JPH07161026A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH07161026A
JPH07161026A JP30771293A JP30771293A JPH07161026A JP H07161026 A JPH07161026 A JP H07161026A JP 30771293 A JP30771293 A JP 30771293A JP 30771293 A JP30771293 A JP 30771293A JP H07161026 A JPH07161026 A JP H07161026A
Authority
JP
Japan
Prior art keywords
film
substrate
magnetic
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30771293A
Other languages
Japanese (ja)
Inventor
Satoko Mineta
聡子 峰田
Hiroyuki Kataoka
宏之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30771293A priority Critical patent/JPH07161026A/en
Publication of JPH07161026A publication Critical patent/JPH07161026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a recording medium having high coercive force by forming a film of a specified compsn. on a substrate having the surface containing oxides, and then forming a magnetic film of a Co alloy thereon. CONSTITUTION:A silicon nitride, aluminum nitride or titanium nitride film 2 is formed on a nonmagnetic substrate 1 and a magnetic recording film 3 of Co or an alloy essentially consisting of Co is formed on the film 2. Glass or glazed alumina or titania is used for the substrate 1, and subjected to surface treatment to form a fine rugged pattern to prevent sticking of a magnetic head to the substrate 1. A magnetic disk is produced by forming films on this substrate 1 by using an in-line film forming device. In this method, a silicon nitride film 2 is formed to about 30nm thickness by CVD method to prevent diffusion of oxygen from the substrate 1, and then a Co-alloy recording film 3 is formed to about 30nm thickness at 400 deg.C substrate temp. by sputtering method. Thus, higher coercive force can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク及び磁気
テープ等の磁気記録媒体に関しており、特に酸化物を含
有する表面を持つ基板上に形成された磁気記録媒体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic disk and a magnetic tape, and more particularly to a magnetic recording medium formed on a substrate having a surface containing an oxide.

【0002】[0002]

【従来の技術】大型コンピューター、パソコン、ノート
型パソコン等の情報を処理する装置において、磁気によ
り情報を記憶する部分は磁気ディスク装置と呼ばれ、磁
気ヘッドが隣接に設置され、高速で回転する磁気ディス
ク上に記録再生を行う。磁気ディスクとは円板状のアル
ミ、ガラス、セラミック、シリコン又はチタン等の非磁
性基板上に磁気記録膜を成膜した構造となっており、こ
の磁気記録膜の高記録密度化への研究が盛んに行われい
る。
2. Description of the Related Art In a device for processing information, such as a large computer, a personal computer, a notebook computer, etc., the portion that stores information by magnetism is called a magnetic disk device. Record and play on the disc. A magnetic disk has a structure in which a magnetic recording film is formed on a non-magnetic substrate such as a disc-shaped aluminum, glass, ceramic, silicon or titanium. Research on increasing the recording density of this magnetic recording film has been conducted. It is being actively conducted.

【0003】ところで、現在、磁気ディスクは小型化大
容量化が求められている。そのことから基板への要求と
しては、小径化薄板化であり、ヘッド浮上の関係から表
面平滑性である。それらの要求を満たす基板として、ガ
ラス又はアルミナ又はジルコニア等のセラミック基板が
注目され、更にそれらの基板上に高性能な磁気記録膜が
でき得る条件が検討されている。例えば、アルミ基板
(現在、主に基板として使用されている)上の磁気記録
膜の例を挙げれば、ヘッドの浮上にも関係が深いテクス
チャー処理と膜の結晶性を高めるために成膜時の基板温
度を高くするという方法がある。ところが、アルミ基板
上のニッケル-リンが温度300℃以上では磁化してし
まい、磁気記録には使用できなくなってしまう不利な点
があった。しかし、セラミック等の基板を用いると磁化
の問題がなく、記録膜成膜時の基板温度を高くすること
が出来る。例えば、日本応用磁気学会誌Vol.15,No.2,p
89-92によれば、ガラス基板上にクロムを下地膜とし、
その上にコバルト・ニッケル・クロム合金記録膜をr.
fマグネトロンスパッタ法により基板温度300℃で作
成した場合、保磁力(Hc)160kA/m以上の結果
を得ている。
By the way, at present, there is a demand for miniaturization and large capacity of magnetic disks. For this reason, the requirements for the substrate are a smaller diameter and a thinner plate, and a surface smoothness in view of head flying. As substrates satisfying those requirements, glass or ceramic substrates such as alumina or zirconia have attracted attention, and the conditions under which a high performance magnetic recording film can be formed on these substrates have been studied. For example, taking an example of a magnetic recording film on an aluminum substrate (currently mainly used as a substrate), there is a texture process that is closely related to the flying of the head and a film forming process for improving the crystallinity of the film. There is a method of raising the substrate temperature. However, there is a disadvantage that nickel-phosphorus on an aluminum substrate is magnetized at a temperature of 300 ° C. or higher, and cannot be used for magnetic recording. However, when a substrate made of ceramic or the like is used, there is no problem of magnetization, and the substrate temperature at the time of forming the recording film can be increased. For example, Journal of Applied Magnetics of Japan Vol.15, No.2, p
According to 89-92, chromium is used as the base film on the glass substrate,
Cobalt-nickel-chromium alloy recording film r.
When the substrate was manufactured by the f magnetron sputtering method at a substrate temperature of 300 ° C., a coercive force (Hc) of 160 kA / m or more was obtained.

【0004】[0004]

【発明が解決しようとする課題】高性能な磁気記録膜を
得るための条件の一つとして、高保磁力であることが挙
げらる。しかし、セラミック基板等の酸化物を含有する
基板上に磁気記録膜を形成する場合、基板に含まれる酸
素が保磁力を低下させる原因となる。
One of the conditions for obtaining a high-performance magnetic recording film is a high coercive force. However, when forming a magnetic recording film on a substrate containing an oxide such as a ceramic substrate, oxygen contained in the substrate causes a decrease in coercive force.

【0005】(1)磁気ディスクの磁気記録膜は、基板
を加熱しスパッタ法で成膜するのである。ここで取り上
げている酸化物を含有する表面を持つ基板では、記録膜
成膜時に基板温度を上げていることから、基板からの酸
素の拡散が増加し、記録膜の酸素含有量が増加する。膜
内の酸素の増加は結晶性を低下させ、保磁力が下がる。
(1) The magnetic recording film of the magnetic disk is formed by heating the substrate and sputtering. In the case of a substrate having a surface containing an oxide, which is taken up here, the substrate temperature is raised during the formation of the recording film, so that the diffusion of oxygen from the substrate increases and the oxygen content of the recording film increases. The increase of oxygen in the film lowers the crystallinity and lowers the coercive force.

【0006】(2)磁気ヘッドが磁気記録媒体に粘着す
るのを防止し及び磁気記録膜の高保持力となるため、基
板上に微細な凹凸を付ける表面処理を施すが、その基板
上に付けられた膜は凸部又は凹部上で膜の連続性が失わ
れる。その非連続的な部分より酸化物を含有する表面を
持つ基板では、酸素の拡散が起こり結晶性を低下させ、
保磁力が低下する。
(2) To prevent the magnetic head from sticking to the magnetic recording medium and to provide a high holding power for the magnetic recording film, a surface treatment is applied to the substrate to make fine irregularities. The formed film loses the continuity of the film on the convex portion or the concave portion. In a substrate having a surface containing an oxide from the discontinuous portion, diffusion of oxygen occurs and crystallinity is lowered,
The coercive force decreases.

【0007】本発明は、酸化物を含有する表面を持つ基
板からの酸素が磁気記録膜に拡散するのを防止し、記録
膜の結晶性の向上を図り、より高い保磁力を得ることを
課題とし、よりよい磁気記録膜さらに磁気ディスク装置
を作製する。
An object of the present invention is to prevent oxygen from a substrate having an oxide-containing surface from diffusing into a magnetic recording film, improve the crystallinity of the recording film, and obtain a higher coercive force. Then, a better magnetic recording film and a magnetic disk device are manufactured.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する手段
として、基板からの酸素が記録膜へ影響するのを防ぐ膜
を、基板と下地膜との間に形成する。その酸素防止膜の
選考理由としては、 (1)酸化物の生成自由エネルギーが低く、酸化物を形成
し易い。
As means for solving the above problems, a film for preventing oxygen from the substrate from affecting the recording film is formed between the substrate and the base film. The reasons for selecting the oxygen prevention film are (1) the free energy of formation of the oxide is low, and the oxide is easily formed.

【0009】(2)緻密な膜を形成する。(2) Form a dense film.

【0010】という点が挙げられる。以上より、窒化シ
リコン又は窒化チタニウム又は窒化アルミニウム等の窒
化物からなる膜を10nm〜200nm程度付ける。
The point is as follows. From the above, a film made of a nitride such as silicon nitride, titanium nitride, or aluminum nitride is applied to a thickness of about 10 nm to 200 nm.

【0011】[0011]

【作用】本発明により、酸化物を含有する表面を持つ基
板からの酸素は窒化膜で防ぐことが出来る。窒化シリコ
ン又は窒化チタニウム又は窒化アルミニウム等の窒化物
は、酸化物の生成自由エネルギーが低く酸化物を形成し
易い。よって、基板からの酸素は窒化膜で酸化物を作
り、記録膜への拡散を防止する。そのことにより、記録
膜の結晶性の低下を防ぎ、基板上に記録膜を付けた磁気
記録媒体において、高保磁力な磁気記録媒体を作製する
ことが出来る。また、基板上の表面処理も防止膜によ
り、その効果を失うことなことは無い。
According to the present invention, oxygen from the substrate having the surface containing oxide can be prevented by the nitride film. A nitride such as silicon nitride, titanium nitride, or aluminum nitride has a low free energy of formation of an oxide and easily forms an oxide. Therefore, oxygen from the substrate forms an oxide in the nitride film and prevents diffusion into the recording film. As a result, a decrease in crystallinity of the recording film can be prevented, and a magnetic recording medium having a high coercive force can be manufactured in the magnetic recording medium having the recording film on the substrate. Further, the surface treatment on the substrate does not lose its effect due to the prevention film.

【0012】[0012]

【実用例】本発明の実施例を図面を用いて示す。評価法
として、磁気記録媒体の磁気特性をVSMで測定し、膜
内成分をオージェ電子分光法により観測した。
[Practical Example] An embodiment of the present invention will be described with reference to the drawings. As an evaluation method, the magnetic characteristics of the magnetic recording medium were measured by VSM, and the components in the film were observed by Auger electron spectroscopy.

【0013】第1の実施例を示す。図1は、非磁性基板
1上に窒化シリコン又は窒化アルミニウム又は窒化チタ
ニウム2を成膜し、その膜上にコバルト又はコバルトを
主成分とした合金からなる磁気記録膜3を形成した磁気
記録媒体の断面図を示す。ここではガラス又はグレーズ
アルミナ又はチタニア等の非磁性基板1として用い、磁
気ヘッドが基板に粘着するのを防止する為、微細な凹凸
を付ける表面処理を施す。この基板上にインライン型成
膜装置を用い成膜を行い、磁気ディスクを作製した。ま
ず、基板上に本発明である基板からの酸素拡散防止の窒
化シリコン膜2をCVD法で膜厚約30nm成膜する。次
に、基板温度400℃にて、コバルト合金記録膜3を膜
厚約30nmスパッタ法で成膜する。
A first embodiment will be shown. FIG. 1 shows a magnetic recording medium in which silicon nitride, aluminum nitride, or titanium nitride 2 is formed on a non-magnetic substrate 1, and a magnetic recording film 3 made of cobalt or an alloy containing cobalt as a main component is formed on the film. A sectional view is shown. Here, it is used as a non-magnetic substrate 1 made of glass, glaze alumina, titania, or the like, and is subjected to surface treatment for making fine irregularities in order to prevent the magnetic head from sticking to the substrate. Film formation was carried out on this substrate using an in-line type film forming apparatus to manufacture a magnetic disk. First, a silicon nitride film 2 for preventing oxygen diffusion from the substrate according to the present invention is formed on the substrate by a CVD method to a film thickness of about 30 nm. Next, the cobalt alloy recording film 3 is formed at a substrate temperature of 400 ° C. by a sputtering method with a film thickness of about 30 nm.

【0014】[0014]

【表1】 [Table 1]

【0015】以上の様に成膜された磁気記録膜の保磁力
は、向上している。(表1を参照)また、ここで、オー
ジェ電子分光法で測定した結果を図3と図4に示す。図
3は、実施例1と比較するために、図2に示すように凹
凸をつける表面処理を施した基板上にコバルト・クロム
・タンタル合金磁性膜を膜厚30nm付けた磁気ディスク
を観察しており、図4は、実施例1にて作製した磁気デ
ィスクを観察した結果である。図5を見ると基板に含ま
れると思われる酸素が記録膜へと拡散している様子が見
られる。一方、図4の方は窒化膜への拡散が見られるが
記録膜までは拡散していないことが確認され、窒化膜の
効果があった。また、磁気記録媒体表面には微細な凹凸
が観測される。よって、表面に微細な凹凸を付ける磁気
記録媒体は、窒化膜を付けることで、基板上に施した表
面処理の効果を失うことなく、また、図3と図4との比
較から表面処理による凹凸での膜の不連続部分からの酸
素の拡散も押さえられていると考えられる。
The coercive force of the magnetic recording film formed as described above is improved. (See Table 1) The results measured by Auger electron spectroscopy are shown in FIGS. 3 and 4. For comparison with Example 1, FIG. 3 shows a magnetic disk in which a cobalt-chromium-tantalum alloy magnetic film having a thickness of 30 nm is formed on a substrate which has been subjected to surface treatment for making unevenness as shown in FIG. FIG. 4 is a result of observing the magnetic disk manufactured in Example 1. From FIG. 5, it can be seen that oxygen, which is considered to be contained in the substrate, is diffused into the recording film. On the other hand, in the case of FIG. 4, it was confirmed that diffusion to the nitride film was observed but not to the recording film, and the effect of the nitride film was obtained. Also, fine irregularities are observed on the surface of the magnetic recording medium. Therefore, in the magnetic recording medium having fine irregularities on the surface, by attaching the nitride film, the effect of the surface treatment applied on the substrate is not lost, and from the comparison between FIG. 3 and FIG. It is considered that the diffusion of oxygen from the discontinuous portion of the film at 4 is also suppressed.

【0016】第2の実施例を示す図5は、非磁性基板1
上に微細な凹凸を付けた窒化膜2次いでコバルト合金記
録膜3を形成した磁気記録媒体の断面図を示している。
ここでは、第1の実施例と同じ成膜装置を使用し、ま
ず、ガラス又はグレーズアルミナ又はチタニヤ等の表面
が平滑な非磁性基板上1に窒化シリコン膜2をCVD法
により200nm成膜する。窒化膜を形成した基板をテク
スチャー装置にかけ、同心円状の溝を作る。この際、窒
化膜の凹部が非磁性基板に達していないことを確認して
ある。次に、コバルト合金記録膜3を基板温度400℃
にて膜厚30nm成膜した。この様に作られた磁気ディス
クは、窒化膜無しより向上している。オージェ電子分光
の結果は、実施例1と同様な結果を得ている。
FIG. 5 showing a second embodiment is a non-magnetic substrate 1.
A cross-sectional view of a magnetic recording medium on which a nitride film 2 having fine irregularities and then a cobalt alloy recording film 3 are formed is shown.
Here, using the same film forming apparatus as in the first embodiment, first, a silicon nitride film 2 is formed to a thickness of 200 nm on a non-magnetic substrate 1 having a smooth surface, such as glass, glaze alumina, or titania, by a CVD method. The substrate on which the nitride film is formed is applied to a texture device to form concentric grooves. At this time, it was confirmed that the concave portion of the nitride film did not reach the nonmagnetic substrate. Next, the cobalt alloy recording film 3 is applied to the substrate temperature of 400 ° C.
A film thickness of 30 nm was formed at. The magnetic disk manufactured in this manner is superior to the one without the nitride film. The results of Auger electron spectroscopy are similar to those of Example 1.

【0017】第3の実施例を示す。ここで用いた磁気デ
ィスクの断面を図6に示し、非磁性基板1上に窒化膜2
次いで磁性膜3と非磁性膜4とを交互に付けた構造を表
している。具体的には、第1の実施例で使用したと同様
の微細な凹凸を付ける表面処理を施したガラス又はアル
ミナセラミック基板1に、CVD法により窒化シリコン
膜2を膜厚約30nm作成する。次に、基板温度450℃
にて、コバルト合金記録膜3膜厚10nmとクロム膜4膜
厚5nmを交互に3層付けた記録膜を順次スパッタ法で作
製する。この実施例では、実施例1より更に高い基板温
度にて成膜行っており、基板からの酸素の拡散量が増加
していると考えられるが実施例1と同じ窒化膜膜厚にお
いてもその効果が認められ、保磁力が向上している。ま
た、記録膜が多層膜となっているが窒化膜の結晶性への
影響は少なっかた。
A third embodiment will be shown. The cross section of the magnetic disk used here is shown in FIG. 6, and the nitride film 2 is formed on the non-magnetic substrate 1.
Next, the structure in which the magnetic films 3 and the non-magnetic films 4 are alternately attached is shown. Specifically, a silicon nitride film 2 having a thickness of about 30 nm is formed by a CVD method on a glass or alumina ceramic substrate 1 which has been surface-treated so as to have fine irregularities similar to those used in the first embodiment. Next, the substrate temperature is 450 ° C
Then, a recording film in which a cobalt alloy recording film having a film thickness of 3 nm and a chromium film having a film thickness of 5 nm are alternately laminated in three layers is sequentially formed by a sputtering method. In this example, the film formation is performed at a higher substrate temperature than that in Example 1, and it is considered that the diffusion amount of oxygen from the substrate is increased. Is recognized, and the coercive force is improved. Further, although the recording film is a multilayer film, the influence on the crystallinity of the nitride film was small.

【0018】以上の実施例より、保磁力は、窒化シリコ
ン膜を基板上に成膜した場合と窒化シリコン膜を成膜し
なかった場合とを比較すると、表1からも明らかなよう
に保磁力の向上が認められた。
From the above examples, the coercive force is as shown in Table 1 when comparing the case where the silicon nitride film is formed on the substrate and the case where the silicon nitride film is not formed. The improvement was recognized.

【0019】[0019]

【発明の効果】本発明により、窒化シリコン又は窒化ア
ルミニウム又は窒化チタニウム等の窒化物からなる膜を
基板上に形成することで、酸化物を含有する表面を持つ
基板からの酸素が、シリコン又はアルミニウム又はチタ
ンと酸化物を作り、下地膜又は記録膜への拡散を防ぐこ
とが出来る。よって、酸化物を含有する表面を持つ基板
を用いた磁気記録媒体において、より高い保磁力を得る
ことが出来る。
According to the present invention, by forming a film made of a nitride such as silicon nitride or aluminum nitride or titanium nitride on a substrate, oxygen from the substrate having a surface containing oxide can be converted into silicon or aluminum. Alternatively, by forming an oxide with titanium, it is possible to prevent diffusion into the base film or the recording film. Therefore, a higher coercive force can be obtained in a magnetic recording medium using a substrate having a surface containing an oxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1にて作成した磁気記録媒体の断
面図である。
FIG. 1 is a cross-sectional view of a magnetic recording medium created in Example 1 of the present invention.

【図2】窒化膜なしの磁気記録媒体の断面図である。FIG. 2 is a cross-sectional view of a magnetic recording medium without a nitride film.

【図3】図4に示す磁気記録媒体をオージェ電子分光法
の結果を表すグラフである。
3 is a graph showing the results of Auger electron spectroscopy of the magnetic recording medium shown in FIG.

【図4】図1に示す磁気記録媒体をオージェ電子分光法
の結果を表すグラフである。
FIG. 4 is a graph showing the results of Auger electron spectroscopy of the magnetic recording medium shown in FIG.

【図5】本発明実施例2にて作成した磁気記録媒体の断
面図である。
FIG. 5 is a sectional view of a magnetic recording medium prepared in Example 2 of the present invention.

【図6】本発明実施例3にて作成した磁気記録媒体の断
面図である。
FIG. 6 is a sectional view of a magnetic recording medium prepared in Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基板又はグレーズアルミナ又はチタニア基
板、 2…窒化シリコン膜又は窒化チタニウム膜又は窒化アル
ミニウム膜、 3…コバルト又はコバルトを主成分とした合金記録膜、 4…クロム又はクロムを主成分とする合金膜。
1 ... Glass substrate or glaze alumina or titania substrate, 2 ... Silicon nitride film or titanium nitride film or aluminum nitride film, 3 ... Cobalt or alloy recording film containing cobalt as a main component, 4 ... Chromium or alloy containing chromium as a main component film.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】酸化物を含有する表面を持つ基板上に窒化
シリコン又は窒化チタニウム又は窒化アルミニウムから
なる膜を形成し、その上にコバルト合金からなる磁性膜
を形成したことを特徴とする磁気記録媒体。
1. A magnetic recording method comprising: forming a film made of silicon nitride, titanium nitride, or aluminum nitride on a substrate having an oxide-containing surface, and forming a magnetic film made of a cobalt alloy on the film. Medium.
【請求項2】酸化物を含有する表面を持つ基板上に窒化
シリコン又は窒化チタニウム又は窒化アルミニウムから
なる膜を形成し、その上にコバルト合金からなる磁性膜
と非磁性膜を交互に形成したことを特徴とする磁気記録
媒体。
2. A film made of silicon nitride, titanium nitride, or aluminum nitride is formed on a substrate having a surface containing an oxide, and a magnetic film made of a cobalt alloy and a nonmagnetic film are alternately formed on the film. A magnetic recording medium characterized by:
【請求項3】非磁性膜を形成する材料としてクロム又は
クロムを主成分とした合金またはアルミ、銅、モリブデ
ン、タンタル又はそれらを主成分とした合金を用いたこ
とを特徴とする請求項2記載の磁気記録媒体。
3. The material for forming the non-magnetic film is chromium or an alloy containing chromium as a main component, or aluminum, copper, molybdenum, tantalum or an alloy containing them as a main component. Magnetic recording medium.
【請求項4】酸化物を含有する表面を持つ基板上に微細
な凹凸を付ける表面処理を施し、その上に,窒化シリコ
ン又は窒化チタニウム又は窒化アルミニウムからなる膜
を形成したことを特徴とする請求項1、2又は3記載の
磁気記録媒体。
4. A substrate having an oxide-containing surface is subjected to a surface treatment for forming fine irregularities, and a film made of silicon nitride, titanium nitride or aluminum nitride is formed thereon. Item 1. The magnetic recording medium according to item 1, 2 or 3.
【請求項5】酸化物を含有する表面を持つ基板上に窒化
シリコン又は窒化チタニウム又は窒化アルミニウムから
なる膜を形成し、その表面に微細な凹凸を付ける表面処
理を施したことを特徴とする請求項1ないし4のいずれ
か1項に記載の磁気記録媒体。
5. A film made of silicon nitride, titanium nitride, or aluminum nitride is formed on a substrate having a surface containing an oxide, and a surface treatment for making fine irregularities on the surface is performed. Item 5. The magnetic recording medium according to any one of Items 1 to 4.
【請求項6】請求項1ないし5のいずれか1項に記載の
磁気記録媒体を用いたことを特徴とする磁気ディスク装
置。
6. A magnetic disk drive using the magnetic recording medium according to claim 1.
JP30771293A 1993-12-08 1993-12-08 Magnetic recording medium Pending JPH07161026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30771293A JPH07161026A (en) 1993-12-08 1993-12-08 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30771293A JPH07161026A (en) 1993-12-08 1993-12-08 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH07161026A true JPH07161026A (en) 1995-06-23

Family

ID=17972335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30771293A Pending JPH07161026A (en) 1993-12-08 1993-12-08 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07161026A (en)

Similar Documents

Publication Publication Date Title
JP2834392B2 (en) Metal thin film type magnetic recording medium and method of manufacturing the same
US6692843B2 (en) Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage
EP0710949B1 (en) Magnetic recording medium and its manufacture
JP2002222518A (en) Magnetic recording medium, manufacturing method therefor and magnetic recording device
US7357998B2 (en) Disk substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording disk and manufacturing methods thereof
JPS63237210A (en) Magnetic recording medium
JPH09288818A (en) Magnetic recording medium
JPH07161026A (en) Magnetic recording medium
US20050042481A1 (en) Information recording medium with improved perpendicular magnetic anisotropy
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP4523705B2 (en) Magnetic recording medium, magnetic recording medium manufacturing method, and information reproducing apparatus
JP2721624B2 (en) Metal thin-film magnetic recording media
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP2557381B2 (en) Perpendicular magnetic recording media
JPH06187628A (en) Magnetic recording medium and magnetic memory device
JPS6364623A (en) Magnetic recording medium
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP3278959B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPS62291719A (en) Magnetic recording medium
JPH08273139A (en) Magnetic recording medium
JPH11232630A (en) Magnetic record medium
JP2001291220A (en) Magnetic recording medium and magnetic storage device
JP2003281711A (en) Magnetic recording medium and method for manufacturing the same
JPS6124011A (en) Vertical magentic recording medium