層を印刷、乾燥。 焼成し、しかる後上記層間絶縁層に形成された透孔にレ
ーザ光線の吸収率が10チ以上のオーバコートガラス層
を形成するようにしたことを特徴とする特許請求の範囲
第1項記載の多層厚膜抵抗器の製造方法。 (3)層間絶縁層をレーザ光線の吸収率が10チ以上の
もので形成したことを特徴とする特許請求の範囲第1項
記載の多層厚膜抵抗器の製造方法。
[Scope of Claims] (1) After forming conductor layers and resistors in all layers by sequentially printing, drying, and firing conductor layers and resistors in multiple layers via a low dielectric constant interlayer insulating layer. A method for manufacturing a multilayer thick film resistor, comprising: irradiating the resistors in each layer with a laser beam to form cutouts in each of the resistors to adjust their resistance values. ? ) When forming a low dielectric constant interlayer insulating layer, a part or all of the mechanical body is removed from the interlayer insulating layer so that a through hole is formed facing a part or all of the resistor existing thereunder. Print and dry the insulation layer. Firing, and then forming an overcoat glass layer having a laser beam absorption rate of 10 cm or more in the through holes formed in the interlayer insulating layer. A method of manufacturing a multilayer thick film resistor. (3) The method for manufacturing a multilayer thick film resistor according to claim 1, wherein the interlayer insulating layer is formed of a material having a laser beam absorption rate of 10 or more.
JP57175712A 1982-10-06 1982-10-06 Method of producing multilayer thick film resistor Pending JPS5965409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175712A JPS5965409A (en) 1982-10-06 1982-10-06 Method of producing multilayer thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175712A JPS5965409A (en) 1982-10-06 1982-10-06 Method of producing multilayer thick film resistor

Publications (1)

Publication Number Publication Date
JPS5965409A true JPS5965409A (en) 1984-04-13

Family

ID=16000914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175712A Pending JPS5965409A (en) 1982-10-06 1982-10-06 Method of producing multilayer thick film resistor

Country Status (1)

Country Link
JP (1) JPS5965409A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140861A (en) * 1976-05-19 1977-11-24 Siemens Ag Method of adjusting electric circuit network of synthetic resin foil
JPS5479457A (en) * 1977-12-08 1979-06-25 Nichicon Capacitor Ltd Resistance body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140861A (en) * 1976-05-19 1977-11-24 Siemens Ag Method of adjusting electric circuit network of synthetic resin foil
JPS5479457A (en) * 1977-12-08 1979-06-25 Nichicon Capacitor Ltd Resistance body

Similar Documents

Publication Publication Date Title
JPH0632643Y2 (en) Chip type network resistor
JPS5965409A (en) Method of producing multilayer thick film resistor
JPS6027104A (en) Method of producing chip resistor
US5169493A (en) Method of manufacturing a thick film resistor element
JPH0363237B2 (en)
JP2517726B2 (en) Method for manufacturing multilayer wiring board
JPS63253659A (en) Thick-film hybrid integrated circuit device
JPH0714111B2 (en) Multilayer substrate with built-in capacitor
JPS62169301A (en) Temperature coefficient regulation of thick film resistance element
JPS6165465A (en) Manufacture of film resistor in thick film multilayer substrate
JP2746774B2 (en) Circuit board manufacturing method
JPH0219980Y2 (en)
JPH02191304A (en) Manufacture of chip resistor
JPH02265297A (en) Manufacture of thick film multilayered substrate
JPS6045095A (en) Method of producing thick film multilayer board
JPS60208887A (en) Thick film multilayer circuit substrate
JPH0366104A (en) Formation of protective film on resistor
JPS61248534A (en) Formation of insulating film
JPH0287588A (en) Formation of resistor on thick-film wiring board
JPS6234159B2 (en)
JPS6081899A (en) Method of forming ceramic substrate
JPS6337518B2 (en)
JPH0227710A (en) Chip type cr composite component and manufacture thereof
JPS5963702A (en) Printed resistance part
JPS63141387A (en) Manufacture of thick film circuit board