JPS5952810A - Manufacture of iron-oxide magnetic thin film - Google Patents

Manufacture of iron-oxide magnetic thin film

Info

Publication number
JPS5952810A
JPS5952810A JP57162184A JP16218482A JPS5952810A JP S5952810 A JPS5952810 A JP S5952810A JP 57162184 A JP57162184 A JP 57162184A JP 16218482 A JP16218482 A JP 16218482A JP S5952810 A JPS5952810 A JP S5952810A
Authority
JP
Japan
Prior art keywords
thin film
substrate
main component
sputtering
foundation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57162184A
Other languages
Japanese (ja)
Other versions
JPS616528B2 (en
Inventor
Osamu Ishii
修 石井
Bunichi Yoshimura
吉村 文一
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57162184A priority Critical patent/JPS5952810A/en
Publication of JPS5952810A publication Critical patent/JPS5952810A/en
Publication of JPS616528B2 publication Critical patent/JPS616528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer

Abstract

PURPOSE:To reduce reduction processing temperature and realize the manufacture of iron-oxide thin film with increased saturated magnetization by forming a foundation layer which promotes a deoxidizing reaction between a substrate and a magnetic thin film. CONSTITUTION:As a foundation layer which promotes reduction, a thin film, made of at least one of Ag, Au, Pd, Pt, Rh, Ir, Ru or Os, is formed between a substrate and a thin film whose main component is alpha-Fe2O3 while another thin film whose main component is the same as the latter is formed on the substrate. This thin film is heated in a reducing atmosphere and a thin film whose main component is Fe3O4 is formed. In order to form the foundation layer on the substrate, thin film forming technique such as plating, vacuum deposition or sputtering can be used. In case of sputtering, for instance, metal foil or metal powder for the foundation layer is put on a high frequency sputtering electrode and a high frequency power of 100W is applied in an Ar atmosphere of 2X10<-2> Torr.

Description

【発明の詳細な説明】 本発明は高:qr ty磁気記録用媒体、特に磁気ディ
スクの媒体として好適な酸化鉄磁性薄膜の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an iron oxide magnetic thin film suitable as a high:qr ty magnetic recording medium, particularly as a magnetic disk medium.

酸化鉄イ1強性薄膜は磁気ディスクの累材として用いら
れており、従来法のように製造されている。
Iron oxide I-1 strong thin films are used as composite materials for magnetic disks and are manufactured using conventional methods.

まず基板上にα−Fe 、O,を主成分とする溝膜を反
応スパッタリング法等の公知の方法によシ厚さ1μm以
下に形成する。次いで、このα−Fe203を主成分と
する薄膜を112等の還元雰囲気中で約300℃に加熱
し、Fe、0.を主成分とする薄膜に還元する。引き続
き、このFe3O4を主成分とする薄膜を大気中の酸化
雰囲気で約300℃に加熱し、r −Fe103を主成
分とする薄膜を得る。
First, a groove film containing α-Fe and O as main components is formed on a substrate to a thickness of 1 μm or less by a known method such as a reactive sputtering method. Next, this thin film mainly composed of α-Fe203 is heated to about 300° C. in a reducing atmosphere such as 112, and is heated to about 300° C. to reduce Fe, 0. The main component is reduced to a thin film. Subsequently, this thin film mainly composed of Fe3O4 is heated to about 300 DEG C. in an oxidizing atmosphere in the air to obtain a thin film mainly composed of r-Fe103.

このγ−Fez03薄[1磁毎デイスク用として用いる
場合、上記基板としては表面のアルマイト処理されたA
t合金基板が現在数も多く使用されている。アルマイト
処理するのは表面を硬化して耐ヘッドクラツシユ性を高
めるためである。このアルマイト被覆At合金基板は加
熱されると、アルマイト層とAt合金素地との熱膨張差
に基づく歪を生ずる。この歪によシ尚発されるディスク
表面の粗れは320℃以上になると急激に増大し、最悪
の場合にはアルマイト被覆にクラックが発生する。クラ
ック等のディスク表面の欠陥は記録信号の欠落や信号8
 、t・IL音比の劣化をもたらす。従って、均一で高
品質の一酸化鉄磁性薄膜を得るためには、その全製造工
程を少なくとも300℃以下に保つ必要がある。媒体製
造工程中、スバツタ工程ではマグネトロンスパッタ方式
を用いたシあるいは150A/−の高速膜形成を採用す
れば基板温度を300℃以下に保つことができる。また
酸化工程でもFe104薄膜を大気中300℃、2時間
以上加熱することによJ) r −F’e20.薄膜へ
転化させることが可能であ、る。しかし、これらの場合
と異なシ還元工程においては従来加熱温度が上記基板の
耐熱限界近くになる。例えばcoを添加したα−Fet
O@薄膜を還元する場合の加熱処理温度は310℃付近
である。Coを磁性薄膜に添加するのは保磁力を増大さ
せるためであり、その添加鎗は通常6原子チ以下である
。同様に磁性薄膜の角形比の向上を図るためにTiを通
常5原子チ以下添加する場合もあり、この場合の還元可
能な温度範囲は320℃以上である。320℃以上の高
温で薄膜を還元すると上述した不具合を生ずるので、従
来は5原子チ以下のCuを添加して、還元可能な温度を
引き下げる技術が開発されている。
When using this γ-Fez03 thin [1-magnetic disk], the above substrate is made of A with an alumite-treated surface.
A large number of t-alloy substrates are currently in use. The purpose of alumite treatment is to harden the surface and improve head crush resistance. When this alumite-covered At alloy substrate is heated, distortion occurs due to the difference in thermal expansion between the alumite layer and the At alloy base. The roughness of the disk surface caused by this strain increases rapidly at temperatures above 320° C., and in the worst case, cracks occur in the alumite coating. Defects on the disk surface such as cracks can cause missing recording signals or signal 8
, resulting in a deterioration of the t/IL sound ratio. Therefore, in order to obtain a uniform and high quality iron monoxide magnetic thin film, it is necessary to maintain the entire manufacturing process at a temperature of at least 300° C. or lower. During the media manufacturing process, the substrate temperature can be maintained at 300 DEG C. or lower by using magnetron sputtering or high-speed film formation at 150 A/- in the sputtering process. In addition, in the oxidation process, J) r -F'e20. It is possible to convert it into a thin film. However, in a reduction step different from these cases, the conventional heating temperature is close to the heat resistance limit of the substrate. For example, α-Fet added with co
The heat treatment temperature when reducing the O@ thin film is around 310°C. The purpose of adding Co to the magnetic thin film is to increase the coercive force, and the amount of Co added is usually 6 atoms or less. Similarly, in order to improve the squareness ratio of the magnetic thin film, Ti is sometimes added, usually 5 atoms or less, and the reducible temperature range in this case is 320° C. or higher. Since reducing a thin film at a high temperature of 320° C. or higher causes the above-mentioned problems, a technique has been developed to lower the reducible temperature by adding 5 atoms or less of Cu.

(J、Appl 、Phys 、 vol 、 53 
、 N13.1982.PP、2556〜2560 。
(J, Appl, Phys, vol, 53
, N13.1982. PP, 2556-2560.

特公昭55−14522.%公昭55−14523.特
公昭56−33850.特公昭56−17818.特公
昭56−23296等)。しかしCu添加によるM元温
度の低下は225℃が限度であり逆に、Co + Ti
 + Cu等の添加元素の添加−°を増大すると、 r
−Fe!01覆膜の飽和磁化が低下し、再生出力が低下
するという新たな問題が生じる。例えば、Co、Tiお
よびCuを数原子チづつ複合添加したr −Fe201
Mにおいては飽和磁化が3300 Gaussに低下す
る。従ってCuの添加精はできる限シ少なくしなければ
ならず、還元処理温度を十分に引き下げることはできな
かった。
Special Publication Showa 55-14522. % Kosho 55-14523. Tokuko Sho 56-33850. Special Publication Showa 56-17818. Special Publication No. 56-23296, etc.). However, the lowering of the M source temperature by adding Cu is limited to 225°C, and conversely, when Co + Ti
+ When the addition −° of additive elements such as Cu is increased, r
-Fe! A new problem arises in that the saturation magnetization of the 01 coating decreases and the reproduction output decreases. For example, r -Fe201 with several atoms of Co, Ti, and Cu added together
In M, the saturation magnetization decreases to 3300 Gauss. Therefore, the amount of Cu added must be reduced as much as possible, and the reduction treatment temperature could not be lowered sufficiently.

このように従前の酸化鉄磁性簿膜の製造方法においては
300℃前後の高温で還元を進めなければならないため
、磁気ディスク用として用いられるアルマイト被覆At
合金基板にクラックが発生し、記録信号の欠落や信号対
雑音比が劣・下する虞があった。
In this way, in the conventional manufacturing method of iron oxide magnetic film, the reduction must proceed at a high temperature of around 300°C.
There was a risk that cracks would occur in the alloy substrate, resulting in missing recorded signals and poor signal-to-noise ratios.

一方、α−1i”e203を主成分とする薄膜を還元し
た1ids04を主成分とする薄膜とする場合、童元反
応は膜表rijjから進行するため、該薄膜が厚いと股
下ノ所部分がj′、、を元せず、この未還元部分が最終
的に傅られるγ−Fe2O3を主成分とする薄膜中に残
留する。このため、耐化鉄磁性薄膜は厚さが増大するに
伴ないs 、1.11磁化が減少するという欠膚があシ
、(bli:Iで社飽和磁化が大きく、膜厚の大きな酸
化鉄磁性薄膜は得られなかった。
On the other hand, when a thin film mainly composed of 1ids04 is obtained by reducing a thin film mainly composed of α-1i''e203, the Dogen reaction proceeds from the membrane surface rijj, so if the thin film is thick, the crotch area will be ', , and this unreduced portion remains in the final thin film mainly composed of γ-Fe2O3.For this reason, as the thickness of the iron-resistant magnetic thin film increases, s , 1.11 There was a drawback that the magnetization decreased (bli:I had a large saturation magnetization, and a thick iron oxide magnetic thin film could not be obtained.

本’rb明は上記従来技術に鑑み、基板と磁性薄膜との
間に還元反応を促進する下地層を形成することにより、
還元処理温度の低下を可能にすると共に飽和磁化の増大
した酸化鉄磁性薄膜の製造方法を提供することを目的と
するものであって、その構成は基板上にα−FezOs
ffi主成分とする薄膜を形成し、前記薄膜を還元雰囲
気中で加熱してFe3O4’Z”主成分とする薄膜を形
成する工程を含む酸化鉄磁性薄膜を製造する方法におい
て、前記基板の表面にAJ+Au+Pd、Pt、Rh、
Ir、RuあるいはOsの少なくとも一種から々る下地
層を予め形成し、該下地層の上に上記α−FelO1を
主成分とする薄膜を施すことを特徴とする。
In view of the above-mentioned conventional technology, the present invention has been developed by forming an underlayer between the substrate and the magnetic thin film to promote the reduction reaction.
The purpose of the present invention is to provide a method for manufacturing an iron oxide magnetic thin film that allows reduction treatment temperature to be lowered and increases saturation magnetization.
A method for manufacturing an iron oxide magnetic thin film comprising the steps of forming a thin film containing ffi as the main component, and heating the thin film in a reducing atmosphere to form a thin film containing Fe3O4'Z'' as the main component. AJ+Au+Pd, Pt, Rh,
The method is characterized in that a base layer made of at least one of Ir, Ru, or Os is formed in advance, and a thin film containing α-FelO1 as a main component is applied on the base layer.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては基板とα−Fe、0@薄膜との間に還
元を促進する下地層をしてAfJAu+Pd+Pt+R
h、IらRu  するいはOBの薄膜を用いる。この下
地層として用いられる元素が還元を促進する理由として
は、いずれの元素も■族あるいはIb族金属に属し、そ
の電気陰性度がhよルも大きく酸素との親和力が小さい
ためであると考えられる。
In the present invention, an underlayer that promotes reduction is provided between the substrate and the α-Fe, 0@ thin film, and AfJAu+Pd+Pt+R
A thin film of Ru or OB is used. The reason why the elements used as the underlayer promote reduction is thought to be that all of the elements belong to group I or group Ib metals, and their electronegativity is as high as h, and their affinity for oxygen is small. It will be done.

即ち% Feよシも電気陰性度の大きなCuの添加はα
−Fe20−からF、04への還元温度を低下させる効
果があり、Fe J: 、l)も電気陰性度の小さなT
iの添加は還元温度を上昇させる効果がある。また、F
e  と同じ電気陰性度であるCoの添加は還元反応に
対して影響がなかった。従って以上の結果から電気陰性
度がFe  よシも大きな元素、例えば本発明で取シあ
げた■族あるいはIb族を紫1工α−Fe20BからF
ks04 への還元を促進する効果があると考えられる
からである。また、本発明では従来用いられてきたCu
以上に還元を促進する効果が大きいが、これは本発明で
用いる元素が:j!e −1に示すようにCuよシも大
きな電気陰性度を有するからと考えられる。
In other words, the addition of Cu, which has a large electronegativity compared to % Fe, is α
It has the effect of lowering the reduction temperature from -Fe20- to F, 04, and Fe J: , l) also has a small electronegativity T.
Addition of i has the effect of increasing the reduction temperature. Also, F
Addition of Co, which has the same electronegativity as e, had no effect on the reduction reaction. Therefore, from the above results, elements with larger electronegativity than Fe, such as group II or group Ib taken up in the present invention, are
This is because it is thought to have the effect of promoting reduction to ks04. In addition, in the present invention, the conventionally used Cu
The effect of promoting reduction is greater than the above, and this is due to the fact that the elements used in the present invention: j! This is thought to be because Cu also has a large electronegativity as shown in e-1.

尚、cl −Fe20BをFe3O4に還元した後、1
−1i’et03に酸化する工程下においては上記下地
層の形成により、F e304の結晶が比較的微細に生
成する結果、γ−Fe 10Bへのに化にも好都合であ
る等の利点もある。
In addition, after reducing cl -Fe20B to Fe3O4, 1
In the process of oxidizing to -1i'et03, relatively fine crystals of Fe304 are generated by forming the above-mentioned underlayer, which has the advantage of being convenient for oxidation to γ-Fe10B.

本発明において、基板に下地層を形成する方法としては
メッキ法、真空蒸着法、スパッタリング法等の薄膜形成
技術を使用することができるが、以下の実施例において
はスパッタリング法により形成した。即ち、i@径80
m+の高周波スパッタリング用電極上に、下地層用の金
用箔あるいは粉末を置き、2 X 10””Torrの
Ar雰囲気中で、100Wの高周波電力を加えてスパッ
タした。基板とターグツトとの間には膜厚が一定となる
ように、修正板を設けた。この方法で作製した下地層の
形成速度を下表に示す。下地被膜の厚さはスパッタ時間
を適当に選ぶことで任社の値を得た。
In the present invention, thin film forming techniques such as plating, vacuum evaporation, and sputtering can be used to form the underlayer on the substrate, but in the following examples, the underlayer was formed by sputtering. That is, i@diameter 80
Gold foil or powder for the base layer was placed on the m+ high-frequency sputtering electrode, and sputtering was performed by applying high-frequency power of 100 W in an Ar atmosphere of 2 x 10'' Torr. A correction plate was provided between the substrate and the target so that the film thickness was constant. The formation speed of the base layer produced by this method is shown in the table below. The thickness of the base film was obtained by appropriately selecting the sputtering time.

次に実施レリを示す 実施例1 直径100mのガラス基板六面に予め厚さ0.01μI
IIのpt下下地層形形成、更にその上に厚さ0.17
pmまたは0.21μmのα−FeIOsfr主体とす
る薄1110ぐ−3に示す最往−?搏に成した。
Next, Example 1 shows the actual implementation. A thickness of 0.01μI was preliminarily applied to six sides of a glass substrate with a diameter of 100m.
Formation of the PT underlayer of II, and further on top of that a thickness of 0.17
pm or 0.21 μm α-FeIOsfr-based thin 1110g-3? I made it in minutes.

表−3 0,17μm厚の2つ°膜のスパッタリング時間は28
分でありまた0、21μII厚の薄膜のスパッタリング
時間は35分でめった。引き続き水蒸気を含んだHz気
rnL中でこれらα−Fe10畠金主体とする薄膜ケ1
25℃に1時間加熱し、還元して烏O1薄膜に転化させ
た。更にこれら全大気中で290℃に4時間加熱して表
化させr−Fe、O,金主成分とするm膜を得た。厚さ
0.17μmの場合の薄膜の飽和磁化は3gooaau
ss、厚さ21/jmの場合ON膜の飽和磁化は380
 (l Gaussであった(紀1図中曲線■参照)。
Table 3 Sputtering time for two films with a thickness of 0.17 μm is 28
The sputtering time for a thin film with a thickness of 0.21 μII was 35 minutes. Subsequently, these α-Fe10-based thin films were heated in Hz air containing water vapor.
It was heated to 25° C. for 1 hour to reduce and convert it into a thin O1 film. Furthermore, the film was heated to 290° C. for 4 hours in the atmosphere to obtain an m-film containing r-Fe, O, and gold as main components. The saturation magnetization of a thin film with a thickness of 0.17 μm is 3gooaau
ss, thickness 21/jm, the saturation magnetization of the ON film is 380
(l Gauss (see curve ■ in Figure 1).

なお該酸化鉄薄膜の結晶構造はスピネル構造であること
をX、@回折で同定した。
The crystal structure of the iron oxide thin film was identified to be a spinel structure by X, @ diffraction.

また、比較のためにガラス基板にptT地被保全施さず
に、上記と同一のスiJ?ツタリング条件でα−Fe、
0.薄膜を形成した。このα−Fe20B薄膜をF、0
.尚膜に還元するには320℃以ヱに加熱しなければな
らずまた、このF’eBO,薄膜をr−Fe103薄膜
に酸化するには大気中310℃で2時間加熱しなけれは
ならなかった3、得られた厭性薄膜の飽和磁化は膜厚の
増加に伴い減少し、0.17pmでは3050 Gau
ssρ、 21 fimでは2800 Gaussであ
った(第1図曲線q)参照)。
Also, for comparison, the same SiJ film as above was used without applying PTT ground protection to the glass substrate. α-Fe under tsuttering conditions,
0. A thin film was formed. This α-Fe20B thin film is F,0
.. In order to reduce it to a film, it was necessary to heat it to 320°C or higher, and to oxidize this F'eBO thin film to an r-Fe103 thin film, it was necessary to heat it at 310°C in the air for 2 hours. 3. The saturation magnetization of the obtained negative thin film decreases as the film thickness increases, and at 0.17 pm it is 3050 Gau
ssρ, 21 fim was 2800 Gauss (see curve q in Figure 1).

これらの結果から明らかなように1本発明ではα−Fe
103を主成分とする両膜の下地層としてptを用いた
ため、α−Fe2O3からFe、04への還元が促進さ
It、進発反応が低温で進むと共に最終的にイHられる
γ−Fe、、0.を主成分とする薄膜の飽和磁化が高い
ことが判る。
As is clear from these results, in the present invention, α-Fe
Since PT was used as the base layer for both films containing 103 as the main component, the reduction of α-Fe2O3 to Fe, 04 was promoted, and γ-Fe, which was finally oxidized as the progressive reaction proceeded at low temperature, was 0. It can be seen that the saturation magnetization of the thin film containing as the main component is high.

実施例 表面のアルマイト処理されたA1合金基板上に下地層と
して厚さ0.1μmのRh膜を施し7、その上に厚さ0
.17μmのα−pe、o、薄膜を実施例]と同じ条件
で形成した。更に実施例1と同じ条件で。
Example 7 A Rh film with a thickness of 0.1 μm was applied as a base layer on the alumite-treated A1 alloy substrate 7, and a 0.1 μm thick Rh film was applied thereon.
.. A 17 μm α-pe,o thin film was formed under the same conditions as in Example]. Further, under the same conditions as in Example 1.

該α−Fe20BY・卓!膜を還元し、酸化した。従っ
て、従来よりも1代編の熱処理で還元することができた
。f))られたγ−F’e l os#膜の飽和磁化は
第1図に示されるように、3600 Gaussであり
従前よりも毘い値がfυられた4、この試料V(ついて
、表111iをArイオンでエツチングし、゛でがらオ
ージェ+lj子分元分析により膜の厚さ方向への組成全
測定しfc 、この1ll11定結果ケ第2図に示す。
The α-Fe20BY table! The membrane was reduced and oxidized. Therefore, it was possible to reduce the heat treatment of the first generation more than before. f)) As shown in Figure 1, the saturation magnetization of the γ-F'el os# film was 3600 Gauss, which was higher than before. 111i was etched with Ar ions, and the entire composition in the thickness direction of the film was measured by Auger+lj molecular analysis. The 1ll11 constant results are shown in FIG.

図中でe丁ドeお2Lび1女、包のピークが低下しだす
エッチ・グ時間の位11JからRhのピークがしだいに
上昇しで、15−リ、これは]fノ化鉄tw ++y中
にRhがほとんと拡1校していないことを示している7
、従って、酸化鉄薄膜中に拡散したRhが存在するため
に上述した効果が得られたのではなく、酸化鉄薄膜の下
地層としてRhがその外部に存在するために上述した効
果が得られたということが判る。
In the figure, the peak of Rh gradually rises from 11J at the etching time when the peak of the package begins to decrease, and 15-ri, this is ] f iron chloride tw ++y This shows that Rh has not expanded at all within the 7
Therefore, the above-mentioned effect was not obtained due to the presence of Rh diffused in the iron oxide thin film, but the above-mentioned effect was obtained because Rh existed outside of the iron oxide thin film as an underlying layer. It turns out that.

実施例3 厚さ0.21/’ms直径100!1IIIのStウェ
ハーを基板として用い、該基板表面に厚さ0.005/
ImのAP、Au、Pd、Ru、Rh、IrあるいはO
sの下地層を施した。その上に実施例1と同じα−Fe
 203を主成分とする薄膜を同一の条件で形成し、引
き続き、水蒸気を含んだH,気流中で上記薄膜を下表に
示す温度に1時間加熱してF+404を主成分とする薄
膜に還元した。更に該Fe3O4薄)模を大気中で29
0℃に4時間加熱して、γ−1i’e10Bを主成分と
する薄膜に酸化した。得られたr −Fe2O3を主成
分とする薄膜の飽和磁化は下表に示すとおシ3400〜
3500 Gaussであυ、従前よシ高い値が得られ
た。
Example 3 A St wafer with a thickness of 0.21/'ms and a diameter of 100!
Im AP, Au, Pd, Ru, Rh, Ir or O
A base layer of s was applied. On top of that is the same α-Fe as in Example 1.
A thin film containing 203 as the main component was formed under the same conditions, and then the above thin film was heated for 1 hour in an H gas stream containing water vapor to the temperature shown in the table below to reduce it to a thin film containing F+404 as the main component. . Furthermore, the Fe3O4 thin model was exposed to 29
It was heated to 0° C. for 4 hours to oxidize into a thin film containing γ-1i'e10B as a main component. The saturation magnetization of the obtained thin film mainly composed of r -Fe2O3 is shown in the table below.
At 3500 Gauss, a higher value than before was obtained.

表−4 実施例4 基板として偵径100fiのSt内円板用い、該基板上
に厚さく1.01μmのIr下地層を施した。更に、そ
の上に実施例1と同一のα−1i’e203を主成分と
する薄膜を0.14μmの厚さに形成した。次いで、該
α−FetOs”tL酸成分する薄膜に実施例1と回じ
還元及び酸化熱処理を施してγ−Fe 20Bを主成分
とする薄11gを形成した。得られた酸化鉄磁性ン(シ
膜の飽和磁化は3400 Gaussであシ、従前より
習、い伏が得られた。
Table 4 Example 4 An St inner disk with a radius of 100 fi was used as a substrate, and an Ir underlayer with a thickness of 1.01 μm was formed on the substrate. Furthermore, a thin film containing α-1i'e203 as the main component as in Example 1 was formed thereon to a thickness of 0.14 μm. Next, the α-FetOs''tL acid component thin film was subjected to the same reduction and oxidation heat treatment as in Example 1 to form a thin film of 11 g mainly composed of γ-Fe 20B. The saturation magnetization of the film was 3400 Gauss, and the same value as before was obtained.

実施例5 基板として直径100瓢のポリイミド基板、Ni −P
メッキAt合金基板を用い、これら基板の表面に厚さ0
.01μmのPd下地層を施した。更に、その上に厚さ
帆12μmのα−F’elOgを主成分とする薄膜を実
施例1と同じ条件で形成した。次いで、該薄膜を湿った
H2気流中で150℃に1時間加熱してFe3O4を呈
成分とする薄膜に還元した。得られた酸化鉄磁性薄膜の
飽和磁化は共に3500 Gaussであった。
Example 5 A polyimide substrate with a diameter of 100 mm, Ni-P was used as a substrate.
Using plated At alloy substrates, the surface of these substrates has a thickness of 0.
.. A Pd underlayer of 0.01 μm was applied. Furthermore, a thin film mainly composed of α-F'elOg having a thickness of 12 μm was formed thereon under the same conditions as in Example 1. Next, the thin film was heated at 150° C. for 1 hour in a humid H2 stream to reduce it to a thin film containing Fe3O4 as a main component. The saturation magnetization of both of the obtained iron oxide magnetic thin films was 3500 Gauss.

以上、実施例に基づいて具体的に説明したように本発明
では、還元熱処理温度を従来よりも大幅に低下させるこ
とができると共に膜厚方向に均一な還元反応を進行させ
ることができるので、得られるγ−FelO@薄膜の飽
和磁化が従来よシ増大する−また、還元熱処理温度が低
下したので、熱処理にイ1りう膜表面の粗れが防止され
、更に下地被覆としてRu、11.h、IrあるいはO
8等の高硬度金属元素を使用すると耐ヘッドクラツシユ
性を高めた磁気ディスクを製造することも可能である。
As described above in detail based on the examples, the present invention allows the reduction heat treatment temperature to be significantly lowered than in the past, and allows the reduction reaction to proceed uniformly in the film thickness direction. The saturation magnetization of the γ-FelO@ thin film increases compared to the conventional method.In addition, since the reduction heat treatment temperature has been lowered, roughness of the film surface is prevented during the heat treatment, and furthermore, Ru, 11. h, Ir or O
If a high hardness metal element such as No. 8 is used, it is also possible to manufacture a magnetic disk with improved head crush resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はγ−Fe 203膜厚(μm)に対する飽和磁
化(Gauss)の関係を表すグラフ、第2図はエツチ
ング時間に対する組成←)の関係を表すグラフであるー 図面中、 1は従前の1(遣方法によシ製造されたγ−1?620
3薄膜、 2は下地層としてptを使用するγ−Fe203薄膜、 3は下地層としてR11’fr:使用するγ−お゛e2
03薄膜、 4は酸素濃度、 5はF’e疾度、 7は■ζh濃度、 6はC濃度である。 特許出願人 日本電信電話公社 代理人 弁理士  光 石 士 部(他1名)第1図 γLFe203月デノq (A%)
Figure 1 is a graph showing the relationship between saturation magnetization (Gauss) and γ-Fe 203 film thickness (μm), and Figure 2 is a graph showing the relationship between composition and etching time. 1 (γ-1?620 manufactured by
3 thin film, 2 is a γ-Fe203 thin film using PT as a base layer, 3 is a γ-Fe203 thin film using R11'fr: as a base layer.
03 thin film, 4 is oxygen concentration, 5 is F'e speed, 7 is ■ζh concentration, and 6 is C concentration. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent Patent Attorney Mitsuishi Shibu (and 1 other person) Figure 1 γLFe 20 March Denoq (A%)

Claims (1)

【特許請求の範囲】[Claims] 基板上にα−Fe203を主成分とする薄膜を形成し、
前記薄膜を還元雰囲気中で加熱してFeg04を主成分
とする薄膜を形成する工程を含む酸化鉄磁性薄膜を製造
する方法において、前記基板の表面にAg、Au、Pd
、Pt、Rh、Ir、Ruあるいは08の少なくとも一
柚からなる下地層を予め形成し)該下地層の上に上記α
−F”e20gを主成分とする薄膜を施すことを特徴と
する酸化鉄磁性薄膜の製造方法、
Forming a thin film mainly composed of α-Fe203 on the substrate,
In the method for manufacturing an iron oxide magnetic thin film, the method includes the step of heating the thin film in a reducing atmosphere to form a thin film containing Feg04 as a main component.
, Pt, Rh, Ir, Ru, or at least one citron of 08) is formed in advance on the base layer.
- A method for producing an iron oxide magnetic thin film, characterized by applying a thin film containing 20 g of F"e as a main component,
JP57162184A 1982-09-20 1982-09-20 Manufacture of iron-oxide magnetic thin film Granted JPS5952810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162184A JPS5952810A (en) 1982-09-20 1982-09-20 Manufacture of iron-oxide magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162184A JPS5952810A (en) 1982-09-20 1982-09-20 Manufacture of iron-oxide magnetic thin film

Publications (2)

Publication Number Publication Date
JPS5952810A true JPS5952810A (en) 1984-03-27
JPS616528B2 JPS616528B2 (en) 1986-02-27

Family

ID=15749603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162184A Granted JPS5952810A (en) 1982-09-20 1982-09-20 Manufacture of iron-oxide magnetic thin film

Country Status (1)

Country Link
JP (1) JPS5952810A (en)

Also Published As

Publication number Publication date
JPS616528B2 (en) 1986-02-27

Similar Documents

Publication Publication Date Title
JPS5952810A (en) Manufacture of iron-oxide magnetic thin film
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JPH0546013B2 (en)
JPH0142048B2 (en)
JPH0576684B2 (en)
JPS62117143A (en) Production of magnetic recording medium
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0719372B2 (en) Method of manufacturing magnetic recording medium
JPH04311809A (en) Perpendicular magnetic recording medium and production thereof
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same
JPS61224139A (en) Production of magnetic recording medium
JPS60219638A (en) Production of magnetic disk
JPH0315254B2 (en)
JPS6134915A (en) Manufacture of iron oxide magnetic film
JPH0430171B2 (en)
JPH07282410A (en) Structure of magnetic head and magnetic recorder using the same
JPS58224436A (en) Magnetic disk
JPS6033357A (en) Aluminum alloy substrate for magnetic disc and preparation thereof
JPS61267922A (en) Magnetic disk
JPS615438A (en) Production of magnetic storage medium
JPS6251024A (en) Magnetic recording medium
JPH06338409A (en) Mangetic thin film and its manufacture
JPH1012437A (en) Alloy magnetic film with substrate for magnetic head, its manufacture and magnetic head
JPS6353721A (en) Preparation of thin oxide film
JPH0125144B2 (en)