JPS59110796A - Manufacture of magnetic disk substrate - Google Patents

Manufacture of magnetic disk substrate

Info

Publication number
JPS59110796A
JPS59110796A JP22058982A JP22058982A JPS59110796A JP S59110796 A JPS59110796 A JP S59110796A JP 22058982 A JP22058982 A JP 22058982A JP 22058982 A JP22058982 A JP 22058982A JP S59110796 A JPS59110796 A JP S59110796A
Authority
JP
Japan
Prior art keywords
substrate
surface roughness
heat treatment
forming
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22058982A
Other languages
Japanese (ja)
Inventor
Kozo Nishimoto
西本 幸三
Hiroshi Hayashida
林田 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22058982A priority Critical patent/JPS59110796A/en
Publication of JPS59110796A publication Critical patent/JPS59110796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the titled substrate whose surface roughness would not be deteriorated after it has been subjected to a step of forming an oxide magnetic thin film medium, by forming an anodized film on the surface of an Al alloy plate, and performing heat treatment under specified conditions prior to the planishing of the anodized film. CONSTITUTION:The process of manufacturing a substrate includes a heat treatment step between an anodizing step as in the conventional process and a planishing step. In this heat treatment step, the anodized Al alloy plate is heat- treated at higher temperature or longer period in comparison to the heat treatment that will be carried out in the subsequent medium forming step. The thus heat-treated Al alloy plate is planished to obtain a disk substrate. After an iron oxide magnetic thin film mainly consisting of Fe3O4 is formed on the disk substrate, it is heat-treated to obtain an iron oxide film mainly consisting of gamma- Fe2O3. The surface roughness of the thus produced magnetic disk is the same as the surface roughness of the substrate, and deterioration of the surface roughness would not be observed at all.

Description

【発明の詳細な説明】 本発明は電子計算材の外部記憶装置用磁気ディスクなど
に用いられるアルミニウム合金磁気ディスク基板の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an aluminum alloy magnetic disk substrate used for magnetic disks for external storage devices of electronic computing materials.

(1) 連続薄膜磁気記憶媒体、就中酸化物磁性薄膜磁気記憶媒
体は、これまで広く用いられてきたγ−Fe、03微粒
子塗布膜(所謂コーテイング膜)に優る高密度磁気記録
媒体として注目されている。酸化物磁性薄膜材料として
は、当初Fe、O,もしくはFe、04−γ−Fe、0
.中間相が提案されたが、ヘッドとの接触による加圧減
磁現象、或いは磁気特性(特にHc)の不安定性という
信頼性に係わる問題が生じた\め最近ではγ−re、 
03が専ら検討されている。
(1) Continuous thin film magnetic storage media, especially oxide magnetic thin film magnetic storage media, have attracted attention as high-density magnetic recording media that are superior to the γ-Fe, 03 fine particle coating films (so-called coating films) that have been widely used. ing. Initially, the oxide magnetic thin film material was Fe, O, or Fe, 04-γ-Fe, 0
.. Intermediate phase was proposed, but problems related to reliability such as pressure demagnetization phenomenon due to contact with the head and instability of magnetic properties (particularly Hc) arose.Recently, γ-re,
03 is being considered exclusively.

γ−Fe、0.膜媒体の製造方法としては、一旦Fe、
0.膜を作製し、これを酸化して1− Fe、 Q、膜
にする方法が一般的である。このγ−Fe、0.膜への
変換には少くとも250℃好ましくは275℃以上での
加熱処理が不可欠である。
γ-Fe, 0. As a method for manufacturing the membrane medium, first Fe,
0. A common method is to prepare a film and oxidize it to form a 1-Fe, Q, film. This γ-Fe, 0. Heat treatment at a temperature of at least 250°C, preferably 275°C or higher is essential for conversion into a film.

一方磁気記録媒体と共に磁気ディスクのもうひとつの構
成要素である基板については、当初上の如き温度条件に
耐えるものとして、ガラス、セラミックなどが用いられ
たが、実用性の観点からみると、衝撃に対して弱く、破
損の慣れがある、高(2) 価であるなどの理由から問題があった。
On the other hand, for the substrate, which is another component of the magnetic disk along with the magnetic recording medium, materials such as glass and ceramic were initially used to withstand the above-mentioned temperature conditions, but from a practical standpoint, it was difficult to withstand shock. There were problems due to the fact that it is weak against the enemy, has a habit of being damaged, and has a high (2) value.

そこで従来コーテイング膜ディスクに用いられてきたア
ルミニウム合金基板の可能性について検討が行なわれた
結果、アルミニウム合金基体の表面に記録媒体下地層と
して、陽極酸化処理によって陽極酸化皮膜を形成した基
板が提案されている。
Therefore, the possibility of using aluminum alloy substrates, which have been conventionally used for coated film disks, was investigated. As a result, a substrate was proposed in which an anodized film was formed on the surface of an aluminum alloy base by anodizing treatment as a recording medium underlayer. ing.

同陽極酸化皮膜はアルミニウムの酸化物である為、硬度
が高く加工性にすぐれ研磨加工によって高密度記録磁気
ディスク基板に不可欠な、良好な表面性を得易いという
特徴をもつ。
Since the anodic oxide film is an oxide of aluminum, it has high hardness, excellent workability, and can be easily polished to obtain good surface properties, which are essential for high-density recording magnetic disk substrates.

然しなから現在のコーテイング膜ディスクに用いられて
いるアルミニウム合金基板を上記目的の為に使用すると
、陽極酸化皮膜に多くの欠陥が発生し、到底高密度記録
用ディスク基体としての使用にたえない。この原因はア
ルミニウム合金材に含まれる8i 、 Feといった不
純物が金属間化合物をつくり、それらが基板表面もしく
はその近傍にある場合、その部分で陽極酸化皮膜が成長
せずピンホール欠陥を生じる為である。
However, if the aluminum alloy substrate used in current coated film disks is used for the above purpose, many defects will occur in the anodic oxide film, making it completely unsuitable for use as a disk substrate for high-density recording. . The reason for this is that impurities such as 8i and Fe contained in the aluminum alloy material create intermetallic compounds, and when these are on or near the substrate surface, the anodic oxide film does not grow in that area and pinhole defects occur. .

そこで上記不純物の混入を極力抑えた高純度化(3) アルミニウム合金基板の開発が進められている。Therefore, high purity is achieved by minimizing the contamination of the above impurities (3) Development of aluminum alloy substrates is progressing.

これは99.9 %純度以上の高純度アルミニウムを母
材とし、これに所要の添加金属を加え合金化したもので
ある。ところが本発明者らの実験によれば、か\る高純
度化アルミニウム合金を素材とし、第1図に示した連続
薄膜磁気ディスク基板の従来性なわれている製作工程に
よって製作した基板により、γ−Fe、O,膜媒体磁気
ディスクを作製したところ、ディスク表面粗さが著るし
く劣化し、甚だしい場合には磁気ヘッドの安定な浮揚が
不可能な事態となることが判明した。この原因は上記媒
体形成工程において基板中合金結晶粒の成長が起りこれ
が基板表面粗さの増加をもたらす為であることが明らか
になった。
This is made of high-purity aluminum with a purity of 99.9% or higher as a base material, and is alloyed with the required additional metals. However, according to experiments conducted by the present inventors, a substrate manufactured using such a highly purified aluminum alloy using the conventional manufacturing process for continuous thin film magnetic disk substrates shown in FIG. When a -Fe, O, film media magnetic disk was fabricated, it was found that the surface roughness of the disk deteriorated significantly, and in extreme cases, stable floating of the magnetic head became impossible. It has become clear that the reason for this is that alloy crystal grains in the substrate grow during the medium forming process, which causes an increase in the substrate surface roughness.

本発明の目的は従来の酸化物磁性薄膜媒体用磁気ディス
ク基板の製造方法にみられるこのような欠点を除去し、
同薄膜媒体の形成工程を経ても表面粗さの劣化を生じな
い、磁気ディスク基板の製造方法を提供することにある
The purpose of the present invention is to eliminate such drawbacks found in conventional methods of manufacturing magnetic disk substrates for oxide magnetic thin film media, and to
It is an object of the present invention to provide a method for manufacturing a magnetic disk substrate that does not cause deterioration in surface roughness even after the process of forming the thin film medium.

本発明に係わる磁気ディスク基板の製造方法は、(4) アルミニウム合金基板の表面に陽極酸化皮膜を形成した
後、その表面を鏡面仕上げする工程を含むアルミニウム
合金ディスク基板の製造方法において、陽極酸化皮膜形
成後、鏡面仕上げに先立って、後の媒体形成工程におい
て行なう熱処理条件に比べ、温度もしくは時間のいずれ
か或いはその双方が同じかもしくは高い(又は長い)条
件で、予め上記陽極酸化処理アルミニウム合金板に熱処
理を施こす工程を有することを%徴とする。
The method for manufacturing a magnetic disk substrate according to the present invention includes (4) forming an anodized film on the surface of the aluminum alloy substrate, and then mirror-finishing the surface. After forming and prior to mirror finishing, the above anodized aluminum alloy plate is treated in advance under conditions where either the temperature or the time, or both, are the same or higher (or longer) than the heat treatment conditions performed in the subsequent medium forming step. % indicates that the process includes heat treatment.

以下実施例、比較例を掲げて本発明の詳細な説明する。The present invention will be described in detail below with reference to Examples and Comparative Examples.

実施例1゜ 高純度化アルミニウム合金板を用い、第2図に示した工
程により、陽極処理後、表面の鏡面研磨加工に先立って
300℃、05時間の熱処理を同合金板に施こした後、
研削及び研磨加工によりその表面をRmax O,02
μmの表面粗さに仕上げた。
Example 1 Using a highly purified aluminum alloy plate, the same alloy plate was subjected to anodization and heat treatment for 05 hours at 300°C prior to surface mirror polishing according to the process shown in Figure 2. ,
The surface is polished to Rmax O, 02 by grinding and polishing.
Finished with a surface roughness of μm.

〔第3図(a)〕こうして得たディスク基板に、スパッ
タリングによりFe、0.を主成分とする酸化鉄磁性薄
膜(〜1.70OA厚)を形成した後、空気中にお(5
) いて275℃、1時間の酸化処理を施こしγ−re、0
3を主成分とする酸化鉄磁性薄膜を得た。こうして作製
した磁気ディスクの表面粗さは第3図(b>に示した如
くで、基板の表面粗さく同図(a))と同じであり、表
面粗さの劣化は全く認められなかった。
[FIG. 3(a)] The thus obtained disk substrate is coated with Fe, 0. After forming an iron oxide magnetic thin film (~1.70OA thick) mainly composed of
) After oxidation treatment at 275°C for 1 hour, γ-re, 0
An iron oxide magnetic thin film containing 3 as the main component was obtained. The surface roughness of the thus produced magnetic disk was as shown in FIG. 3 (b), and the surface roughness of the substrate was the same as that of the substrate (FIG. 3 (a)), and no deterioration in surface roughness was observed.

磁気ヘッドの浮揚試験においても0.2μm程度の狭浮
揚量で安定に浮揚した。
In the magnetic head levitation test, the magnetic head was stably levated with a narrow levitation amount of about 0.2 μm.

比較例 実施例1に用いたと同じ高純度アルミニウム合金板を用
い、第1図に示した従来工程によってディスク基板を作
製した。この基板に、実施例1と全く同じ条件でFe 
30.膜形成、γ−Fe、0.膜への熱酸化処理を行な
い、酸化鉄薄膜磁気ディスクを得た。この磁気ディスク
の表面粗さは第4図に示した如くであり、明らかな劣化
が望められた。
Comparative Example Using the same high-purity aluminum alloy plate as used in Example 1, a disk substrate was manufactured by the conventional process shown in FIG. Fe was applied to this substrate under exactly the same conditions as in Example 1.
30. Film formation, γ-Fe, 0. The film was subjected to thermal oxidation treatment to obtain an iron oxide thin film magnetic disk. The surface roughness of this magnetic disk was as shown in FIG. 4, and obvious deterioration was expected.

実施例2゜ 実施例1に同じ高純度アルミニウム合金板を用い、第2
図に示した本発明による工程により、陽極処理後、表面
のψ面研磨加工に先立って280 ℃3時間の熱処理を
同合金板に施こした後、研削及(6) び研磨加工により鏡面に仕上げた。こうして得たディス
ク基板に、スパッタリングによりFe50.を主成分と
する酸化鉄磁性薄膜を形成した後、空気中において30
0℃、1時間の酸化処理を施こし、γ−Fe、0.を主
成分とする酸化鉄磁性薄膜をイ4)た。
Example 2゜Using the same high-purity aluminum alloy plate as in Example 1, a second
According to the process according to the present invention shown in the figure, after anodizing, the alloy plate is heat treated at 280°C for 3 hours prior to polishing the ψ surface, and then is polished to a mirror surface by grinding and polishing (6). Finished. The thus obtained disk substrate was coated with Fe50. After forming an iron oxide magnetic thin film mainly composed of
After oxidation treatment at 0°C for 1 hour, γ-Fe, 0. A4) An iron oxide magnetic thin film containing as the main component was prepared.

こうして作製した磁気ディスクの表面粗さは実施例1同
様研磨仕上げ後の基板のそれと全く変らなかった。
As in Example 1, the surface roughness of the magnetic disk produced in this manner was not different from that of the substrate after polishing.

上記実施例に明らかなように、本発明にか\わる磁気デ
ィスク基板の製造方法によれば、酸化鉄磁性薄膜媒体磁
気ディスクの媒体形成工程においても表面性の劣化を生
じることのない、高性能連続薄膜磁気ディスク用ディス
ク基板の製造が可能になる。
As is clear from the above embodiments, according to the method of manufacturing a magnetic disk substrate according to the present invention, high performance is achieved without deterioration of surface properties even in the process of forming an iron oxide magnetic thin film medium magnetic disk. It becomes possible to manufacture disk substrates for continuous thin film magnetic disks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陽極酸化処理アルミニウム合金ディスク基板の
従来の製造工程を示す図。第2図は本発明による同アル
ミニウム合金ディスク基板の製造工程を示す図。第3図
(a)は本発明の製造工程によ(7) り製作したディスク基板の表面粗さ、同図(b)はそれ
を用いて作製した酸化鉄磁性薄膜媒体磁気ディスクの表
面粗さを示す図。第4図は従来の方法により製作したデ
ィスク基板を用いて作製した磁気ディスクの表面粗さを
示す図である。 (8) 躬 I M 第2図
FIG. 1 is a diagram showing a conventional manufacturing process of an anodized aluminum alloy disk substrate. FIG. 2 is a diagram showing the manufacturing process of the aluminum alloy disk substrate according to the present invention. Figure 3(a) shows the surface roughness of a disk substrate manufactured using the manufacturing process of the present invention (7), and Figure 3(b) shows the surface roughness of an iron oxide magnetic thin film medium magnetic disk manufactured using the same. Diagram showing. FIG. 4 is a diagram showing the surface roughness of a magnetic disk manufactured using a disk substrate manufactured by a conventional method. (8) I M Figure 2

Claims (1)

【特許請求の範囲】[Claims] アルミニウム合金板の表面に陽極酸化皮膜を形成した後
、その表面を鏡面仕上げする工程を含むアルミニウム合
金磁気ディスク基板の製造方法において、陽極皮膜形成
後、鏡面仕上げに先立って、後の媒体形成工程において
行なう熱処理条件に比べ、温度もしくは時間のいずれか
或いはその双方が同じかもしくは高い(又は長い)条件
で、予め上記陽極処理アルミニウム合金板に熱処理を施
こす工程を有することを特徴とする磁気ディスク基板の
製造方法。
In a method for manufacturing an aluminum alloy magnetic disk substrate, which includes a step of forming an anodized film on the surface of an aluminum alloy plate and then mirror-finishing the surface, after forming the anodic film and prior to mirror-finishing, in the subsequent medium forming step. A magnetic disk substrate comprising the step of previously heat-treating the anodized aluminum alloy plate under the same or higher (or longer) conditions of either temperature or time, or both, compared to the heat treatment conditions. manufacturing method.
JP22058982A 1982-12-16 1982-12-16 Manufacture of magnetic disk substrate Pending JPS59110796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22058982A JPS59110796A (en) 1982-12-16 1982-12-16 Manufacture of magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22058982A JPS59110796A (en) 1982-12-16 1982-12-16 Manufacture of magnetic disk substrate

Publications (1)

Publication Number Publication Date
JPS59110796A true JPS59110796A (en) 1984-06-26

Family

ID=16753339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22058982A Pending JPS59110796A (en) 1982-12-16 1982-12-16 Manufacture of magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPS59110796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110852A (en) * 1983-11-21 1985-06-17 Mitsubishi Electric Corp Heat treatment of disk for magnetic disk
CN105112982A (en) * 2015-07-27 2015-12-02 电子科技大学 Magnetic hole substrate for preparing flaky electromagnetic noise suppression material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110852A (en) * 1983-11-21 1985-06-17 Mitsubishi Electric Corp Heat treatment of disk for magnetic disk
CN105112982A (en) * 2015-07-27 2015-12-02 电子科技大学 Magnetic hole substrate for preparing flaky electromagnetic noise suppression material
CN105112982B (en) * 2015-07-27 2017-09-26 电子科技大学 A kind of magnetic hole substrate for being used to prepare sheet electromagnetic noise suppression material

Similar Documents

Publication Publication Date Title
US4659606A (en) Substrate members for recording disks and process for producing same
JPH0191319A (en) Substrate for magnetic disk and production thereof
US3620841A (en) Process for making continuous magnetite films
JPS59110796A (en) Manufacture of magnetic disk substrate
JPS61253622A (en) Magnetic recording medium and its production
US5188677A (en) Method of manufacturing a magnetic disk substrate
JPS62117143A (en) Production of magnetic recording medium
JPS598141A (en) Magnetic disc medium having high recording density
JP2547994B2 (en) Magnetic recording media
US5120615A (en) Magnetic disk substrate and method of manufacturing the same
JP2500025B2 (en) Method for manufacturing titanium magnetic disk substrate
JPS5996539A (en) Magnetic recording disc
JPS6044813B2 (en) Manufacturing method of alloy thin film for magnetic recording
JPS60127532A (en) Magnetic disc base and its manufacture
JPS61224139A (en) Production of magnetic recording medium
JPH01112521A (en) Substrate for magnetic disk
JPS60113320A (en) Base plate for recording medium and its production
JPS6033357A (en) Aluminum alloy substrate for magnetic disc and preparation thereof
JPH03235218A (en) Production of magnetic recording medium
JPH03142708A (en) Magnetic recording medium
JPS61276115A (en) Magnetic recording medium and its production
JPH089746B2 (en) Magnetic disk substrate
JPS5992426A (en) Thin film magnetic disc
JPS61175920A (en) Magnetic disk substrate
JPH01223628A (en) High heat resistant substrate and production thereof