JPS6033357A - Aluminum alloy substrate for magnetic disc and preparation thereof - Google Patents

Aluminum alloy substrate for magnetic disc and preparation thereof

Info

Publication number
JPS6033357A
JPS6033357A JP14293283A JP14293283A JPS6033357A JP S6033357 A JPS6033357 A JP S6033357A JP 14293283 A JP14293283 A JP 14293283A JP 14293283 A JP14293283 A JP 14293283A JP S6033357 A JPS6033357 A JP S6033357A
Authority
JP
Japan
Prior art keywords
aluminum alloy
film
magnetic
substrate
alloy substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14293283A
Other languages
Japanese (ja)
Inventor
Kozo Nishimoto
西本 幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP14293283A priority Critical patent/JPS6033357A/en
Publication of JPS6033357A publication Critical patent/JPS6033357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prepare an aluminum alloy substrate for a magnetic disc capable of realizing good medium characteristics, by a method wherein a NiP layer is formed to the surface of an aluminum alloy plate and a thin Co-film is formed thereon so as to be converted to a non-magnetic oxide film in the next step. CONSTITUTION:After the surface of an aluminum alloy plate (a) is subjected to high accuracy processing (b), a non-magnetic NiP layer (c) is applied to the processed surface of said aluminum alloy plate and the surface thereof is subjected to mirror surface finish (d) by polishing processing. Subsequently, a thin film of Co or an alloy based on Co such as CoP is formed (e). In the next step, the thin film comprising Co or the like is subjected to chemical forming treatment and heat treatment succeeding thereto (f) to be converted to a non-magnetic oxide film to obtain an aluminium alloy substrate for a magnetic disc. An Fe3O4 film is formed at once on said substrate and oxidized to make it possible to easily form a gamma-Fe2O3 film medium (j).

Description

【発明の詳細な説明】 本発明はコンビーータの外部記憶装置などに用いられる
磁気ディスク用アルミ合金基板およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy substrate for a magnetic disk used in an external storage device of a converter, and a method for manufacturing the same.

連続薄膜磁気記録媒体、就中酸化物磁性薄膜磁気記録媒
体はこれまで広く用いられてきたγ−Fe、Q3徽粒子
塗布膜(新開コーティング膜)に優る高密度記録媒体と
して注目されている。酸化物(i杵性勘膜材料としては
γ−Fe20.に他の金属元累をドープしたものが専ら
検討されている。
Continuous thin film magnetic recording media, especially oxide magnetic thin film magnetic recording media, are attracting attention as high-density recording media superior to the γ-Fe and Q3 particle coating films (newly developed coating films) that have been widely used so far. As the oxide material, γ-Fe20 doped with other metal elements has been mainly studied.

このγ−Fe203膜媒体の製造方法としては、一旦F
 e 304膜を作成しこれを酸化して7−Fe2O3
膜可欠である。
The method for manufacturing this γ-Fe203 film medium is to first
e 304 film and oxidize it to 7-Fe2O3
Membrane is essential.

一方磁気記録媒体と共に磁気ディスクのもうひとつの構
成要素である基板については、当初上の如き温度条件に
耐えるものとしてガラス、セラミックなどが用いられた
が、実用性の擺゛点からみると、衝撃に対して弱く、破
損の惧れがある1旨価であるなどの理由から問題があっ
た。
On the other hand, for the substrate, which is another component of the magnetic disk along with the magnetic recording medium, materials such as glass and ceramic were initially used to withstand the above-mentioned temperature conditions. There have been problems due to the fact that it has a single valence and is vulnerable to damage.

そこで従来コーテイング膜ディスクに用いられてきた、
アルミニウム合金基板の可能性について検削が行なわれ
た結果、アルミニウム合金基体の表面に記録媒体下地層
として、陽極酸化処理によって陽極酸化皮膜(数ミクロ
ン厚)を形成した基板が提案されている。同陽極酸化皮
膜はアルミニウムの酸化イアである為、硬度が高く加工
性にすぐれ研磨加工によって高密度磁気ディスク基板に
不可欠は良好な表面性を得易く又その上に形成したγ−
Fe、O,膜は良好な静磁気特性をもっというオリ点が
ある。
Therefore, conventional coating film discs have been used.
As a result of inspection of the possibility of aluminum alloy substrates, a substrate has been proposed in which an anodic oxide film (several microns thick) is formed on the surface of an aluminum alloy substrate by anodizing treatment as a recording medium underlayer. Since the anodic oxide film is aluminum oxide, it has high hardness and excellent workability.It is easy to obtain good surface properties by polishing, which is essential for high-density magnetic disk substrates.
Fe, O, and films have the advantage of having good magnetostatic properties.

然しなから、実際に製作した上記陽極1歳出皮膜基板に
おいては、基板材中に含まれるSi、Fe等の不純物に
よってピン・ホール欠陥が生シ易い。この為これら不純
物の混入を極力抑えた高純度アルミニウム合金基板のH
発が進められているもの\、上記ピン・ホール欠陥の除
去はきわめて困AInである。
However, in the anode one-year-old film substrate actually manufactured, pin hole defects are likely to occur due to impurities such as Si and Fe contained in the substrate material. For this reason, the H
Although progress is being made in the development of AIn, it is extremely difficult to remove the pin hole defects mentioned above.

他方連続拗膜す体とi−てメッキ金属尚膜がある。On the other hand, there are continuous membranes and plated metal membranes.

これを用いたメッキ磁気ディスクの基板としてはアルミ
ニウム合金板の表向に硬質の非磁性NiP膜(数10ミ
クロン厚)を形成しこれを研磨仕上げしてピン・ホール
欠陥のない高品質のディスク基板が得られている。然し
との池基板を酸化物磁性薄膜媒体に利用しようとした場
合にはγ−Fe2O3への変換の為の熱処理工程に〉い
てNiP膜が帯磁するという問題があった。ところが最
近になって多少の帯磁はルー支えないとと或いはP宮南
率を増加ぜしめることによりNiPの・;ト磁を抑える
ことができることがCI’f+明し杓検討が行なわれて
いる。
As a substrate for a plated magnetic disk using this, a hard non-magnetic NiP film (several tens of microns thick) is formed on the surface of an aluminum alloy plate, and this is polished to a high quality disk substrate without pin-hole defects. is obtained. However, when an attempt was made to use the NiP substrate as an oxide magnetic thin film medium, there was a problem in that the NiP film became magnetized during the heat treatment step for conversion to γ-Fe2O3. Recently, however, studies have been conducted to demonstrate that NiP magnetism can be suppressed by not supporting some magnetization or by increasing the P ratio.

然しながらNiP膜上にFe、04膜を直接形成し、こ
れをγ−Fe、O,化した時には媒体の磁気特性が従来
のlji+ 弾!’e9化皮膜基板で得られたものに比
して著るしく劣る或いは11男性が悪いという問題が生
じていた。
However, when a Fe,04 film is directly formed on the NiP film and converted to γ-Fe,O, the magnetic properties of the medium are similar to those of conventional lji+ bullets! A problem arose in that it was significantly inferior or worse than that obtained with the 'e9 film substrate.

本発明の目的は従来の酸化物磁性薄膜媒体用NiP基板
のこのような欠点を除去し、良好な媒体特性を実現しう
る新らしい磁気ディスク基板とその製造方法を提供する
ことにある。
An object of the present invention is to provide a new magnetic disk substrate and a method for manufacturing the same, which can eliminate these drawbacks of conventional NiP substrates for oxide magnetic thin film media and realize good media characteristics.

本発明に係わる磁気ディスク用アルミ合金基板はアルミ
合金板の表面に非磁性NiP層が被覆され、更にその上
にコバルトもしくはコバルトを主成分とする合金の非磁
性酸化膜が被覆されていることを特徴とする。又本発明
に係わる磁気ディスク用アルミ合金基板の製造方法は、
高精度加工したアルミ合金板の表面に非磁性NiP層を
形成し、その表面を研磨加工により鏡面仕上げした後、
その上にコバルトもしくはコバルトを主成分とする合金
の薄膜を形成し、それを化成処理たよって非磁性の酸化
膜に変換することを特徴とする。
In the aluminum alloy substrate for a magnetic disk according to the present invention, the surface of the aluminum alloy plate is coated with a nonmagnetic NiP layer, which is further coated with a nonmagnetic oxide film of cobalt or an alloy containing cobalt as a main component. Features. Furthermore, the method for manufacturing an aluminum alloy substrate for magnetic disks according to the present invention includes:
After forming a non-magnetic NiP layer on the surface of a highly precisely machined aluminum alloy plate and polishing the surface to a mirror finish,
It is characterized by forming a thin film of cobalt or an alloy containing cobalt as a main component thereon, and converting it into a non-magnetic oxide film by chemical conversion treatment.

以下実施例、比較例を揚げて本発明の詳細な説明する。The present invention will be described in detail below with reference to Examples and Comparative Examples.

実施例1 第1図に示したように、アルミ合金ディスク板の表面に
非磁性硬質NiP層を形成し、その表面を研磨加工によ
シ高半^度に仕上げたのち、CoP膜を50OAの厚さ
に無電解メッキ法により形成した。
Example 1 As shown in Figure 1, a non-magnetic hard NiP layer was formed on the surface of an aluminum alloy disk plate, and the surface was polished to a high degree of hardness. The thickness was formed by electroless plating.

次にこれに化成処理を施こした後更忙熱処理(250℃
×1時間空気中)を行なってCoP膜を非磁性の酸化皮
膜に変換した。こうして作製した基板AK、通常のスパ
ッタ法(Fe3O4膜形成→熱酸化によりγ−Fe2O
3膜に変換)KよシCo添加γ−Fe10B膜を形成し
た。一方比較の為に01M仕上げしたNiP層を有する
基板Bに、同じ工程でCo添添加−Fe、03膜を形成
した。イ)1られたγ−Fe、03膜の静磁気特性を測
定したところ次表の如くであった。
Next, after chemical conversion treatment, further heat treatment (250℃
x 1 hour in air) to convert the CoP film into a nonmagnetic oxide film. The substrate AK produced in this way is made of γ-Fe2O by normal sputtering method (Fe3O4 film formation → thermal oxidation).
3) A K and Co-added γ-Fe10B film was formed. On the other hand, for comparison, a Co-added -Fe, 03 film was formed in the same process on a substrate B having a NiP layer finished with 01M. b) The magnetostatic properties of the γ-Fe, 03 film were measured and were as shown in the following table.

表 このように非磁性Co合金酸化皮膜を下地層にもつ基板
Aでは、NiP層を下地層とする基板Bに比べて、すぐ
れた媒体磁気特性を得ることができた。
As shown in the table, substrate A having a non-magnetic Co alloy oxide film as an underlayer had better medium magnetic properties than substrate B having a NiP layer as an underlayer.

実施例2 実施列1と同じNiP層をω1層仕上げした基板にCo
N i P膜を200OAの厚さに無電弧メッキ法によ
膜形成した。次に実施例1と同様にして同CoNiP膜
を非磁性の酸化皮膜に変換した。こうして作成した基板
面を研石仕上げした後、これも実施例1と同様にして、
γ−Fe20B膜を形成した。得られた膜の静磁気特性
はNiP層下地に直接形成した膜に比べ明らかに改善が
認められた。
Example 2 Co
A N i P film was formed to a thickness of 200 OA by electroless arc plating. Next, in the same manner as in Example 1, the CoNiP film was converted into a nonmagnetic oxide film. After polishing the surface of the substrate thus created, the same procedure as in Example 1 was carried out.
A γ-Fe20B film was formed. The magnetostatic properties of the obtained film were clearly improved compared to a film formed directly on the NiP layer base.

上記実施例忙おける化成処理剤としては硝酸。The chemical conversion treatment agent used in the above examples is nitric acid.

過酸化水素、塩素酸カリ、重クロム酸ナトリウム等が用
いられ又pH緩衝剤としてEDTA、酒石酸。
Hydrogen peroxide, potassium chlorate, sodium dichromate, etc. are used, and EDTA and tartaric acid are used as pH buffers.

グルコン酸、コハク酸、クエン酸、チオ尿素等の有機キ
レート剤が用いられる。
Organic chelating agents such as gluconic acid, succinic acid, citric acid, and thiourea are used.

以上述べてきたように、アルミ合金板の表面に非磁性N
iP膜が被覆され、更にその上にコバルトもしくはコバ
ルトを主成分とする合金の非磁性酸化膜が被覆されてい
ることを特徴とする本発明に係わる磁気ディスク用アル
ミ合金基板及び、冒精度加工したアルミ合金板の表面に
非磁性NiP層を形成し、その表面を研磨加工によシ鋭
面に仕上げた後、その上にコバルトもしくはコバルトを
主成分とする合金の薄膜を形成し、それを化成処理及び
加熱処理によって非磁性の酸化膜に変換すること全特徴
とする本発明に係わるアルミ合金基板の製1を方法によ
ればN i P層下地面に1臼接(ags一体を形成し
、た場合に比べ良好な媒体特性を実現することが【1f
能になj)NiP層下層下板基板品質性(無欠陥性)と
陽極酸化皮膜基板の高品質(長持性)とを併せもつフェ
ライト膜磁気ディスクの作製が可能になる。
As mentioned above, non-magnetic N on the surface of the aluminum alloy plate
An aluminum alloy substrate for a magnetic disk according to the present invention, which is coated with an iP film and further coated with a non-magnetic oxide film of cobalt or an alloy containing cobalt as a main component, and an aluminum alloy substrate processed with high precision. After forming a non-magnetic NiP layer on the surface of an aluminum alloy plate and polishing the surface to a sharp surface, a thin film of cobalt or an alloy containing cobalt as a main component is formed on top of it, and it is chemically converted. According to the manufacturing method of the aluminum alloy substrate according to the present invention, which is characterized in that it is converted into a non-magnetic oxide film by treatment and heat treatment, a single contact (AGS integrally formed) is formed on the base surface of the NiP layer, [1f]
It becomes possible to fabricate a ferrite film magnetic disk that has both the quality (defect-free) of the NiP layer lower layer and the high quality (long life) of the anodic oxide film substrate.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係わる磁気ディスク用プルミ合金基板及び
従来のメツキイ(ぢ気ディスク用基板の製造工程を示す
図である。
The figure shows the manufacturing process of a puluminum alloy substrate for magnetic disks according to the present invention and a conventional substrate for metal disks.

Claims (1)

【特許請求の範囲】 1、アルミ合金基体の表面に非磁性NiP層が被覆され
、更にその上にコバルトもしくはコバルトを主成分とす
る合金の非磁性酸化膜が被覆されていることを特徴とす
る磁気ディスク用アルミ合金基板。 医旨私度加工したアルミ合金板の表面に非磁性NiP層
を形成しその表面を研助加工によシ鋭面仕上げした後、
その上にコバルトもしくはコバルトを主成分とする合金
の薄膜を形成しそれを化成処理及びそれにつXく加熱処
理によって非磁性の酸化膜に変換することを特徴とする
磁気ディスク用アルミ合金基板の製造方法。
[Claims] 1. A nonmagnetic NiP layer is coated on the surface of an aluminum alloy substrate, and a nonmagnetic oxide film of cobalt or an alloy containing cobalt as a main component is further coated thereon. Aluminum alloy substrate for magnetic disks. After forming a non-magnetic NiP layer on the surface of a medically processed aluminum alloy plate and polishing the surface to a sharp surface,
Manufacture of an aluminum alloy substrate for a magnetic disk, which is characterized by forming a thin film of cobalt or an alloy containing cobalt as a main component thereon, and converting it into a non-magnetic oxide film by chemical conversion treatment and subsequent heat treatment. Method.
JP14293283A 1983-08-04 1983-08-04 Aluminum alloy substrate for magnetic disc and preparation thereof Pending JPS6033357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14293283A JPS6033357A (en) 1983-08-04 1983-08-04 Aluminum alloy substrate for magnetic disc and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14293283A JPS6033357A (en) 1983-08-04 1983-08-04 Aluminum alloy substrate for magnetic disc and preparation thereof

Publications (1)

Publication Number Publication Date
JPS6033357A true JPS6033357A (en) 1985-02-20

Family

ID=15326992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14293283A Pending JPS6033357A (en) 1983-08-04 1983-08-04 Aluminum alloy substrate for magnetic disc and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6033357A (en)

Similar Documents

Publication Publication Date Title
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
US3620841A (en) Process for making continuous magnetite films
JPS61253622A (en) Magnetic recording medium and its production
JPS6033357A (en) Aluminum alloy substrate for magnetic disc and preparation thereof
JPS59178617A (en) Manufacture of magnetic recording medium
JPS61276116A (en) Magnetic recording medium and its production
JPS5961107A (en) Magnetic memory body
JPS62117143A (en) Production of magnetic recording medium
JPS59110796A (en) Manufacture of magnetic disk substrate
JPS60113320A (en) Base plate for recording medium and its production
JPS59142735A (en) Magnetic recording medium
JPS61216125A (en) Production of magnetic recording medium
JPS61224139A (en) Production of magnetic recording medium
JPS6243832A (en) Magnetic recording medium
JPS5975609A (en) Flexible magnetic recording medium
JPS6038731A (en) Magnetic recording body
JPS6035332A (en) Magnetic storage body
JPS61276115A (en) Magnetic recording medium and its production
JPS6233322A (en) Magnetic recording medium
JPS61224122A (en) Magnetic recording medium and its production
JPS5992426A (en) Thin film magnetic disc
JPS59221826A (en) Magnetic recording medium
JPS6251024A (en) Magnetic recording medium
JPS6085433A (en) Magnetic recording material
JPS6390030A (en) Production of magnetic recording medium