JPS5952878A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5952878A
JPS5952878A JP16346282A JP16346282A JPS5952878A JP S5952878 A JPS5952878 A JP S5952878A JP 16346282 A JP16346282 A JP 16346282A JP 16346282 A JP16346282 A JP 16346282A JP S5952878 A JPS5952878 A JP S5952878A
Authority
JP
Japan
Prior art keywords
gate electrode
polycrystalline silicon
silicon layer
impurities
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16346282A
Other languages
Japanese (ja)
Other versions
JPH0481327B2 (en
Inventor
Noriaki Sato
佐藤 典章
Motoo Nakano
元雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16346282A priority Critical patent/JPS5952878A/en
Publication of JPS5952878A publication Critical patent/JPS5952878A/en
Publication of JPH0481327B2 publication Critical patent/JPH0481327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain the stabilized characteristics with which a hot carrier effect can be prevented as well as to have an accurate method of processing in excellent reproducibility by a method wherein a polycrystalline silicon layer is formed on a gate electrode side, and a low-dosage drain region is formed in the vicinity of a gte electrode using said gate electrode and the polycrystalline silicon layer as masks. CONSTITUTION:A polycrystalline silicon layer 42 is formed adjoining to a gate electrode 41, and high density impurities are doped by performing the first ion implantation using the gate electrode 41 and a silicon layer 42 as masks. Then, a deep impurity region 43 is grown by diffusion, the silicon layer 42 is removed by performing a plasma etching, and the second ion implantation is performed using the gate electrode 41 as a mask. After low density impurities have been doped, an MOS type semiconductor of LDD structure is formed by diffusion. Thus, a polycrystalline silicon is provided on the part adjoining to the gate electrode and an MOS transistor of N-channel type silicon gate structure, having an LDD construction, is obtained by doping impurities using said polycrystalline silicon. Besides, various types of transistors having different characteristics can be obtained using the impurities such as arsenic, phosphorus and the like in combined state on a deep impurity region or a shallow impurity region.

Description

【発明の詳細な説明】 (a)  発明の技術分野 微細寸法長のゲート電極に於けるホットギヤリア効果を
防止するに有効な浅いドレイン領域を形成するL D 
D (Lightly Doped Dralrり構造
体をなす半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention Forming a shallow drain region effective in preventing hot gearing effects in gate electrodes with fine dimensions L D
D (Relates to a method of manufacturing a semiconductor device having a Lightly Doped Drall structure.

(b)  技術の背景 MO8型集積回路はメモリ、マイクロプロセッサへの応
用が広がると共に多結晶シリコンをゲート電極とするn
チャンネル型MO8IC,LSIが多く用いられる。近
年イオン打込技術、選択酸化技術、多結晶シリコン電極
ヤ成技術の発展に伴い、MO8mデバイスがLSIの主
流となっている。
(b) Background of the technology MO8 type integrated circuits are increasingly being applied to memories and microprocessors, and the use of polycrystalline silicon as gate electrodes
Channel type MO8ICs and LSIs are often used. In recent years, with the development of ion implantation technology, selective oxidation technology, and polycrystalline silicon electrode layer formation technology, MO8m devices have become the mainstream of LSIs.

例えばイオン打込技術′が広く使用されるのは低濃度領
域での制御性の良さを利用して、ゲート領域に不純物を
打込み、不純物濃度を変えることによるしきい値(、v
th)の制御である。−力選択酸化技術の基本は窒化シ
リコン膜(S13N4)が酸化されにくいことを利用し
て、MO8IC,LSIのフィールド部に厚い二酸化シ
リコン膜(,5102ゝを形成させることにあ)この利
点は二酸化シリコン膜が厚くても平担になると共にフィ
ールド部分の酸化前に基板の81部分に不純物をドープ
することにより選択的にフィールド部分の濃度が制御で
きる。即ち寄生MO8素子の防止が可能となる。
For example, ion implantation technology is widely used because it takes advantage of its good controllability in low concentration regions, implants impurities into the gate region, and changes the impurity concentration by changing the threshold value (, v
th) control. - The basis of force selective oxidation technology is to utilize the fact that silicon nitride film (S13N4) is difficult to oxidize to form a thick silicon dioxide film (5102゜) in the field area of MO8IC, LSI. Even if the silicon film is thick, it becomes flat and the concentration in the field portion can be selectively controlled by doping the portion 81 of the substrate with impurities before oxidizing the field portion. That is, it is possible to prevent parasitic MO8 elements.

また多結晶シリコンをゲート電極とするMOSプロセス
の特徴はゲート電極となる多結晶シリコンを拡散マスク
にしてソース、ドレインを形成することにある。このた
めゲート電極とソース、ドレインとの重なシは拡散層の
横方向への広がりによつて決まるため重なり部分を1μ
m以下にすることができゲートドレイン間容量が小さく
なる。
A feature of the MOS process using polycrystalline silicon as a gate electrode is that the source and drain are formed using polycrystalline silicon as a gate electrode as a diffusion mask. Therefore, the overlap between the gate electrode, source, and drain is determined by the lateral spread of the diffusion layer, so the overlap area should be 1 μm.
m or less, and the gate-drain capacitance becomes small.

又配線として拡散層、多結晶シリコン、アルミ電極の三
層が利用できる利点がある。
Another advantage is that three layers, the diffusion layer, polycrystalline silicon, and aluminum electrode, can be used as wiring.

(C)従来技術と問題点 第1図は従来のnチャンネル型シリコンゲート欅造のM
o5s)ランジスタの製造プロセスf 示Y工程図であ
る。
(C) Conventional technology and problems Figure 1 shows the conventional n-channel silicon gate Keyaki M
o5s) It is a process diagram showing the manufacturing process f of a transistor.

図中(5)に示すようなP形シリコン基板1の表面を1
.5μm程度高温酸化させて酸化膜(S102 )2を
形成し、次いで活性領域全体の酸化膜2を除去する。次
いで(B) K:示すように酸化膜2を除去した活性領
域にゲート酸化膜3を形成する。この場合ドライ(H2
Oを含まない)酸素中での高温熱酸化法が用いられるが
(ト)の場合はウェット酸素中での厚い酸化膜形成を行
なう。次いで(0に示すようにCVD法によって多結晶
シリコン4をゲート酸化膜3上に形成する。次いで(ハ
)に示すようにゲート電極5とかる部分以外の多結晶シ
リコン4を除去したあと更にソースドレイン領域の酸化
膜3を除去する。次いで(2)に示すように多結晶シリ
コンでなるゲート電極5を拡散マスクとしてイオン打込
によ、クソース6.ドレイン7拡散を行う。打込まれる
不純物はnmの場合シん(P)或はひ素(AS)が拡散
されてn型領域となる。次いで(6)に示すように最終
保護膜としてりんシリケートガラス膜(PSG)で被膜
し、メルト処理し、更にアルミ電極9を蒸着させる。
The surface of the P-type silicon substrate 1 as shown in (5) in the figure is
.. An oxide film (S102) 2 is formed by high-temperature oxidation of about 5 μm, and then the oxide film 2 over the entire active region is removed. Then, as shown in (B) K:, a gate oxide film 3 is formed in the active region from which the oxide film 2 has been removed. In this case, dry (H2
In the case of (g), a thick oxide film is formed in wet oxygen. Next, as shown in (0), polycrystalline silicon 4 is formed on the gate oxide film 3 by the CVD method.Next, as shown in (c), after removing the polycrystalline silicon 4 other than the gate electrode 5, a source layer is further formed. The oxide film 3 in the drain region is removed.Then, as shown in (2), the source 6 and drain 7 are diffused by ion implantation using the gate electrode 5 made of polycrystalline silicon as a diffusion mask.The implanted impurity is In the case of nanometers, phosphorus (P) or arsenic (AS) is diffused to form an n-type region.Then, as shown in (6), a phosphorus silicate glass film (PSG) is coated as a final protective film and melt-treated. Then, an aluminum electrode 9 is further deposited.

このようなプロセスによって構成されるTX’l OS
型半導体装置において1〜2μm程度の微細寸法のゲー
ト長では、ゲート電極とドレイン領域の界面に電界集中
し、動作中にホットキャリア効果によりしきい値電圧(
Vtl)、コンダクタンス(β)が変動し易く信頼性が
得られない。このためドレイン領域としてゲート電極近
傍には浅い不純物拡散層、隣接する領域に深い不純物拡
散層を備えたL D D (Lightly Dope
d Drain)構造とすることによってホットキャリ
ア効果を防止することに着目したものである。LDD構
造とするための製造プロセスにサイドエツチングがある
その具体例を第2図の工程図によって示す。
TX'l OS configured by such processes
In a semiconductor device with a microscopic gate length of about 1 to 2 μm, the electric field concentrates at the interface between the gate electrode and the drain region, and during operation the threshold voltage (
Vtl) and conductance (β) are likely to fluctuate, making it difficult to obtain reliability. Therefore, as a drain region, an LDD (Lightly Dope) is used, which has a shallow impurity diffusion layer near the gate electrode and a deep impurity diffusion layer in the adjacent region.
d Drain) structure to prevent hot carrier effects. A specific example in which side etching is included in the manufacturing process for forming an LDD structure is shown in the process diagram of FIG.

(イ)に示すようにゲート電極をなす多結晶シリコン1
1上に窒化シリコン(SI3N4 ) 12及び二酸化
シリコン(Si02)をパターニング形成し、これをマ
スクとしてイオン打込を行う。次いで(ロ)に示すよう
に不純物層のソースドレイン領域14゜15を形成し、
更に多結晶シリコン11を円筒型プラズマエツチング装
置によシサイドエッチングして図のように形成する。次
いで(ハ)に示すように平行平板型プラズマエツチング
により酸化シリコン、岱化シリコン膜をエツチング除去
し、更に多結晶シリコン11をマスクとしてイオン打込
を行いソースドレイン領域を拡散成長させる。このよう
なプロセスによって次のに)に示すようにソースドレイ
ン領域14.15の形状はゲート電極近傍で浅くなるL
DD構造のMO8型半導体装置が得られる。
Polycrystalline silicon 1 forming the gate electrode as shown in (a)
Silicon nitride (SI3N4) 12 and silicon dioxide (Si02) are patterned on 1, and ions are implanted using this as a mask. Next, as shown in (b), source and drain regions 14 and 15 of the impurity layer are formed,
Further, the polycrystalline silicon 11 is side-etched using a cylindrical plasma etching device to form a structure as shown in the figure. Next, as shown in (c), the silicon oxide and silicon oxide films are etched away by parallel plate plasma etching, and ions are implanted using the polycrystalline silicon 11 as a mask to grow source and drain regions by diffusion. Through such a process, the shape of the source/drain regions 14 and 15 becomes shallow near the gate electrode, as shown in (2) below.
An MO8 type semiconductor device with a DD structure is obtained.

しかしこのプロセスではゲート電極をなす多結晶シリコ
ン11を円筒型エツチング装置を用い等方性エツチング
するもので、そのエツチング装置は反応性ガス例えばC
F4 (フレオンガス)のグロー放電によって活性なフ
ッ素(フッ素ラジカル)を発生させてこれが多結晶シリ
コンと反応してエツチングされるが時間制御がむづかし
く、半導体ウェハ開のバラツキが大きい。このため再現
性が得られにくい。また安定性に欠ける憾がある。
However, in this process, the polycrystalline silicon 11 forming the gate electrode is isotropically etched using a cylindrical etching device, and the etching device uses a reactive gas such as carbon dioxide.
Active fluorine (fluorine radicals) is generated by glow discharge of F4 (Freon gas), which reacts with polycrystalline silicon and etches it, but time control is difficult and there are large variations in semiconductor wafer opening. For this reason, it is difficult to obtain reproducibility. There is also a problem with the lack of stability.

(d)  発明の目的 本発明は上記の点に鑑み、LDD構造の半導体装置の低
ドープドレイン領域を再現性よく正確に形成することを
目的とする。
(d) Object of the Invention In view of the above points, an object of the present invention is to accurately form a lightly doped drain region of a semiconductor device having an LDD structure with good reproducibility.

(e)  発明の構成 り開目的は本発明によれば半導体基板上に形成されたゲ
ート電極ケマスクとし゛C該半導体基板に不純物を導入
する工)lと、該ゲート′1−極に隣接して形成された
多結晶シリコンのマスク材および核ゲート電椿をマスク
として該半導体基板に不純物を導入する工程を含むこと
によって達せられる。
(e) Structure of the Invention According to the present invention, a gate electrode mask is formed on a semiconductor substrate. This can be achieved by including the step of introducing impurities into the semiconductor substrate using the formed polycrystalline silicon mask material and nuclear gate electrode as a mask.

(f)  発明の実施例 以下本発明の実施例全図面により詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to all the drawings.

2r!3図りま本発明の一実施例であるLl)’L)構
造の製造プロセスを示す工程図である。
2r! FIG. 3 is a process diagram showing the manufacturing process of the Ll)'L) structure which is an embodiment of the present invention.

(a)に示すようにP型シリコン基板21に形成したゲ
ート酸化膜22上にCVD法により多結晶シリコン23
を図のようVCパターン形成することによりゲート電極
24が得られる。次いで(b)に示すようにゲート電極
24を含む活性領域内にCVD法によりシリコン酸化膜
(8102)25を形成し、更に多結晶シリコン26を
被膜形成させる。次いで(C)に示すように平行平板型
プラズマエツチングで多結晶シリコン26をバターニン
グ形成し、図のような第2の多結晶シリコン層27をゲ
ート電極24に隣接して形成する。しかる後にゲート電
極24及び第2の多結晶シリコン層27をマスクとして
第1のイオン打込によυ高濃度の不純物をドープし、ソ
ース、ドレイン領域28f:形成させる。次いで(d)
に示すように第2の多結晶シリコン膜27を円筒型プラ
ズマエツチングにより、エツチング除去する。次いでゲ
ー)’に極24をマスクとして第2のイオン打込により
低濃歴の不純物全ドープし、浅い不純物領域29を形成
させ拡散成長させる。
As shown in (a), polycrystalline silicon 23 is deposited on a gate oxide film 22 formed on a P-type silicon substrate 21 by CVD.
A gate electrode 24 is obtained by forming a VC pattern as shown in the figure. Next, as shown in (b), a silicon oxide film (8102) 25 is formed in the active region including the gate electrode 24 by the CVD method, and a polycrystalline silicon 26 is further formed as a film. Next, as shown in (C), polycrystalline silicon 26 is patterned by parallel plate plasma etching, and a second polycrystalline silicon layer 27 is formed adjacent to gate electrode 24 as shown in the figure. Thereafter, using the gate electrode 24 and the second polycrystalline silicon layer 27 as a mask, a first ion implantation is performed to dope impurities at a high concentration of υ to form source and drain regions 28f. Then (d)
As shown in FIG. 3, the second polycrystalline silicon film 27 is etched away by cylindrical plasma etching. Then, using the electrode 24 as a mask, the gate layer is completely doped with low concentration impurities by second ion implantation to form a shallow impurity region 29 and grow by diffusion.

第1のイオン打込はひ素イオン(AS”)を120ke
Vのエネルギ、打込ドーズ54X 10 − とするの
に対し第2のイオン打込では5okeV、 lXl0I
2d2でドープすることにより射貰しいドレイン領域が
得られる。
The first ion implantation was 120ke of arsenic ions (AS”).
The energy of V and the implantation dose are 54X10-, whereas the second ion implantation is 5okeV and lXl0I.
By doping with 2d2, a drain region with high radiation density can be obtained.

次いで(e)に示すようにシリコン酸化膜25をエツチ
ング除去し、りんシリケートガラス膜29で最終的保饅
膜を行い更にアルミ電極30を蒸着形成することにより
L I) I)構造のMO8型半導体装置が得られる。
Next, as shown in (e), the silicon oxide film 25 is removed by etching, a final protective film is formed with a phosphorus silicate glass film 29, and an aluminum electrode 30 is formed by vapor deposition to form an MO8 type semiconductor having the LI) I) structure. A device is obtained.

このように構成することにより従来構成の半導体装置に
比し安定した特性がイFJられ寸たサイドエツチング法
に比して本発明は再現性に優れる大きな利点がある。
Due to this structure, the present invention has a great advantage of superior reproducibility compared to the side etching method, which has almost resulted in stable characteristics compared to a semiconductor device having a conventional structure.

第4図及び第5図は他の実旋例であるL I) D構造
の製造プロセスを示す工程図である。
FIGS. 4 and 5 are process diagrams showing the manufacturing process of the LI)D structure, which is another practical example.

第4図において、(5)に示すようしこP型シリコン基
板31にCVD法によりゲート酸化膜32上に多結晶シ
リコンをパターン形成してゲー1− ?11極33を設
ける。このゲート電極33をマスクとして第1イオン打
込によって低濃度の不純物をドープし浅い不純物層をな
すソースドレイン領域34を形成させる。次いで(B)
に示すようにCV D法によりシリコン酸化膜、更に多
結晶シリコンを形成させ第3図に示す同一手順でゲート
電極33に隣接する多結晶シリコン層35を形成させる
In FIG. 4, polycrystalline silicon is patterned on a gate oxide film 32 by the CVD method on a p-type silicon substrate 31 as shown in (5). 11 poles 33 are provided. Using this gate electrode 33 as a mask, a low concentration impurity is doped by first ion implantation to form a source/drain region 34 forming a shallow impurity layer. Then (B)
As shown in FIG. 3, a silicon oxide film and further polycrystalline silicon are formed by the CVD method, and a polycrystalline silicon layer 35 adjacent to the gate electrode 33 is formed in the same procedure as shown in FIG.

次いでゲ−) 電tW 33及び多結晶シリコン層35
をマスクとして第2のイオン打込によって高濃度の不純
物をドープし、深い不純物層をなすソースドレイン領域
36を得る。次いで(C)に示すように円筒型プラズマ
エツチングによp多結晶シリコン35及びシリコン酸化
膜をエツチング除去する。
Then, the electric current tW 33 and the polycrystalline silicon layer 35
Using this as a mask, high concentration impurities are doped by second ion implantation to obtain source/drain regions 36 forming deep impurity layers. Next, as shown in (C), the p-polycrystalline silicon 35 and silicon oxide film are etched away by cylindrical plasma etching.

次いで(!J)に示すように不純物層のソースドレイン
仰域34.36を拡散成長させL D D構造のMO8
型半導体装置が得られる。
Next, as shown in (!J), the source/drain elevation regions 34 and 36 of the impurity layer are grown by diffusion to form MO8 of the LDD structure.
type semiconductor device is obtained.

第5図では(a)に示すようにゲート[械41に瞬接し
て多結晶シリコン層42を形成し、ゲート電極41及び
多結晶シリコン層42f:マスクとして第1のイオン打
込によって高濃度の不純物をドープする。次いで(b)
に示でように深い不純物領域43を拡散成長させ、多結
晶シリコン+a4Zをプラズマエツチングでエツチング
除去する。次いで(C)に示すようにゲート電極41を
マスクとし、て第2のイオン打込を行い、低濃度の不純
物をドープする。
In FIG. 5, as shown in FIG. 5(a), a polycrystalline silicon layer 42 is formed in momentary contact with a gate electrode 41 and a polycrystalline silicon layer 42f as a mask by the first ion implantation. Dope with impurities. Then (b)
As shown in FIG. 3, a deep impurity region 43 is grown by diffusion, and the polycrystalline silicon+a4Z is etched away by plasma etching. Next, as shown in (C), a second ion implantation is performed using the gate electrode 41 as a mask to dope impurities at a low concentration.

次いで(d)+v示すように拡散成長りf行いL ]、
) D構造のM OS型半導体が得られる。このように
多結晶シリコンをゲート電極に隣接して設け、これをマ
スクとして不純物をドープすることによりT、 D D
構が(ヲが丁nチャンネル1(リシリコンゲート構造の
Tν10Sトランジスタが得られる。更にひ素(As 
)又けりん(P)等の不純物を深い不純物領域或は浅い
不純物領域に組合せて用いること(でより更に特性の異
かる各種のトランジスタが得られる。
Then, as shown in (d)+v, diffusion growth f is performed L ],
) A D-structure MOS type semiconductor is obtained. In this way, by providing polycrystalline silicon adjacent to the gate electrode and doping impurities using this as a mask, T, D D
With this structure, a Tν10S transistor with an n-channel 1 silicon gate structure can be obtained.
) Also, by using an impurity such as phosphorus (P) in combination in a deep impurity region or a shallow impurity region, various transistors with further different characteristics can be obtained.

(12)発明の効果 以上詳細に説明したように本発明のゲート電極サイドに
多結晶シリコン層を形成」2、ゲート電極及び多結晶シ
リコン層をマスクとしてゲート重極近傍に低ドープドレ
イン領域を形成1゛るL D D構造とすることにより
ホットキャリア多1ノ冴2をμ力比する安定した特性が
得られる。またサイドエツチング処理法に比して再現性
よく正確な加工法である等大きな効果がある。
(12) Effects of the Invention As explained in detail above, forming a polycrystalline silicon layer on the gate electrode side of the present invention" 2. Forming a lightly doped drain region near the gate pole using the gate electrode and polycrystalline silicon layer as a mask. By adopting an LDD structure of 1, stable characteristics can be obtained in which the number of hot carriers is 1, 2 and 2. It also has great effects, such as being a more accurate processing method with better reproducibility than the side etching method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のnチャンネル型シリコンゲート構造のM
OS)ランジスタの製造プロセスを示す工程図、第2図
はサイドエツチングによるLDD構造をなすIV’[O
8)ランジスタの製造プロセスを示す工程図、第3図は
本発明の一実施例である多結晶シリコン層をマスクとす
るLDD構造の製造プロセスを示す工程図、第4図及び
第5図は他の実施例を示す工程図である。図中21..
311−tP型シリコン基板、22.32はゲート酸化
膜、23は多結晶シリコン、24,33.41はゲート
電極、25t/iシリコン酸化膜、26は多結晶シリコ
ン膜、27,35.42は多結晶シリコン層(マスク材
)、28,34,36.43は不純物領域を示す。 茅 1 品 (切             (灼
Figure 1 shows the conventional n-channel silicon gate structure.
FIG. 2 is a process diagram showing the manufacturing process of an IV'[O
8) A process diagram showing the manufacturing process of a transistor, FIG. 3 is a process diagram showing the manufacturing process of an LDD structure using a polycrystalline silicon layer as a mask, which is an embodiment of the present invention, and FIGS. 4 and 5 are other diagrams. It is a process diagram showing an example of. 21 in the figure. ..
311-tP type silicon substrate, 22.32 is gate oxide film, 23 is polycrystalline silicon, 24, 33.41 is gate electrode, 25t/i silicon oxide film, 26 is polycrystalline silicon film, 27, 35.42 is The polycrystalline silicon layer (mask material) 28, 34, 36, and 43 indicate impurity regions. 1 piece of grass (cut)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成されたゲート電極をマスクとして該
半導体基板に不純物を導入する工程と、該ゲート電極に
隣接して形成された多結晶シリコンのマスク材および該
ゲート雷1椿をマスクとして該半導体基板に不純物を導
入する工程を含むことを特徴とする半導体装置の製造方
法。
A step of introducing impurities into the semiconductor substrate using a gate electrode formed on the semiconductor substrate as a mask, and a step of introducing an impurity into the semiconductor substrate using a polycrystalline silicon mask material formed adjacent to the gate electrode and the gate lightning as a mask. A method for manufacturing a semiconductor device, the method comprising the step of introducing impurities into a substrate.
JP16346282A 1982-09-20 1982-09-20 Manufacture of semiconductor device Granted JPS5952878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16346282A JPS5952878A (en) 1982-09-20 1982-09-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16346282A JPS5952878A (en) 1982-09-20 1982-09-20 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5952878A true JPS5952878A (en) 1984-03-27
JPH0481327B2 JPH0481327B2 (en) 1992-12-22

Family

ID=15774333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16346282A Granted JPS5952878A (en) 1982-09-20 1982-09-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5952878A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244074A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS60245176A (en) * 1984-05-18 1985-12-04 Matsushita Electric Ind Co Ltd Manufacture of mis type field effect transistor
JPS6229169A (en) * 1985-07-30 1987-02-07 Sony Corp Manufacture of mos semiconductor device
JPS6342161A (en) * 1986-08-07 1988-02-23 Toshiba Corp Manufacture of cmos type semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283073A (en) * 1975-12-29 1977-07-11 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS57106169A (en) * 1980-12-24 1982-07-01 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283073A (en) * 1975-12-29 1977-07-11 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS57106169A (en) * 1980-12-24 1982-07-01 Fujitsu Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244074A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS60245176A (en) * 1984-05-18 1985-12-04 Matsushita Electric Ind Co Ltd Manufacture of mis type field effect transistor
JPS6229169A (en) * 1985-07-30 1987-02-07 Sony Corp Manufacture of mos semiconductor device
JPS6342161A (en) * 1986-08-07 1988-02-23 Toshiba Corp Manufacture of cmos type semiconductor device

Also Published As

Publication number Publication date
JPH0481327B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US4268321A (en) Method of fabricating a semiconductor device having channel stoppers
US4502202A (en) Method for fabricating overlaid device in stacked CMOS
EP0036573A2 (en) Method for making a polysilicon conductor structure
US5153146A (en) Maufacturing method of semiconductor devices
EP0023528A1 (en) Double diffused transistor structure and method of making same
JPS5952878A (en) Manufacture of semiconductor device
JPH0685247A (en) Insulating gate type semiconductor device and manufacture thereof
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPH07302908A (en) Semiconductor device and manufacture thereof
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPS6039868A (en) Manufacture of semiconductor device
KR100298430B1 (en) Method for fabricating of semiconductor device
JPS63126279A (en) Manufacture of semiconductor integrated circuit device
KR940010544B1 (en) Manufacturing method of transistor
KR100223795B1 (en) Manufacturing method of semiconductor memory device
JPH04360539A (en) Manufacture of semiconductor device
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS6229165A (en) Manufacture of vertical semiconductor device
JPS6092657A (en) Semiconductor device
JPH03154378A (en) Manufacture of radiation-resistant semiconductor device
JPS61220372A (en) Manufacture of semiconductor device
JPS6129151B2 (en)
JPS59114869A (en) Non-volatile semiconductor memory device having floating gate of polycrystalline silicon
JPH03242940A (en) Manufacture of semiconductor device
JPS61234046A (en) Manufacture of semiconductor device