JPS5961186A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5961186A
JPS5961186A JP17202682A JP17202682A JPS5961186A JP S5961186 A JPS5961186 A JP S5961186A JP 17202682 A JP17202682 A JP 17202682A JP 17202682 A JP17202682 A JP 17202682A JP S5961186 A JPS5961186 A JP S5961186A
Authority
JP
Japan
Prior art keywords
film
conductive film
mask
semiconductor substrate
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17202682A
Other languages
Japanese (ja)
Other versions
JPH0481328B2 (en
Inventor
Takashi Ito
隆司 伊藤
Toshihiro Sugii
寿博 杉井
Satoru Fukano
深野 哲
Hiroshi Horie
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17202682A priority Critical patent/JPS5961186A/en
Priority to US06/537,017 priority patent/US4545114A/en
Priority to EP83305971A priority patent/EP0107416B1/en
Priority to DE8383305971T priority patent/DE3380615D1/en
Publication of JPS5961186A publication Critical patent/JPS5961186A/en
Publication of JPH0481328B2 publication Critical patent/JPH0481328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To microminiaturize the device and to reduce parasitic capability and series resistance by a method wherein an opening is formed to a first conductive film, a cavity is formed through side-etching, a second conductive film is formed, while a substrate and the first conductive film are brought electrically into contact, and an impurity is diffused to the substrate from the first conductive film through heat treatment. CONSTITUTION:A polycrystalline silicon film 3 is etched by applying a means such as a reactive-sputtering-etching method while using a photoresist film 4 as a mask to form a window 5 and an opening of a similar shape to the window. An aluminum film 7 is formed by applying a sputtering method or an evaporation method. The surfaces of silicon films 3, 11, 12 are oxidized through a thermal oxidation method to form silicon dioxide insulating films 13. The silicon dioxide insulating films 13 are etched through photo-lithography technique to form electrode contact windows 17 and 18. An aluminum film is formed by applying the sputtering method or the evaporation method, and the aluminum film is patterned to form a gate electrode 19, a source electrode 20 and a drain electrode 21.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、電界効果トランジスタを小型化する際に適用
して有効な半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device that is effective when applied to miniaturize field effect transistors.

従来技術と問題点 従来、MIS電界効果トランジスリスいはショア)キ・
ゲート型電界効果トランジスタ等を高速動作させたり高
集積化する為、それ等の微小化が図られてきた。
Conventional technology and problems Conventionally, MIS field effect transistors (Shore) Ki.
BACKGROUND ART In order to operate gate-type field effect transistors at high speed and increase their integration, efforts have been made to miniaturize gate-type field effect transistors and the like.

てあった。そして、それに加えて各パターンをセルフ・
アラインメント方式で形成することで、より一層の微小
化を図る努力がなされてきた。
There was. In addition, each pattern can be self-created.
Efforts have been made to achieve further miniaturization by forming by alignment method.

然し乍ら、従来、採用されてきたセルフ・アラインメン
ト方式には一長一短があり、電界効果半導体装置の製造
に於いては、MIS構造のゲート電極とソース及びトレ
イン各領域とをセルフ・アラインメン1−させること以
外には実用化されていない現状である。
However, the conventionally employed self-alignment methods have advantages and disadvantages, and in manufacturing field effect semiconductor devices, there are no methods other than self-alignment between the gate electrode and the source and train regions of the MIS structure. Currently, it has not been put into practical use.

発明の目的 本発明は、電界効果半導体装置の殆との部分を1!ルフ
・アラ・インメント的に製造できるようにすることで微
小化を可能とし、それに依り寄生容量及びノリース11
(抗が低減され、且つ、超高速、低消費電力である電界
9.果半導体装置を提供し。辞テ′4るものである。
OBJECTS OF THE INVENTION The present invention provides a method for converting most parts of a field effect semiconductor device into 1! Miniaturization is possible by making it possible to manufacture it in a similar manner, thereby reducing parasitic capacitance and Norris 11
(It is an object of the present invention to provide an electric field semiconductor device with reduced resistance, ultra-high speed, and low power consumption.)

発明の構成 本発明こは、半導体基板」―に絶縁1模と不純物がin
i 濃度にドープされた帯状の第1の導7m股と活性領
域形成予定部分に窓を有する第1の一7スクl均とを順
に形成し、次に、第1の導電膜を選択的に除去して前記
窓と同パターンの開1」を形成してからサイド・エツチ
ングを行ない第1のマスク膜の下に空所を形成し、次に
、第2のマスク膜を形成してから第1のマスク膜を除去
することに依りその上のff12のマスク膜をリフト・
オフし、次に、残留した第2のマスク膜と第1の導電膜
との間の前記絶縁膜を除去して半導体基板の一部表面を
露出し、次に、第2のマスク膜を除去しtから酸化可能
な材料からなる第2の導電膜を形成して第1の導電膜と
半導体基板との電気接続を行ない、次に、熱処理を行な
って第1の導電膜から半導体基板に不純物を拡散しソー
ス領域及びトレイン領域を形成するようにしている。
Structure of the Invention The present invention is directed to a semiconductor substrate in which an insulator and impurities are injected into a semiconductor substrate.
A first conductive film doped with a concentration of 7 m and a first conductive film having a window in the area where the active region is to be formed are sequentially formed, and then the first conductive film is selectively formed. After forming an opening 1 in the same pattern as the window, side etching is performed to form a void under the first mask film, and then a second mask film is formed, and then a second mask film is formed. By removing the mask film of ff1, the mask film of ff12 above it is lifted.
Then, the remaining insulating film between the second mask film and the first conductive film is removed to expose a part of the surface of the semiconductor substrate, and then the second mask film is removed. A second conductive film made of an oxidizable material is formed from the first conductive film to establish an electrical connection between the first conductive film and the semiconductor substrate, and then heat treatment is performed to remove impurities from the first conductive film to the semiconductor substrate. is diffused to form a source region and a train region.

発明の実施例 第1図乃至第8図は本発明−実施例を解説する為の工程
要所に於+)る半導体装置の要部9ノ断側面図であり、
以下、これ等の図を参照しつつ説明する。
Embodiments of the Invention FIGS. 1 to 8 are cross-sectional side views of main parts 9 of a semiconductor device at important process points for explaining embodiments of the present invention.
The explanation will be given below with reference to these figures.

第1図参照 ■ 面指数(100)の主面を持つp型シリコン半導体
括板lに化学気相1tC積法を適用し、厚さ例えば10
00(人〕の窒化シリコン絶Ir5.膜2を形成する。
Refer to Fig. 1 ■ Chemical vapor phase 1tC product method is applied to a p-type silicon semiconductor board l having a main surface with a surface index of (100), and the thickness is, for example, 10.
A silicon nitride-free Ir5.00 film 2 is formed.

尚、これは、厚さ例えば500〔入〕の二酸化シリコン
絶縁膜と厚さ例えば1000 (人〕の窒化シリコン絶
縁膜からなる多層絶縁膜であっても良い。
Incidentally, this may be a multilayer insulating film consisting of a silicon dioxide insulating film having a thickness of, for example, 500 μm and a silicon nitride insulating film having a thickness of, for example, 1000 μm.

■ 化学気相1(F積法を適用し、砒素を高濃度にトー
プした厚さ例えば4000  (人〕の多結晶シリコン
11染(第1の導電膜)3を形成する。
(2) Applying a chemical vapor phase 1 (F product method), a polycrystalline silicon 11 dye (first conductive film) 3 doped with arsenic at a high concentration and having a thickness of, for example, 4,000 mm is formed.

■ フォト・リソグラフィ技術に′ζ、多結晶ソリコン
膜3を所定間隔を維持した多数の・11)状にパターニ
ングする。
(2) Using photolithography technology, the polycrystalline silicon film 3 is patterned into a large number of 11) shapes with predetermined spacing maintained.

■ フォト・リソグラフィ技術にて、窓5を有するフォ
ト・レシスl−1i(第1のマスク膜)4を形成する。
(2) A photoresis l-1i (first mask film) 4 having a window 5 is formed using photolithography technology.

第2図参照 ■ フォト・レジスト膜4をマスクとして、リアクティ
ブ・スパッタ・エツチング法等の手段を適用し、多結晶
シリコン膜3を工・ノチングし−C前記窓5と類似形状
の開口を形成する。
Refer to Fig. 2■ Using the photoresist film 4 as a mask, the polycrystalline silicon film 3 is etched and notched by applying a method such as a reactive sputter etching method to form an opening having a similar shape to the window 5. do.

(■ ツメ]・・レジスト膜4をマスクとして多結晶シ
リコン膜3のサイド・エツチングを行なう。この際に適
用するエツチング技術としては、CF4と02の混合ガ
スをエッチャントとするプラスマエソチング法或いはウ
ェット・エツチング法等を採用して良い。
(■ TIP) Side etching of the polycrystalline silicon film 3 is performed using the resist film 4 as a mask.Etching techniques to be applied at this time include plasma etching using a mixed gas of CF4 and 02 as an etchant, or wet etching.・Etching method etc. may be used.

これに依り、フォト・レジスト膜41よ庇4Δが形成さ
れる。尚、記号6はサイト・エノグ〜ングに依り形成さ
れた空所を指示してG1て、この空所6の奥行は0.2
〔μm〕程度もあれGよ良G1゜第3図参照 ■ スパッタ法或いは蒸着法を適用し、lyさ(り11
えば1000 〔人〕のアルミニウム−IIW (第2
 (7)マスク膜)7を形成する。このアルミニウムl
q 7 L上空所6に対向して露出されている窒化ノリ
コンS色牟象膜2の部分には付着しない。
As a result, an eave 4Δ is formed from the photoresist film 41. In addition, the symbol 6 indicates the void formed by the site enog~ng, and the depth of this void 6 is 0.2.
[μm] G or better G1゜Refer to Figure 3 ■ Sputtering or vapor deposition method is applied,
For example, 1000 [people] of aluminum-IIW (second
(7) Mask film) 7 is formed. This aluminum
It does not adhere to the portion of the nitrided noricon S color film 2 that is exposed facing the q 7 L upper space 6 .

第4図参照 ■ フォト・レジスト膜4の剥離液中Gこ浸漬すること
に依りフォト・レジスト膜4を溶解除去1−ると同時に
その上のアルミニウム肱7をIJフl−・、4−フする
Refer to Fig. 4 ■ The photoresist film 4 is dissolved and removed by dipping it in the stripping solution 1-, and at the same time the aluminum collar 7 on it is removed by IJ flush, 4-flush. do.

■ 前記工程でパターニングされた7ルミニウム膜7を
マスクとして窒化シリコン絶縁膜2の工・ノチングを行
なう。この時の工・ノチング番こむよ、CF4102を
エッチャントとするりアクティブ゛・スノぐツク エツ
チング法を適用することができる。
(2) Processing and notching of the silicon nitride insulating film 2 is performed using the 7-luminium film 7 patterned in the above step as a mask. At this time, an active notching method can be applied using CF4102 as an etchant.

これに依り、窒化シリコン絶縁膜2には、溝状の窓8及
び9が形成され、その窓8及び9内にはシリコン半導体
基板1の表面が露出する。
As a result, groove-shaped windows 8 and 9 are formed in the silicon nitride insulating film 2, and the surface of the silicon semiconductor substrate 1 is exposed within the windows 8 and 9.

第5図参1((( [相] アルミニウム膜7を除去してから、化学気相堆
稍法にて、厚さ例えば3000 (人〕程度の多結晶シ
リコン膜(第2の導電膜)10を形成する。
Figure 5 Reference 1 ((([Phase] After removing the aluminum film 7, a polycrystalline silicon film (second conductive film) 10 with a thickness of, for example, about 3,000 mm is formed by chemical vapor deposition. form.

第6図参!!(1 ■ エッヂヤントとじてCCI、或いはCF、102カ
スを用いたりアクティブ・イオン・エツチング法にて、
窒化シリコン膜2の表面が露出“Jろまで多結晶ノリ:
lン股1oをエツチングする。ごのJ、・)に:■−ソ
チングすると多結晶シリ:Iン3の平j、14な表面が
露出゛Jる。
See Figure 6! ! (1) Using CCI, CF, or 102 slag as an edgeant, or using active ion etching,
The surface of the silicon nitride film 2 is exposed with polycrystalline glue:
Etching the crotch 1o. When the surface of the polycrystalline silicon layer 3 is sown, the flat surface of the polycrystalline silicon layer 3 is exposed.

これに依り、多結晶シリコンIIA l Oは窒化シリ
:Jン絶縁膜2に形成された溝状の窓8及び9の近(X
にのめ残留さ−lることができる。尚、残W、l シた
多結晶シリコン欣を記9Il及び12て(h示しである
・ 第7図参照 @ 熱酸化法にて多結晶シリコン膜3,11.12の表
面を酸化し、厚さ例えば2000 (人〕程度の二酸化
シリコン絶縁膜13を形成する。゛これと同時に多結晶
シリコン膜3がら半導体基板1に砒素が拡散され、n+
型領領域1516が形成される。このn+型領領域15
16はソース領域及びトレイン領域となるものである。
As a result, the polycrystalline silicon IIA lO is deposited near the groove-shaped windows 8 and 9 formed in the silicon nitride insulating film 2 (X
It can be left behind for a long time. Note that the remaining W, l and polycrystalline silicon layers are shown in 9Il and 12 (h is shown. See Figure 7. The surfaces of the polycrystalline silicon films 3, 11, and 12 are oxidized by thermal oxidation method, and the thickness is For example, a silicon dioxide insulating film 13 having a thickness of about 2,000 people is formed. At the same time, arsenic is diffused into the semiconductor substrate 1 from the polycrystalline silicon film 3, and n+
A mold region 1516 is formed. This n+ type region 15
16 is a source region and a train region.

第8図参照 07オト・リソグラフィ技術にて二酸化シリコン絶縁膜
13をエツチングして電極コンタク1−窓I7及び18
を形成する。
Refer to Figure 8 07 Etching the silicon dioxide insulating film 13 using photolithography technology to form electrode contact 1 - window I7 and 18.
form.

■ スパッタ法或いは蒸着法を適用してアルミニウム膜
を形成し、これをパターニンクしてグー1−電極19、
ソース電極20、ドレイン電極21を形成し完成する。
■ Apply sputtering or vapor deposition to form an aluminum film, pattern this to form goo 1-electrode 19,
A source electrode 20 and a drain electrode 21 are formed and completed.

前記実施例では、窒化シリコン絶縁膜2をケート絶縁膜
として使用したが、それを用いずに、新たにシリコン半
導体基板1を熱酸化或いは熱窒化してケート絶縁膜を形
成しても良い。
In the embodiment described above, the silicon nitride insulating film 2 was used as the gate insulating film, but instead of using it, the silicon semiconductor substrate 1 may be thermally oxidized or thermally nitrided to form a gate insulating film.

ごのような」−程を採るごとに依り、従来技術に比較し
て、例えばソース領域及び1′L・イン領域の大きさは
1桁以上も微イ、■化することか一ζきる。
For example, the size of the source region and the 1'L/in region can be reduced by more than one order of magnitude compared to the prior art, depending on the degree of change taken.

因に、ソース領域とチャネル領域と1ルイン領域を加え
た長さを1 〔μm〕以)にすることができる。
Incidentally, the total length of the source region, channel region, and one Ruin region can be set to 1 [μm] or less.

第9図は、前記]]程で製造される電界効果半導体装置
に於けるパターンの関係を表わす要口1;平面図である
FIG. 9 is a plan view illustrating the relationship between patterns in the field effect semiconductor device manufactured in the above step 1.

図に於いて、31はフィールド絶縁膜に形成されるパタ
ーン、32はフォl−・レジスl IIW 4で形成さ
れるパターン、33は電極コンタクト窓17及び18で
形成されるパターン、34はケート電極19で形成され
るパターンをそれぞれ示している。
In the figure, 31 is a pattern formed on the field insulating film, 32 is a pattern formed on Fol-Resist IIW 4, 33 is a pattern formed on electrode contact windows 17 and 18, and 34 is a gate electrode. The patterns formed in step 19 are shown respectively.

発明の効果 本発明に依れば、半導体基板上に絶縁膜、不純物を高濃
度にドープされ多数の帯状になされた第1の導電膜、活
性領域形成予定部分に窓を有する第1のマスク映をそれ
ぞれ形成し、第1の導電膜に開口を形成してから第1の
導電膜をサイド・エツチングして空所を形成し、該空所
に対向する前記絶縁膜をエツチングして半導体基板を露
出さゼてから第2の導電膜を形成して半導体基板と第1
の導電膜との電気接触を採り、その後、熱処理して第1
の導電膜から半導体基板に不純物を拡1)kシソース領
域及びドレイン領域を形成するようにしているので、電
極の引き出し部分がセルフ・アラインメント的に形成さ
れ、その面、rffは著しく小さなものとすることがで
き、また、ソース領域及びドレイン領域もセルフ・アラ
インメント的に形成−ζきるので、アラインメント余裕
を必要とせず、その面積を小さくすることが可能である
から電界りJ果半導体装置の集積度を向上するのに有す
ノである。そして、その小型化に依り、寄生容量を低下
さ−1ることができ、高周波性能を向上させることも可
能である。
Effects of the Invention According to the present invention, an insulating film is formed on a semiconductor substrate, a first conductive film doped with impurities in a large number of strips, and a first mask film having a window in a portion where an active region is to be formed. After forming an opening in the first conductive film, side etching the first conductive film to form a cavity, and etching the insulating film opposite to the cavity to form a semiconductor substrate. After the exposure, a second conductive film is formed to connect the semiconductor substrate and the first conductive film.
electrical contact with the conductive film, and then heat-treated the first
1) Since the impurity is spread from the conductive film to the semiconductor substrate to form the source region and drain region, the electrode extension portion is formed in a self-aligned manner, and the rff on that surface is extremely small. In addition, since the source and drain regions can be formed in a self-aligned manner, alignment margins are not required and the area can be reduced, which reduces the electric field and the integration density of the semiconductor device. It is a good idea to improve your skills. By reducing the size, parasitic capacitance can be reduced by -1, and high frequency performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は本発明−実施例を説明する為の工程
要所に於ける半導体装置の要部切断側面図、第9図は前
記実施例にて製造される電界効果半導体装置に於けるパ
ターンの関係を表わす要部平面図である。 図に於いて、■はノリコン半導体基板、2は窒化シリコ
ン膜、3は多結晶シリコン膜、4はフォト・レジスト膜
、5は窓、6は空所、7はアルミ。 ニウム膜、8及び9はコンタクト窓、10,11゜12
は多結晶シリコン膜、13は二酸化シリコン絶縁膜、1
5及び16はn+型領領域17及び18は電極コンタク
ト窓、19はケート電極、20はソース電極、21はト
レイン電極である。 特許出願人   富士通株式会社 代理人弁理士  玉蟲 久五部 (外3名)
1 to 8 are cross-sectional side views of main parts of a semiconductor device at important process points for explaining the present invention-embodiments, and FIG. 9 is a side view of a field-effect semiconductor device manufactured in the above embodiment. FIG. 3 is a plan view of main parts showing the relationship between patterns in the drawing. In the figure, ■ is a Noricon semiconductor substrate, 2 is a silicon nitride film, 3 is a polycrystalline silicon film, 4 is a photoresist film, 5 is a window, 6 is a void, and 7 is aluminum. Ni film, 8 and 9 are contact windows, 10, 11゜12
1 is a polycrystalline silicon film, 13 is a silicon dioxide insulating film, and 1 is a polycrystalline silicon film.
5 and 16 are n+ type regions 17 and 18 are electrode contact windows, 19 is a gate electrode, 20 is a source electrode, and 21 is a train electrode. Patent applicant: Fujitsu Ltd. Representative Patent Attorney: Kugobe Tamamushi (3 others)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁膜と不純物が高濃度にトープされた
・11シ状の第1の導電膜と活性領域形成予定部分に窓
を有する第1のマスク膜とを順に形成し、次に、第1の
導電膜を選択的に除去して前記窓と同パターンの開口を
形成してからサイド・エツチングを行なって第1のマス
ク膜の下に空所を形成し、次に、第2のマスク膜を形成
してから第1のマスク膜を除去することに依りその上の
第2のマスク膜をリフト・オフし、次に、残留した第2
のマスク膜と第1の導電膜との間の前記絶縁膜を除去し
て半導体基板の一部表面を露出し、次に、第2のマスク
膜を除去してから酸化可能な月利からなる第2の導電膜
を形成して第1の導電膜と半導体基板との電気接続を行
ない、次に、熱処理を行なって第1の導電膜から半導体
基板に不純物を拡(1にシソース領域及びドレイン領域
を形成する工程が含まれてなることを特徴とする半導体
装置の製造方法。
An insulating film, a first conductive film doped with impurities at a high concentration, and a first mask film having a window in a portion where an active region is to be formed are sequentially formed on a semiconductor substrate. The first conductive film is selectively removed to form an opening in the same pattern as the window, side etching is performed to form a void under the first mask film, and then the second mask film is etched. After forming the film, the second mask film thereon is lifted off by removing the first mask film, and then the remaining second mask film is removed.
The insulating film between the mask film and the first conductive film is removed to expose a part of the surface of the semiconductor substrate, and then the second mask film is removed. A second conductive film is formed to electrically connect the first conductive film and the semiconductor substrate, and then heat treatment is performed to spread impurities from the first conductive film to the semiconductor substrate (1) A method of manufacturing a semiconductor device, comprising the step of forming a region.
JP17202682A 1982-09-30 1982-09-30 Manufacture of semiconductor device Granted JPS5961186A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17202682A JPS5961186A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device
US06/537,017 US4545114A (en) 1982-09-30 1983-09-29 Method of producing semiconductor device
EP83305971A EP0107416B1 (en) 1982-09-30 1983-09-30 Method of producing semiconductor device
DE8383305971T DE3380615D1 (en) 1982-09-30 1983-09-30 Method of producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17202682A JPS5961186A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5961186A true JPS5961186A (en) 1984-04-07
JPH0481328B2 JPH0481328B2 (en) 1992-12-22

Family

ID=15934141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17202682A Granted JPS5961186A (en) 1982-09-30 1982-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5961186A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492070A (en) * 1977-12-29 1979-07-20 Nippon Telegr & Teleph Corp <Ntt> Mis field effect transistor and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492070A (en) * 1977-12-29 1979-07-20 Nippon Telegr & Teleph Corp <Ntt> Mis field effect transistor and its manufacture

Also Published As

Publication number Publication date
JPH0481328B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US4466172A (en) Method for fabricating MOS device with self-aligned contacts
EP0046371B1 (en) Method of manufacturing a semiconductor device
JP3229665B2 (en) Method of manufacturing MOSFET
US4679299A (en) Formation of self-aligned stacked CMOS structures by lift-off
KR940007654B1 (en) Method of fabricating a nonvolatile semiconductor memory device
US4520553A (en) Process for manufacturing an integrated insulated-gate field-effect transistor
EP0160255A2 (en) Field effect transistor device and method of making same
JP2935083B2 (en) Method for manufacturing thin film transistor
JPS5989457A (en) Manufacture of semiconductor device
US4216573A (en) Three mask process for making field effect transistors
JPS5961186A (en) Manufacture of semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
EP0002107A2 (en) Method of making a planar semiconductor device
JPS5884462A (en) Metal oxide semiconductor type semiconductor device and its manufacture
JPS603157A (en) Manufacture of semiconductor device
JPS60216580A (en) Manufacture of semiconductor device
JP2516429B2 (en) Method for manufacturing semiconductor device
KR0137551B1 (en) Tft fabrication method
KR0172901B1 (en) Method of manufacturing thin film transistor
KR100338095B1 (en) Method for forming contact hole in semiconductor device
KR0124643B1 (en) Forming method of isolation film in semiconductor device
KR20010058793A (en) Manufacturing method for flat rom
GB2140617A (en) Methods of forming a field effect transistor
JPS594013A (en) Manufacture of semiconductor device
JP2951056B2 (en) Method for manufacturing field effect transistor