JP2857136B2 - Magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic recording medium and method of manufacturing the same

Info

Publication number
JP2857136B2
JP2857136B2 JP34196497A JP34196497A JP2857136B2 JP 2857136 B2 JP2857136 B2 JP 2857136B2 JP 34196497 A JP34196497 A JP 34196497A JP 34196497 A JP34196497 A JP 34196497A JP 2857136 B2 JP2857136 B2 JP 2857136B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic
film
recording medium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34196497A
Other languages
Japanese (ja)
Other versions
JPH10188269A (en
Inventor
城一朗 江崎
治幸 森田
泰史 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP34196497A priority Critical patent/JP2857136B2/en
Publication of JPH10188269A publication Critical patent/JPH10188269A/en
Application granted granted Critical
Publication of JP2857136B2 publication Critical patent/JP2857136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、非磁性支持体上に
磁性薄膜を設けてなる磁気記録媒体に関し、特に耐摩耗
性に優れた高信頼性の磁気記録媒体に関する。 【0002】 【従来の技術】磁気記録装置の大容量化に伴い、それに
使用される磁気記録媒体には増々高記録密度特性と高信
頼性が要求されている。γ−Fe23 等の磁性粉を樹
脂バインダーに分散させたものを非磁性支持体上に塗布
してなる塗布型磁気記録媒体が従来一般的に使用されて
きたが、近年の高記録密度化に対応して、蒸着法、めっ
き法、スパッタ法等によって磁性薄膜を非磁性基体上に
形成した薄膜型磁気記録媒体が注目されている。 【0003】この薄膜型磁気記録媒体では、磁性層を薄
膜化することが可能であり、また磁性層中に非磁性であ
る樹脂バインダーを含まないため高磁束密度化が可能と
なり、その結果高記録密度が可能となる。しかし、この
種の磁気記録媒体においては、磁気記録媒体と磁気ヘッ
ドとの摺動接触により磁性層が破壊されるという問題が
塗布型磁気記録媒体に比べて生じ易く、磁気ヘッドの摺
動接触に対して充分な耐摩耗性を持たせるために磁性層
表面に処理を施すことが重要な課題となっている。例え
ば、磁気ディスク装置においては磁気ディスク媒体の回
転開始時と停止時に磁気ヘッドと媒体が摺動接触する、
いわゆるコンタクト・スタート・ストップ(以下CSS
と記す)方式が採用されるようになっており、これに耐
えるに充分な耐摩耗性が要求されるようになっている。
このような磁気記録媒体の耐摩耗性を確保するため、従
来、Al23 、SiO2 、TiO2 、Si34 、W
C、TiC、SiC、B4 C等の硬度の高い物質で成る
保護膜を磁性層の上に形成する方法が提案されている
(特公昭55−39047、特開昭53−21901、
特開昭53−21902、特開昭58−185029、
特開昭59−188835)。 【0004】 【発明が解決しようとする課題】上述した保護膜は、通
常、磁性薄膜上にスパッタ法により形成される。しかし
これらの保護膜は、磁性薄膜との密着性が充分でない場
合が多く、磁気ヘッドとの摺動接触により保護膜が剥離
し、この剥離したものが磁気ヘッドと保護膜の間にはさ
まり、保護膜の他の部分を削りとり、更には磁性薄膜を
も破壊してしまうということが生じた。また、磁性薄膜
がγ−Fe23 を主成分とする薄膜であり、この薄膜
上にスパッタ法により保護膜を形成しようとする場合、
一旦α−Fe23 またはFe34 を主成分とする膜
をスパッタ法により形成し、これをスパッタ室より取出
して雰囲気炉中に配置し、還元、酸化等の熱処理を行な
ってγ−Fe23 を主成分とする薄膜とし、更に再
度、これをスパッタ室に配置し保護膜をスパッタ形成す
る方法がとられる。しかしこの方法はスパッタ室より出
したり入れたりしなければならず、工程が複雑となり、
量産上の問題となる。 【0005】本発明の目的は、磁性薄膜上に保護膜が密
着性よく形成され、それにより優れた耐摩耗性を持ち、
高信頼性の磁気記録媒体を提供することである。また、
他の目的は、磁性酸化物よりなる薄膜上に簡便なる方法
で酸化物よりなる保護膜を密着性よく形成した、優れた
耐摩耗性を持ち、高信頼性の磁気記録媒体を提供するこ
とである。 【0006】 【課題を解決するための手段】本発明の磁気記録媒体
は、非磁性支持体上に酸化物磁性薄膜を形成し更に保護
膜を形成してなる磁気記録媒体において、前記酸化物磁
性薄膜と保護膜の間に厚さが100Å以上の前記酸化物
磁性薄膜と保護膜が固溶した領域が存在することを特徴
とする。この磁気記録媒体によれば、固溶領域の形成に
より磁性薄膜と保護膜との間の結合力及び密着性が格段
に高まり、後述のCSS試験から分るように耐摩耗性が
増大して保護膜の剥離が無くなり、高信頼性で寿命の長
い磁気記録媒体が提供できる。 【0007】本発明の磁気記録媒体の製造方法は、非磁
性支持体の上に目的とする酸化物磁性薄膜、その前駆磁
性薄膜または目的とする酸化物磁性薄膜の前駆物質の薄
膜を形成し、その上に耐摩耗性酸化物又はその前駆物質
よりなる薄膜を形成し、所定の温度で熱処理することに
より、上記の両方の膜をそれぞれ目的とする磁性薄膜及
び耐摩耗性保護膜にすると共に、これらの膜の間に拡散
を生じさせて両者の界面に厚さが100Å以上の両者の
固溶領域を形成することより成る。この方法によれば、
熱処理により磁性薄膜と保護膜の間に拡散が生じ、両者
の密着性を高めることにより、上記のすぐれた磁気記録
媒体を提供することができる。また、本発明の方法によ
ると、目的とする酸化物磁性薄膜、その前駆磁性薄膜ま
たは前駆物質薄膜と保護膜またはその前駆物質膜とは、
順次成膜した上熱処理すれば良いから、例えばスパッタ
法等の真空成膜を行う際に、従来の方法のように磁性薄
膜の前駆酸化物膜をスパッタ成膜し、真空リークをして
熱処理炉に移し、所定の磁性薄膜を形成した後、再びス
パッタ装置へ装入して保護膜をスパッタ成膜を行うとい
う面倒な手順が簡略化する。すなわち、本発明の方法で
はスパッタ成膜は真空リータしないで引続いて行い、次
いで熱処理炉で処理すれば良く能率が良い。それにも拘
らず、上記のように本発明の方法で得られる磁気記録媒
体の特性は従来のものよりも優れている。 【0008】 【発明の実施の形態】本発明が意図した密着性及び耐摩
耗性を十分向上させるには、固溶領域の厚さを100Å
以上、好ましくは200Å以上にする。これにより耐C
SS特性が十分に向上する。固溶領域の厚さは熱処理温
度及び時間により制御される。熱処理の温度が高い程、
または熱処理の時間が長い程固溶した領域の厚さは大き
くなる。通常熱処理の温度は100℃以上で行われる。
これ以下だと、所定厚の固溶した領域を形成するのに時
間がかかり過ぎる。 【0009】磁性薄膜を形成する磁性酸化物の代表的な
例はγ−Fe23 またはこれを主体とする酸化物であ
る。このような薄膜は、例えばα−Fe23 薄膜をス
パッタ法により形成し、これを還元性雰囲気の炉中で還
元してFe34 薄膜とし、更に酸化性雰囲気の炉中で
酸化してγ−Fe23 薄膜とすることにより行なわれ
る。また他の方法は、Fe34 薄膜をスパッタ法によ
り形成し、これを酸化性雰囲気の炉中で酸化してγ−F
23 薄膜とすることにより行なわれる。 【0010】本発明の1つの態様における上記のγ−F
23 薄膜への変換は、α−Fe23 やFe34
薄膜の表面に保護膜またはその前駆物質の薄膜を形成し
た後に行われる。熱処理によってα−Fe23 やFe
34 がγ−Fe23 磁性薄膜に変換する間に保護膜
またはその前駆物質が保護膜に変換し、しかも両膜の間
に両者の固溶層が形成されることになる。保護膜または
その前駆物質としてはAl23 、TiO2 、SiO
2 、Al、Ti、Si等が使用でき、これらが熱処理の
間にAl23 、TiO2 、SiO2 等の耐摩耗性保護
膜に変換される。保護膜は十分に耐摩耗性であるだけで
なく磁性薄膜との間で拡散による固溶領域を形成しうる
ものでなければならない。 【0011】本発明の方法は、代表的にはスパッタ法に
より実行できる。本発明では同じ真空チャンバ内にF
e、α−Fe23 、Fe34 等のターゲットと、A
l、Al23 等のターゲットを設置し、これらを非磁
性支持体上にスパッタさせて成膜する。次いで、熱処理
炉中で還元や酸化を行って各層を所定の磁性薄膜及び耐
摩耗性酸化物に変化させ、またそれらの界面を固溶領域
にする。この方法が、従来の方法に比して優れているこ
とは先に述べたとおりである。 【0012】図3はこの点を示す。同図(a)は本発明
の方法を、(b)は従来法を示す。図のように従来法の
うち2重枠で示した工程は本発明の方法よりも多い。こ
のように本発明では工程が簡略化されるため、磁気記録
媒体の製造時間が短縮される。 【0013】なお、固溶した領域の厚みは、ESCA分
析、オージェ分析、RBS分析等によって測定できる。
例えばオージェ分析では保護膜と磁性薄膜を構成する原
子について厚み方向でプロフィールを観察することによ
り行なわれる。Co−Ni薄膜上にAl23 保護膜を
形成した場合の例を図1に示す。AlとCoの分布が重
なった部分の半値幅dを固溶した領域と考えることがで
きるが、固溶した領域が無い場合でもオージェ分析装置
の分解能のためにdはゼロではなく20〜100Å(各
装置によって異なる)の値を持つ。従って実際の固溶し
た領域の厚さはdからこの値を引いた値、すなわち、本
発明者らが使用しているオージェ分析装置では固溶した
領域が無い場合の半値幅が約60Åであるので実際の固
溶した領域の厚さはd−60で定義する。 【0014】 【実施例】基板として陽極酸化によりアルマイト層を2
μm形成したアルミ合金基板を使用した。形状は外径1
30mm、内径40mm、厚さ1.9mmのディスク円
板状である。この基板上に鉄をターゲットとし、Ar+
2 雰囲気(混合比50%、真空度5×10-3Tor
r)でスパッタすることによりα−Fe23 膜を20
00Å形成した。更にこの上にAl23 保護膜をスパ
ッタ法により形成した。次に水素雰囲気炉中で2時間還
元しα−Fe23 膜をFe34 膜とした。このとき
Al23 膜も一部還元されてAlを含んだ膜となる。
還元の温度については表2に示す。更に空気中で310
℃、1時間酸化してFe34 膜をγ−Fe23 膜と
し、保護膜はAl23 膜とした。以上の工程をフロー
チャートにしてまとめると図3(a)のようになる。こ
れに対して従来の方法では図3(b)のようになり、二
重の四角で囲んだ工程が本発明では省略され磁気記録媒
体の製造時間が短縮されることがわかる。完成した磁気
ディスクについてオージェ分析により固溶した領域の厚
さ(d−60)の測定、およびCSS試験を行ない、結
果を表1に示す。一方、従来の方法(図3(b))で形
成した磁気ディスクについても同様の試験を行なったと
ころd−60=0、CSS=14,000回であった。
これに対して本発明の優位性は表1より明らかである。 ・CSS試験 ウインチェスタータイプのMn−Znフェライトヘッド
(荷重9.5g)を使用してCSS試験を行なった。C
SSは図2に示したサイクルの繰返しにより行なった。
CSS回数は、記録再生出力が初期の半分以下になるま
での回数で、最大40,000回まで行なった。 【0015】表1の結果を見ると、固溶した領域を形成
することによりCSS特性が改善され、固溶した領域の
厚さを100Å以上にすると格段に改善され、200Å
以上にすると更に良くなることがわかる。 【0016】 【表1】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a magnetic thin film provided on a non-magnetic support, and more particularly to a highly reliable magnetic recording medium having excellent wear resistance. It relates to a recording medium. 2. Description of the Related Art With the increase in capacity of magnetic recording devices, magnetic recording media used therein are required to have increasingly higher recording density characteristics and higher reliability. Conventionally, a coating type magnetic recording medium in which a magnetic powder such as γ-Fe 2 O 3 is dispersed in a resin binder and applied on a non-magnetic support has been generally used. In response to the trend, thin-film magnetic recording media in which a magnetic thin film is formed on a non-magnetic substrate by a vapor deposition method, a plating method, a sputtering method, or the like have been receiving attention. In this thin-film type magnetic recording medium, the magnetic layer can be made thinner, and since the magnetic layer does not contain a non-magnetic resin binder, a higher magnetic flux density can be achieved. Density is possible. However, in this type of magnetic recording medium, the problem that the magnetic layer is destroyed due to the sliding contact between the magnetic recording medium and the magnetic head is more likely to occur than in the case of the coating type magnetic recording medium. On the other hand, it is important to treat the surface of the magnetic layer in order to provide sufficient wear resistance. For example, in a magnetic disk drive, the magnetic head and the medium make sliding contact at the start and stop of rotation of the magnetic disk medium,
So-called contact start / stop (hereinafter CSS)
) System has been adopted, and abrasion resistance sufficient to withstand this is required.
Conventionally, in order to ensure the wear resistance of such a magnetic recording medium, Al 2 O 3 , SiO 2 , TiO 2 , Si 3 N 4 , W
There has been proposed a method of forming a protective film made of a material having high hardness such as C, TiC, SiC, and B 4 C on a magnetic layer (Japanese Patent Publication No. 55-39047, Japanese Patent Application Laid-Open No. Sho 53-21901,
JP-A-53-21902, JP-A-58-185029,
JP-A-59-188835). The above-described protective film is usually formed on a magnetic thin film by a sputtering method. However, these protective films often do not have sufficient adhesion to the magnetic thin film, and the protective film peels off due to sliding contact with the magnetic head. Other portions of the film were scraped off and even the magnetic thin film was destroyed. When the magnetic thin film is a thin film containing γ-Fe 2 O 3 as a main component and a protective film is to be formed on the thin film by a sputtering method,
Once a film containing α-Fe 2 O 3 or Fe 3 O 4 as a main component is formed by a sputtering method, the film is taken out of a sputtering chamber, placed in an atmosphere furnace, and subjected to a heat treatment such as reduction and oxidation to perform γ- A method of forming a thin film containing Fe 2 O 3 as a main component, placing the thin film again in a sputtering chamber, and forming a protective film by sputtering is employed. However, this method has to be taken in and out of the sputtering chamber, and the process becomes complicated,
This is a problem in mass production. [0005] An object of the present invention is to form a protective film on a magnetic thin film with good adhesion, thereby having excellent wear resistance.
An object of the present invention is to provide a highly reliable magnetic recording medium. Also,
Another object is to provide a magnetic recording medium having excellent abrasion resistance and high reliability in which a protective film made of an oxide is formed on a thin film made of a magnetic oxide in a simple manner with good adhesion. is there. According to the present invention, there is provided a magnetic recording medium comprising a non-magnetic support, a thin oxide magnetic film formed on a non-magnetic support, and a protective film. the oxide magnetic film and the protective film thickness is at least 100Å between thin film and protective film are you characterized by the presence of a solid solution region. According to the magnetic recording medium of this, greatly enhance the bonding strength and adhesion between the magnetic thin film by the formation of solid solution region and the protective film, the abrasion resistance as can be seen from the CSS test described below is increased The protective film does not peel off, and a highly reliable magnetic recording medium having a long life can be provided. According to the method of manufacturing a magnetic recording medium of the present invention, a target oxide magnetic thin film, a precursor magnetic thin film thereof, or a target oxide magnetic thin film precursor thin film is formed on a nonmagnetic support. Abrasion resistant oxide or its precursor
To form a more becomes thin, by heat treatment at a predetermined temperature, while the magnetic thin film and abrasion resistant protective layer for the purpose both of the above films, respectively, both with cause diffusion between these films At a boundary between the two solid solution regions having a thickness of 100 ° or more . According to this method,
Diffusion occurs between the magnetic thin film and the protective film by the heat treatment, and the adhesion between the two is enhanced, whereby the above-described excellent magnetic recording medium can be provided. According to the method of the present invention, the target oxide magnetic thin film, its precursor magnetic thin film or precursor thin film and the protective film or its precursor film,
Since it is sufficient to perform heat treatment after forming a film sequentially, for example, when performing a vacuum film formation such as a sputtering method, a precursor oxide film of a magnetic thin film is formed by a sputtering method as in the conventional method, and a vacuum leak is performed. Then, after forming a predetermined magnetic thin film, the complicated procedure of loading the film again into the sputtering apparatus and forming the protective film by sputtering is simplified. That is, in the method of the present invention, the sputter film formation is performed continuously without using a vacuum litter, and then the treatment is performed in a heat treatment furnace, which is efficient. Nevertheless, as described above, the characteristics of the magnetic recording medium obtained by the method of the present invention are superior to those of the conventional one. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to sufficiently improve the adhesion and abrasion resistance intended by the present invention, the thickness of the solid solution region must be 100 mm.
Or more, preferably 200 ° or more. Thereby, C resistance
The SS characteristics are sufficiently improved. The thickness of the solid solution region is controlled by the heat treatment temperature and time. The higher the heat treatment temperature,
Alternatively, the longer the heat treatment time, the larger the thickness of the solid solution region. Usually, the temperature of the heat treatment is performed at 100 ° C. or higher.
Below this, it takes too much time to form a solid solution region having a predetermined thickness. A typical example of the magnetic oxide forming the magnetic thin film is γ-Fe 2 O 3 or an oxide mainly containing γ-Fe 2 O 3 . Such a thin film is formed, for example, by forming an α-Fe 2 O 3 thin film by a sputtering method, reducing this in a reducing atmosphere furnace to form an Fe 3 O 4 thin film, and further oxidizing the same in an oxidizing atmosphere furnace. To form a γ-Fe 2 O 3 thin film. In another method, a Fe 3 O 4 thin film is formed by a sputtering method, and this is oxidized in a furnace in an oxidizing atmosphere to form a γ-F
This is performed by forming an e 2 O 3 thin film. In one embodiment of the present invention, the above γ-F
Conversion to an e 2 O 3 thin film is performed by using α-Fe 2 O 3 or Fe 3 O 4
This is performed after forming a protective film or a thin film of a precursor thereof on the surface of the thin film. Α-Fe 2 O 3 or Fe
While 3 O 4 is converted to a γ-Fe 2 O 3 magnetic thin film, the protective film or its precursor is converted to a protective film, and a solid solution layer of both is formed between the two films. Al 2 O 3 , TiO 2 , SiO 2
2 , Al, Ti, Si, etc. can be used, which are converted to a wear-resistant protective film such as Al 2 O 3 , TiO 2 , SiO 2 during heat treatment. The protective film must be not only sufficiently abrasion resistant but also capable of forming a solid solution region by diffusion with the magnetic thin film. The method of the present invention can be typically performed by a sputtering method. In the present invention, F
e, a target such as α-Fe 2 O 3 , Fe 3 O 4 , and A
1, a target such as Al 2 O 3 is set, and these are sputtered on a nonmagnetic support to form a film. Next, each layer is reduced or oxidized in a heat treatment furnace to change each layer into a predetermined magnetic thin film and a wear-resistant oxide, and the interface between them is made into a solid solution region. As described above, this method is superior to the conventional method. FIG. 3 illustrates this point. FIG. 3A shows the method of the present invention, and FIG. 3B shows the conventional method. As shown in the figure, the steps indicated by double frames in the conventional method are more numerous than the method of the present invention. As described above, according to the present invention, since the steps are simplified, the manufacturing time of the magnetic recording medium is reduced. The thickness of the solid solution region can be measured by ESCA analysis, Auger analysis, RBS analysis or the like.
For example, Auger analysis is performed by observing the profile of atoms constituting the protective film and the magnetic thin film in the thickness direction. FIG. 1 shows an example in which an Al 2 O 3 protective film is formed on a Co—Ni thin film. The half width d of the portion where the distributions of Al and Co overlap can be considered as a solid solution region. However, even when there is no solid solution region, d is not zero but 20 to 100 [deg.] Due to the resolution of the Auger analyzer. (Depending on each device). Therefore, the actual thickness of the solid solution region is a value obtained by subtracting this value from d, that is, the half width when there is no solid solution region is about 60 ° in the Auger analyzer used by the present inventors. Therefore, the actual thickness of the solid solution region is defined as d-60. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Alumite layer was formed as a substrate by anodic oxidation.
An aluminum alloy substrate having a thickness of μm was used. Outer diameter is 1
It has a disk shape of 30 mm, an inner diameter of 40 mm, and a thickness of 1.9 mm. Ar +
O 2 atmosphere (mixing ratio 50%, degree of vacuum 5 × 10 −3 Torr)
r) to form an α-Fe 2 O 3 film of 20
00 ° was formed. Further, an Al 2 O 3 protective film was formed thereon by a sputtering method. Next, the mixture was reduced in a hydrogen atmosphere furnace for 2 hours, and the α-Fe 2 O 3 film was turned into a Fe 3 O 4 film. At this time, the Al 2 O 3 film is also partially reduced to a film containing Al.
Table 2 shows the reduction temperature. 310 in air
° C., was oxidized for 1 hour Fe 3 O 4 film as γ-Fe 2 O 3 film, the protective film was the Al 2 O 3 film. FIG. 3A summarizes the above steps in a flowchart. On the other hand, in the conventional method, the result is as shown in FIG. 3B, and it can be seen that the step surrounded by a double square is omitted in the present invention and the manufacturing time of the magnetic recording medium is shortened. For the completed magnetic disk, the thickness (d-60) of the solid solution region was measured by Auger analysis, and a CSS test was performed. The results are shown in Table 1. On the other hand, when a similar test was performed on a magnetic disk formed by the conventional method (FIG. 3B), d-60 = 0 and CSS = 14,000.
On the other hand, the superiority of the present invention is clear from Table 1. -CSS test A CSS test was performed using a Winchester type Mn-Zn ferrite head (load: 9.5 g). C
SS was performed by repeating the cycle shown in FIG.
The number of CSSs was the number of times until the recording / reproducing output became half or less of the initial value, and was performed up to 40,000 times. According to the results shown in Table 1, the formation of a solid solution region improves the CSS characteristics, and the solid solution region having a thickness of 100 mm or more significantly improves the CSS characteristics.
It can be understood that the above is further improved. [Table 1]

【図面の簡単な説明】 【図1】図1は、固溶した領域の厚さを測定する方法を
示す図である。 【図2】図2は、CSS試験の方法を示す図である。 【図3】図3は、本発明の方法と従来法の工程比較図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a method for measuring the thickness of a solid solution region. FIG. 2 is a diagram showing a CSS test method. FIG. 3 is a process comparison diagram between the method of the present invention and the conventional method.

フロントページの続き (56)参考文献 特開 昭58−6528(JP,A) 特公 昭58−172(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G11B 5/72 G11B 5/66 G11B 5/84Continuation of the front page (56) References JP-A-58-6528 (JP, A) JP-B-58-172 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5 / 72 G11B 5/66 G11B 5/84

Claims (1)

(57)【特許請求の範囲】 1.非磁性支持体上に酸化物磁性薄膜を形成し更に保護
膜を形成してなる磁気記録媒体において、前記酸化物磁
性薄膜と保護膜の間に厚さが100Å以上の前記酸化物
磁性薄膜と保護膜が固溶した領域が存在することを特徴
とする磁気記録媒体。 2.保護膜がAl、TiOおよびSiOの少
なくとも1つを主成分とすることを特徴とする請求項1
に記載の磁気記録媒体。 3.非磁性支持体上に酸化物磁性薄膜(B)、その前駆
磁性薄膜(A)、または酸化物磁性薄膜(B)の前駆物
質よりなる第1の薄膜を形成し、この第1の薄膜上に耐
摩耗性酸化物またはその前駆物質よりなる第2の薄膜を
形成し、熱処理を施すことにより、前記第1の薄膜を前
記酸化物磁性薄膜(B)とし、前記第2の薄膜を耐摩耗
性酸化物膜にし、且つ前記酸化物磁性薄膜(B)と前記
耐摩耗性酸化物膜との間に厚さが100Å以上の前記酸
化物磁性薄膜(B)と前記耐摩耗性酸化物膜とが固溶し
た領域を形成することを特徴とする磁気記録媒体の製造
方法。 4.第1の薄膜はα−Fe又はFeのいず
れかを主成分とする薄膜であり、第2の薄膜はAl、A
、Ti、TiO、SiおよびSiOよりな
る群から選ばれた少なくとも1つを主成分とすることを
特徴とする請求項3に記載の磁気記録媒体の製造方法。 5.磁性薄膜(B)はγ−Feを主成分とし、耐
摩耗性酸化物膜はAl、TiOおよびSiO
の少なくとも1つを主成分とすることを特徴とする請求
項3または4に記載の磁気記録媒体の製造方法。 6.固溶領域の厚さが200Å以上であることを特徴と
する請求項3、4及び5のいずれかに記載の磁気記録媒
体の製造方法。
(57) [Claims] In a magnetic recording medium in which an oxide magnetic thin film is formed on a non-magnetic support and a protective film is further formed, the oxide magnetic thin film having a thickness of 100 mm or more between the oxide magnetic thin film and the protective film is protected. the magnetic recording medium area film is a solid solution and wherein Rukoto that Mashimasu exist. 2. 2. The protection film according to claim 1, wherein at least one of Al 2 O 3 , TiO 2 and SiO 2 is a main component.
3. The magnetic recording medium according to claim 1. 3. A first thin film made of a precursor of the oxide magnetic thin film (B), its precursor magnetic thin film (A), or a precursor of the oxide magnetic thin film (B) is formed on a nonmagnetic support, and the first thin film is formed on the first thin film. abrasion-resistant oxide or forming a second thin film made of a precursor thereof, followed by heat treatment, the first thin film and the oxide magnetic film (B), the second thin film wear resistance An oxide film , and the oxide magnetic thin film (B)
The above acid having a thickness of 100 ° or more between itself and the wear-resistant oxide film.
Magnetic thin film (B) and the wear-resistant oxide film
Forming a magnetic recording medium. 4. The first thin film is a thin film containing either α-Fe 2 O 3 or Fe 3 O 4 as a main component, and the second thin film is Al, A
l 2 O 3, Ti, manufacturing method of a magnetic recording medium according to claim 3, characterized in that the at least one main component selected from the group consisting of TiO 2, Si and SiO 2. 5. The magnetic thin film (B) contains γ-Fe 2 O 3 as a main component, and the wear-resistant oxide film is made of Al 2 O 3 , TiO 2 and SiO 2
5. The method for manufacturing a magnetic recording medium according to claim 3, wherein at least one of the following is used as a main component. 6. 6. The method according to claim 3, wherein the thickness of the solid solution region is 200 [deg.] Or more.
JP34196497A 1997-11-28 1997-11-28 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2857136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34196497A JP2857136B2 (en) 1997-11-28 1997-11-28 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34196497A JP2857136B2 (en) 1997-11-28 1997-11-28 Magnetic recording medium and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60236415A Division JPH077503B2 (en) 1985-10-24 1985-10-24 Magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10188269A JPH10188269A (en) 1998-07-21
JP2857136B2 true JP2857136B2 (en) 1999-02-10

Family

ID=18350134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34196497A Expired - Lifetime JP2857136B2 (en) 1997-11-28 1997-11-28 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2857136B2 (en)

Also Published As

Publication number Publication date
JPH10188269A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
Yoshii et al. High density recording characteristics of sputtered γ‐Fe2O3 thin‐film disks
US5252367A (en) Method of manufacturing a magnetic recording medium
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same
JP3549429B2 (en) Magnetic recording medium and method for manufacturing the same
JPH09288818A (en) Magnetic recording medium
JPH077503B2 (en) Magnetic recording medium and manufacturing method thereof
US20050042481A1 (en) Information recording medium with improved perpendicular magnetic anisotropy
EP0213346B1 (en) Magnetic recording medium
JP3651916B2 (en) Magnetic head
JPH0719372B2 (en) Method of manufacturing magnetic recording medium
JP2721624B2 (en) Metal thin-film magnetic recording media
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JP4138348B2 (en) Method for manufacturing magnetic recording medium
JPS62293512A (en) Magnetic recording medium
JP2002237027A (en) Magnetic recording medium
JPH05143953A (en) Magnetic recording medium
JP2001331934A (en) Magnetic recording medium, method for producing the same, magnetic recording and reproducing unit and sputtering target
JPH065574B2 (en) Magnetic recording medium
JP2004046948A (en) Method for manufacturing magnetic recording medium
JP2008091026A (en) Magnetic recording medium
JPH07169016A (en) Magnetic head and its manufacture
JPH1012437A (en) Alloy magnetic film with substrate for magnetic head, its manufacture and magnetic head
JPH07161026A (en) Magnetic recording medium
JPS62223812A (en) Perpendicular magnetic recording medium
JPS63217520A (en) Magnetic memory body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981110

EXPY Cancellation because of completion of term