JPS5955081A - Photoelectric conversion semiconductor device - Google Patents
Photoelectric conversion semiconductor deviceInfo
- Publication number
- JPS5955081A JPS5955081A JP57165655A JP16565582A JPS5955081A JP S5955081 A JPS5955081 A JP S5955081A JP 57165655 A JP57165655 A JP 57165655A JP 16565582 A JP16565582 A JP 16565582A JP S5955081 A JPS5955081 A JP S5955081A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- fluorine
- type
- photoelectric conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 11
- 239000004065 semiconductor Substances 0.000 title claims abstract description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 150000004767 nitrides Chemical group 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005530 etching Methods 0.000 abstract description 7
- 239000011737 fluorine Substances 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は弗素添加アモルファスシリコンIllノンドー
プ高抵抗層とした太陽電池などの光電変換半導体装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion semiconductor device such as a solar cell having a fluorine-doped amorphous silicon Ill non-doped high resistance layer.
yo=放電mm法によるアモルファスシリコン農は、従
来の単結晶シリコンに比べ製造工程が容易で、しかも全
工程に要する経費が大幅に低減できるとと□から、底プ
ス□ト太陽電池材料としても特に匝目を集めて伝る^一
般にアルモフテスシリコン膜におい宅はシランガス’(
Sil(、)のグ占−放電分解によシ基板上に彫版する
もので?膜中に綴本こまれる水素原子が、Si原子ネッ
トワーク中は存在する2ングリシグを終端′(ターミネ
ート)する。し尼がらて禁止帯中の局番状態密度が10
″1/cfIIeV程iにn5、膜の光導電率はJ、l
〜、 o−411(Ω’) (AM ’ 1 +
’100 m’W/lri照射乍)′ト高イ値□を示す
。その反面、:尿素原子のみでiSiSi原子ネットワ
ーク中ンシリングボンドを充分にターミネート÷藪ない
た□め、いぜんとして局在状態密度が高く、このことが
太陽電池へ適用した場合の変換効率ヲ制限f志原囚□と
逐っている。□この観点か釘最近弗氷整添加し九アルモ
ファスルリコン膜が発生きnた。これは、弗素原子が8
i原子のネットワーク中に存在1するダングリングボン
ドをさらにターミネートするために、禁止帯中の局在状
態密度は従来のプラズマ分解アモルファスシリコン膜に
比べ1桁減少し、こ扛に伴い膜の光導電率は10 (
Ωyn)’(AM−1,100mW/i照射下)表向上
する。この弗素添加ア玉ルファスシリコン膜の製造方法
は、原料カスやその混合法等によりいく種類かに分類で
きるが、どの場合においてもノ゛ラズマ分解法を用いた
膜を実際に太陽電池に適用した結果、接合形成上の問題
のため、現在せでに充分な出力特性が得ら7’していな
い。Amorphous silicon production using the yo=discharge mm method has an easier manufacturing process than conventional single crystal silicon, and the costs required for the entire process can be significantly reduced, making it particularly suitable as a material for solar cells. Generally, the smell of Almoftes silicon film is transmitted by silane gas.
Is it engraved on a substrate by electrostatic decomposition of Sil(,)? The hydrogen atoms incorporated into the film terminate the two atoms present in the Si atom network. The station number state density in the forbidden zone is 10
``1/cfIIeV, i is n5, and the photoconductivity of the film is J, l
~, o-411(Ω') (AM' 1 +
'100 m'W/lri irradiation)' indicates the high value □. On the other hand, since the urea atoms alone sufficiently terminate the silencing bonds in the iSiSi atomic network, the density of localized states is still high, which limits the conversion efficiency when applied to solar cells. Prisoner Shihara□ is being chased. □From this point of view, a 9-alumophasullicon film was generated recently by adding filtrate to nails. This means that fluorine atoms are 8
In order to further terminate the dangling bonds that exist in the i-atom network, the density of localized states in the forbidden band is reduced by an order of magnitude compared to conventional plasma-decomposed amorphous silicon films, and this reduces the photoconductivity of the film. The rate is 10 (
Ωyn)' (AM-1, under 100 mW/i irradiation). The manufacturing method of this fluorine-doped agglomerated silicon film can be classified into several types depending on the raw material scraps and the mixing method, but in all cases, the film using the plasma decomposition method is actually applied to solar cells. As a result, due to problems in bond formation, sufficient output characteristics cannot currently be obtained.
ところで、′アモルファスシリコン膜を使った太陽電池
の従来の構造の代表例として、第1図(a)〜(C)に
示したようなi:i −i −n型およびショットギー
バリア型のものがある。By the way, typical examples of conventional structures of solar cells using amorphous silicon films include i:i-i-n type and Schottky barrier type as shown in Figures 1(a) to (C). There is.
第1図(a)においては金属基板1の上Kn型層2、i
/輌3、n型層4、導明導電膜5が積層さ′n、その上
に部分的に金属電極6が設りら扛ている。第n型層4が
形成さ扛、さらに全面に金属電極6が設けられている。In FIG. 1(a), a Kn type layer 2, i
A conductive film 3, an n-type layer 4, and a conductive film 5 are laminated, and a metal electrode 6 is partially provided thereon. An n-type layer 4 is formed, and a metal electrode 6 is further provided on the entire surface.
第1図(c)はシ″−1ットキーバリ゛ア型で、金属基
板1の上にn型層2を介り、て1層3が形成さn、その
土にバリ了金属層8がM M 、さらに金属電極6が部
分的に設けられている。こJ]−らのn型層2の代りに
p型層、n型層4の代り[C11型層を用いても2い。FIG. 1(c) shows a sheet key barrier type in which a layer 3 is formed on a metal substrate 1 with an n-type layer 2 interposed therebetween, and a metal layer 8 is deposited on the soil. In addition, a metal electrode 6 is partially provided.A p-type layer may be used instead of the n-type layer 2, and a C11-type layer may be used instead of the n-type layer 4.
いずj2の場合にも光キトリア生成層であるi層(ノン
ドープ層)はドーピング層(p型層またはn型層)の上
にひき続い゛r影形成れている。In all cases of j2, the i-layer (non-doped layer), which is a photo-chitria-generating layer, continues to form a shadow on the doped layer (p-type layer or n-type layer).
一一方i Ni K 弗! 添加アモルファスシリニ1
ン膜ヲ用いる場合、その製造方法によらずi層成長時、
プラズマ中には弗素に関係した活性種が存在(7゜エツ
チング作用を示す。このためドーピング層形成後、その
上にひき続い°CC弗素添加7ルルフアスシリコン膜デ
ポジットすると、ドーピング5がエツチングされ5接合
界面の状態が著しく悪化し7゜良好な接合が形成されな
い。したがって太iす電池としての光出力特性は低下す
る。One-on-one i Ni K 弗! Added amorphous sirini 1
When using a thin film, when growing the i-layer, regardless of the manufacturing method,
There are active species related to fluorine in the plasma (which exhibits a 7° etching effect. Therefore, after forming the doping layer, if a CC fluorine-doped silicon film is subsequently deposited on it, the doping 5 is etched away. The condition of the 5-junction interface deteriorates significantly, and a good 7° junction cannot be formed.Therefore, the light output characteristics as a thick battery deteriorate.
本発明は1以上に述べたような、弗湘添加アモルファス
シリコン膜をi層に用いtこ光電変換半導体装置におけ
るプラズマ中の弗素によるエツチング効果を防ぎ、良好
な接合全形成しその出力特性を向」ニさせることを目的
とする。The present invention uses a fluorine-doped amorphous silicon film as the i-layer, as described above, to prevent the etching effect caused by fluorine in plasma in a photoelectric conversion semiconductor device, form a good junction, and improve its output characteristics. ” The purpose is to make people
この目的はi層とドーピング層の間に薄い絶縁層を備え
ることによって達成さ扛る。絶縁層としては酸化膜、窒
化膜が用いられ、是の厚さは30〜50Aであることが
望ましい。This objective is achieved by providing a thin insulating layer between the i-layer and the doped layer. An oxide film or a nitride film is used as the insulating layer, and the thickness thereof is preferably 30 to 50 Å.
以下、図を引用して本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.
第2図においては、金属基板1の上にn型ドーピング層
2を形成の後、窒化膜または酸化膜等の絶縁膜9を成長
させ、その上にノンドープの弗素添加アモルファスシリ
コン膜3を堆積する。In FIG. 2, after forming an n-type doped layer 2 on a metal substrate 1, an insulating film 9 such as a nitride film or an oxide film is grown, and a non-doped fluorine-doped amorphous silicon film 3 is deposited thereon. .
電膜5の側から入射する光によシ起電力を生ずるp−1
−n型太陽電池ができ上がる。p-1 that generates an electromotive force due to light incident from the side of the electrolytic film 5
- An n-type solar cell is completed.
この方法を用いれば、弗素添加アモルファスシリコン膜
を成長する際、絶縁層がプラズマ中の弗素に関係した活
性種によるエツチング作用を防ぎ。By using this method, when growing a fluorine-doped amorphous silicon film, the insulating layer prevents the etching effect caused by active species related to fluorine in the plasma.
その下のドーピング層をいためることなく堆積で 5−
き、しっかりとした接合が形成さ扛る。この場合絶縁層
9の膜厚は適当に調整することで、1層で生成さ扛た光
キャリアは、絶縁層における損失をうけることなくトン
ネル電流としてドーピング層に輸送される。It can be deposited without damaging the underlying doped layer, forming a firm bond. In this case, by appropriately adjusting the thickness of the insulating layer 9, the photocarriers generated in one layer and captured are transported to the doped layer as a tunnel current without suffering loss in the insulating layer.
第3図は第2図の構造を有する太陽電池における絶縁膜
9としての酸化膜(SiOt)の膜厚に対する出力特性
の変化を表わしたもので5曲線31は開放端電圧(Vo
e)、曲線32は短絡光電光密度(Jsc ) 、曲線
33は曲線因子(F、F、)、曲線34は変換効率(η
)’を示す。膜厚が50Ai超えると、酸化膜の存在の
ために、1層中で生成された光キャリアがn層中に輸送
できなくなり、出力特性の低下を招く。また、30八以
下では、酸化膜が充分均一に成長しないため接合面の不
整合をおこし、出力特性は同様に低下する。よって30
〜50Aが最適範囲であることが確かめられた。FIG. 3 shows the change in output characteristics with respect to the film thickness of the oxide film (SiOt) as the insulating film 9 in the solar cell having the structure shown in FIG.
e), curve 32 is the short-circuit photoelectric density (Jsc), curve 33 is the fill factor (F, F,), and curve 34 is the conversion efficiency (η
)' is shown. When the film thickness exceeds 50 Ai, photocarriers generated in one layer cannot be transported into the n-layer due to the presence of the oxide film, resulting in a decrease in output characteristics. Further, below 308, the oxide film does not grow sufficiently uniformly, resulting in mismatching of the bonding surfaces, and the output characteristics similarly deteriorate. Therefore 30
~50A was found to be the optimal range.
第1表に実験結果の代表例として、ステンレス鋼基板(
S、S、)上にn型層−8i:I(膜、i型、−8i:
H:F膜、p型層 S r : H膜と順にデボジッ
6−
トしたp−1−n型太陽電池と、n層とi層の間に40
大の酸化膜(sho、)を入れたものとのAM−1(1
00mW/cr/I )照射下における光出力特性の比
較を示す。Table 1 shows a stainless steel substrate (
n-type layer -8i:I (film, i-type, -8i:
H: F film, p-type layer Sr: H film and p-1-n type solar cell deposited in this order, and 400 nm between n layer and i layer.
AM-1 (1) with a large oxide film (sho)
00 mW/cr/I) Comparison of optical output characteristics under irradiation is shown.
第 1 表
第1表より明らかなように、酸化膜の存在によシ従来型
の太陽電池における弗素のエツチング作用がおよぼす接
合の不整合による短絡光電流Jscn曲線因子1’i’
、F、の低下をおさえ、変換効率の向上が得られる。Table 1 As is clear from Table 1, the short-circuit photocurrent Jscn fill factor 1'i' due to the junction mismatch caused by the etching action of fluorine in conventional solar cells due to the presence of an oxide film
, F, can be suppressed and the conversion efficiency can be improved.
以上まとめると、光キヤリア生成層であるi層に弗素添
加アモルファスシリコン膜を用い、プラズマ分解法で、
太陽電池を製造する場合、ドービ7−
ング層とf膚□の間に30〜50^の厚さの酸化膜、窒
化等の絶縁層を設けることにょシ、i層成長時プラズマ
中に存在する弗素に関係した活性種がおよばずエツチン
グ作用を防ぎ、接合面の整合を保ち、光出力特性の良好
な太陽電池を得ることができる。In summary, by using a fluorine-doped amorphous silicon film for the i-layer, which is a photocarrier generation layer, and using a plasma decomposition method,
When manufacturing solar cells, it is necessary to provide an insulating layer such as an oxide film or nitride film with a thickness of 30 to 50^ between the doping layer and the f-layer, which is present in the plasma during the growth of the i-layer. The active species related to fluorine can prevent the etching effect, maintain the alignment of the bonding surfaces, and obtain a solar cell with good light output characteristics.
もちろん、第1 m” cb)、(C) vc示す構造
をもつ太陽電池にも応用でき、iた太陽電池のほかにフ
ォトダイオードや撮像管など他の光電変換半導体装置に
アモルファスシリ□コン膜を用いる場合にも、接合形成
上の観点から充分に応用できる。Of course, it can also be applied to solar cells with structures shown in the 1st m''cb) and (C)vc. Even when used, it can be fully applied from the viewpoint of bond formation.
第1図(a)〜(C)は従来のアモルファスシリコン太
陽型、池の構造を示す断面図で、(a)は金属基板、(
b)はガラス基板をそれぞれ用いたp−1−n型、(C
)は金属基板を用いたショットキーバリア型であシ。
第2図は本発明の一実施例を示す断面図、第3図は絶縁
層を備えた太陽電池の出力特性と絶縁層膜厚との関係線
図である。Figures 1 (a) to (C) are cross-sectional views showing the structure of a conventional amorphous silicon solar type pond.
b) is a p-1-n type using a glass substrate, (C
) is a Schottky barrier type using a metal substrate. FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between the output characteristics of a solar cell equipped with an insulating layer and the thickness of the insulating layer.
Claims (1)
ン膜をi層に用いたものにおいて、i層とドーピング層
の間に絶縁層を備えたことを特徴とする光電変換半導体
装置。・ 2、特許請求の範囲第1項記載の装置において。 その膜厚の最適範囲を30〜50人とすることを特徴と
する光電変換半導体装置み ・ □3)特許請求
の範囲第1項または第2項記載の装置において、絶縁層
が酸化膜であることを特徴とする光電変換半導体装置。 ・4)特許請求の範囲第1項または第2項
記載の装置において、絶縁層が窒化膜であることを特徴
とする光電変換半導体装置。 [Scope of Claims] 1) A photoelectric conversion semiconductor device using a fluorine-doped amorphous silicon film produced by plasma decomposition as the i-layer, characterized in that an insulating layer is provided between the i-layer and the doped layer. - 2. In the device according to claim 1. A photoelectric conversion semiconductor device characterized in that the optimum film thickness range is 30 to 50 people. □3) In the device according to claim 1 or 2, the insulating layer is an oxide film. A photoelectric conversion semiconductor device characterized by: -4) A photoelectric conversion semiconductor device according to claim 1 or 2, wherein the insulating layer is a nitride film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57165655A JPS5955081A (en) | 1982-09-22 | 1982-09-22 | Photoelectric conversion semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57165655A JPS5955081A (en) | 1982-09-22 | 1982-09-22 | Photoelectric conversion semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5955081A true JPS5955081A (en) | 1984-03-29 |
JPS639757B2 JPS639757B2 (en) | 1988-03-01 |
Family
ID=15816477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57165655A Granted JPS5955081A (en) | 1982-09-22 | 1982-09-22 | Photoelectric conversion semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5955081A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260271A (en) * | 1985-09-10 | 1987-03-16 | Sanyo Electric Co Ltd | Photovoltaic device |
JPS62232173A (en) * | 1986-04-01 | 1987-10-12 | Toa Nenryo Kogyo Kk | Amorphous silicon solar cell |
JP2008241827A (en) * | 2007-03-26 | 2008-10-09 | Seiko Epson Corp | Electrooptical device and electronic apparatus |
-
1982
- 1982-09-22 JP JP57165655A patent/JPS5955081A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260271A (en) * | 1985-09-10 | 1987-03-16 | Sanyo Electric Co Ltd | Photovoltaic device |
JPS62232173A (en) * | 1986-04-01 | 1987-10-12 | Toa Nenryo Kogyo Kk | Amorphous silicon solar cell |
JP2008241827A (en) * | 2007-03-26 | 2008-10-09 | Seiko Epson Corp | Electrooptical device and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS639757B2 (en) | 1988-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6368892B1 (en) | Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys | |
JP3490964B2 (en) | Photovoltaic device | |
US20080135089A1 (en) | Graded hybrid amorphous silicon nanowire solar cells | |
US20100132774A1 (en) | Thin Film Silicon Solar Cell Device With Amorphous Window Layer | |
JPH05243596A (en) | Manufacture of laminated type solar cell | |
CN102334194A (en) | Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design | |
JPH0370183A (en) | Photovoltaic element | |
TW201128789A (en) | New structure solar cell with superlattices | |
JP2004260014A (en) | Multilayer type thin film photoelectric converter | |
JP2001267598A (en) | Laminated solar cell | |
JPH04130671A (en) | Photovoltaic device | |
JP4032610B2 (en) | Non-single crystal thin film solar cell manufacturing method | |
WO2005109526A1 (en) | Thin film photoelectric converter | |
JPH11135818A (en) | Solar cell | |
JPS5955081A (en) | Photoelectric conversion semiconductor device | |
JP2002016271A (en) | Thin-film photoelectric conversion element | |
JPH0122991B2 (en) | ||
JPH0346377A (en) | Solar cell | |
WO2006049003A1 (en) | Process for producing thin-film photoelectric converter | |
JP2918815B2 (en) | Photovoltaic element and method for manufacturing the same | |
JPS61160979A (en) | Manufacture of amorphous solar cell | |
JP2001203374A (en) | Amorphous thin film solar cell and its manufacturing method | |
US20100307573A1 (en) | Solar cell and manufacturing method thereof | |
JP2918813B2 (en) | Photovoltaic element and method for manufacturing the same | |
JPH0685291A (en) | Semiconductor device and its manufacture |