JPH0430171B2 - - Google Patents

Info

Publication number
JPH0430171B2
JPH0430171B2 JP56103065A JP10306581A JPH0430171B2 JP H0430171 B2 JPH0430171 B2 JP H0430171B2 JP 56103065 A JP56103065 A JP 56103065A JP 10306581 A JP10306581 A JP 10306581A JP H0430171 B2 JPH0430171 B2 JP H0430171B2
Authority
JP
Japan
Prior art keywords
film
magnetic
substrate
oxide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56103065A
Other languages
Japanese (ja)
Other versions
JPS584914A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56103065A priority Critical patent/JPS584914A/en
Publication of JPS584914A publication Critical patent/JPS584914A/en
Publication of JPH0430171B2 publication Critical patent/JPH0430171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気デイスク装置等において磁気記録
媒体として用いられる酸化物磁性薄膜形成に使用
するスパツタ・ターゲツトに関する。 磁気記録装置における記録密度の向上は斯界の
変らぬ趨勢であり、これを実現する為には磁気記
録媒体の薄層化、薄膜化が不可欠である。そこで
高性能磁気記録媒体として、薄膜化が容易な連続
薄膜媒体、特に酸化物磁性薄膜が注目を集めてい
る。その理由は、(1)残留磁束密度が小さい、(2)機
械的強度と化学的安定性に富み、金属薄膜に必要
とされる保護膜を必要とせず、その結果、(3)磁気
ヘツド−媒体間がより小さく出来、高密度と低価
格化に適しているという点にある。 酸化物磁性薄膜としては、その形成が容易であ
ることから酸化鉄薄膜が専ら用いられ、その製造
方法としては種々あるが、マグネタイト
(Fe3O4)をターゲツトとしてスパツタリングす
ることによりマグネタイを主成分とする強磁性酸
化鉄薄膜を直接基板上に形成する簡便で再現性の
よい方法が提案されている(特開昭51−8200号公
報参照)。この方法において磁気特性の制御のた
めコバルトを添加物として用いればスパツタされ
たマグネタイト膜の保磁力を任意に制御出来る。
形成された膜はその後磁気特性の向上及び膜の安
定化のため比較的高い温度でγ化処理(Fe3O4
らγ−Fe2O3にする処理)が施される。通常基板
としてはアルマイト被覆を施こしたアルミニウム
合金基板が使用されるが、この種の基板は高温に
さらされた場合、表面の平面度が損なわれたり被
覆されたアルマイト層に基体アルミニウム合金と
の熱膨張率の差からクラツクが発生するなどの問
題が生じる為、γ化処理温度は出来るだけ低い方
が好ましい。しかるに、上記方法で形成したマグ
ネタイト膜はγ化処理温度を基板に負担がかから
ない温度まで低くすることが難しく、特にコバル
トを添加したマグネタイト膜は一層γ化処理温度
が高くなる傾向がある。 かかる点を解決する方法として本発明者らは先
にマグネタイトをターゲツトとして中性ガスもし
くは中性ガスと酸化性ガスとの混合雰囲気中にお
いてスパツタリングすることにより基板上に直接
形成されるマグネタイトを主成分とする酸化物磁
性薄膜において、添加剤として銅を含有している
ことを特徴とし、磁気特性制御の必要上、場合に
より添加剤として更にコバルトも含有している酸
化物磁性薄膜を用いることを提案した。 本発明は上記発明において使用するに適した酸
化物磁性薄膜形成用スパツタ・ターゲツトを提供
するものである。 本発明にかかわる磁性酸化物薄膜形成用スパツ
タ・ターゲツトは例えば次のような方法によつて
製作することができる。所定重量比のFe3O4
CO2O3及びCuOの粉末を十分混合、粉砕し、均一
な粒子サイズとした後、バインダーを混ぜて所定
の形にプレス成型する。この成型体を不活性ガス
雰囲気中において制御された加熱、冷却過程と最
高1250〜1300℃数時間の熱処理を施こすことによ
つて割れのない堅牢なCo、Cu添加Fe3O4焼結体
が得られる。 以下実施例によつて本発明の意義を詳細に説明
する。 実施例 1 上記例示した製造法によつて金属鉄比1.0、
4.0、6.0重量%のCuを酸化物として含むFe3O4
結体を作製し、これらをターゲツトとしてアルゴ
ン圧力(PAr)8×10-2Torr、ターゲツト基板間
距離D=30mm、付着速度(S.R)250Å/minにお
いてR.Fスパツタリングを行ないアルマイト被覆
したAl合金基板上に1.5、4.0、6.0重量%のCuを
含むFe3O4膜を形成した。これらの膜を大気中、
1時間の酸化処理を行なつたところ、いずれの膜
も250〜275℃での酸化処理によりγ−Fe2O3膜に
変換されていることを確認した。これに対して比
較例としてCuを添加しない純Fe3O4焼結体、また
金属鉄比12重量%のCuを酸化物として含むター
ゲツトとして同じ条件でFe3O4膜を形成した。こ
のうちCuを添加しない純Fe3O4膜をγ−Fe2O3
とするために320℃以上の酸化処理を要して、基
板にクラツクが発生し作製マージンが低下し、少
なくとも0.5%重量のCu添加が好ましい。更にCu
添加γ−Fe2O3膜では純γ−Fe2O3膜に比してHc
減少があつたがこれはCu添加量の多いものほど
顕著であり、比較例として12重量%のCuを含む
γ−Fe2O3膜は50Oe以下となりまた飽和磁化
(Ms)及び角形比(S、S*)も低下し、Cuの添
加量としては10重量%程度までが好ましい。 実施例 2 同様の製造法によつて金属鉄比2.0〜3.0重量%
のCo、2.2〜4.4重量%のCuを酸化物として含む
Fe3O4焼結体を作製しこれをターゲツトとしてア
ルゴン雰囲気中PAr=2×10-3〜5×10-2Torr、
D=30mm、S.R=1200Å/minの条件でマグネト
ロンスパツタ法により実施例1と同じくアルマイ
ト被覆したアルミ合金基板上に1500〜1700Åの厚
さに種々組成のCo、Cu含有Fe3O4膜を形成した。
これらの膜は250゜〜300℃での空気中酸化処理に
よつて容易にCo、Cu含有γFe2O3膜に変換でき
た。更にそれらの磁気特性はBs3000G、S0.7、S
(抗磁力矩形性)0.8、Hc500−800Oeであり密度
記録媒体に適わしいものであつた(表参照)。こ
のようにCo、Cuを同時に添加することはHc増加
とγFe2O3化促進を行える利点があつた。 実施例 3 先と同様の製法によつて4.0〜5.0重量%のCo、
5〜7.5重量%のCuを酸化物として含むFe3O4
結体を作製し、それらをターゲツトとしてPAr
6×10-4〜8×10-3Torr、D=130mm、S.R=100
〜1000Å/minの条件で先と同じ基板上にCo、
Cu合金Fe3O4膜を形成した。これらの膜を275−
300℃において空気中酸化処理することによつて
Hc900−1300Oeの高抗磁力媒体を得た(表参
照)。 比較例として6重量%のCo、7.5重量%のCuを
添加したγ−Fe2O3膜の坑磁力は1300〜1500Oeと
なり、通常のフエライト磁気ヘツドで十分記録出
来る限界を越える坑磁力となつた。
The present invention relates to a sputter target used for forming an oxide magnetic thin film used as a magnetic recording medium in a magnetic disk device or the like. Improving the recording density in magnetic recording devices is a constant trend in this industry, and in order to achieve this, it is essential to make the magnetic recording medium thinner and thinner. Therefore, continuous thin film media, especially oxide magnetic thin films, which can be easily thinned, are attracting attention as high-performance magnetic recording media. The reasons for this are: (1) the residual magnetic flux density is low, (2) it has high mechanical strength and chemical stability, and does not require the protective film required for thin metal films; The advantage is that the space between the media can be made smaller, making it suitable for high density and low cost. Iron oxide thin films are mainly used as oxide magnetic thin films because they are easy to form, and there are various methods for manufacturing them, but by sputtering using magnetite (Fe 3 O 4 ) as a target, magnetite can be used as the main component. A simple and highly reproducible method for forming a ferromagnetic iron oxide thin film directly on a substrate has been proposed (see Japanese Patent Application Laid-Open No. 8200/1983). In this method, if cobalt is used as an additive to control the magnetic properties, the coercive force of the sputtered magnetite film can be controlled arbitrarily.
The formed film is then subjected to gamma treatment (processing to convert Fe 3 O 4 to γ-Fe 2 O 3 ) at a relatively high temperature in order to improve magnetic properties and stabilize the film. Usually, an aluminum alloy substrate coated with alumite is used as a substrate, but when this type of substrate is exposed to high temperatures, the flatness of the surface may be lost or the coated alumite layer may become stained with the base aluminum alloy. Since problems such as cracks occur due to differences in thermal expansion coefficients, it is preferable that the gamma treatment temperature be as low as possible. However, it is difficult to lower the gamma treatment temperature of the magnetite film formed by the above method to a temperature that does not impose a burden on the substrate, and in particular, the gamma treatment temperature of a magnetite film doped with cobalt tends to be even higher. As a method to solve this problem, the present inventors first used magnetite as a main component, which is formed directly on a substrate by sputtering in a neutral gas or a mixed atmosphere of a neutral gas and an oxidizing gas, using magnetite as a target. We propose the use of an oxide magnetic thin film that is characterized by containing copper as an additive, and that may also contain cobalt as an additive in order to control magnetic properties. did. The present invention provides a sputter target for forming an oxide magnetic thin film suitable for use in the above invention. The sputter target for forming a magnetic oxide thin film according to the present invention can be manufactured, for example, by the following method. Fe 3 O 4 at a given weight ratio,
After thoroughly mixing and pulverizing the CO 2 O 3 and CuO powders to obtain a uniform particle size, a binder is mixed and press-molded into a predetermined shape. By subjecting this molded body to a controlled heating and cooling process in an inert gas atmosphere and heat treatment at a maximum temperature of 1,250 to 1,300°C for several hours, a robust Co and Cu-added Fe 3 O 4 sintered body with no cracks is created. is obtained. The significance of the present invention will be explained in detail with reference to Examples below. Example 1 The metal iron ratio was 1.0 by the manufacturing method exemplified above.
Fe 3 O 4 sintered bodies containing 4.0% and 6.0% by weight of Cu as oxide were prepared, and these were used as targets at an argon pressure (P Ar ) of 8×10 -2 Torr, a distance between the target and the substrate D = 30 mm, and a deposition rate. (SR) RF sputtering was performed at 250 Å/min to form Fe 3 O 4 films containing 1.5, 4.0, and 6.0 wt% Cu on an alumite-coated Al alloy substrate. These films are exposed to the atmosphere.
After performing the oxidation treatment for 1 hour, it was confirmed that all the films were converted into γ-Fe 2 O 3 films by the oxidation treatment at 250 to 275°C. On the other hand, as a comparative example, an Fe 3 O 4 film was formed under the same conditions using a pure Fe 3 O 4 sintered body to which no Cu was added, and a target containing 12% by weight of Cu as an oxide relative to metallic iron. Of these, in order to convert the pure Fe 3 O 4 film without adding Cu into a γ-Fe 2 O 3 film, oxidation treatment at 320°C or higher is required, which causes cracks in the substrate and reduces the fabrication margin by at least 0.5%. Cu addition by weight is preferred. Furthermore, Cu
In the doped γ-Fe 2 O 3 film, Hc is higher than in the pure γ-Fe 2 O 3 film.
Although there was a decrease, this was more noticeable as the amount of Cu added was larger, and as a comparative example, a γ-Fe 2 O 3 film containing 12 wt% Cu was less than 50 Oe, and the saturation magnetization (Ms) and squareness ratio (S , S * ) also decreases, and the amount of Cu added is preferably up to about 10% by weight. Example 2 Metallic iron ratio 2.0 to 3.0% by weight by the same manufacturing method
of Co, containing 2.2-4.4 wt% Cu as oxide
A Fe 3 O 4 sintered body was prepared and used as a target in an argon atmosphere at P Ar =2×10 -3 to 5×10 -2 Torr,
Co and Cu-containing Fe 3 O 4 films of various compositions were deposited to a thickness of 1500 to 1700 Å on an alumite-coated aluminum alloy substrate as in Example 1 using the magnetron sputtering method under the conditions of D = 30 mm and SR = 1200 Å/min. Formed.
These films could be easily converted into Co and Cu-containing γFe 2 O 3 films by oxidation treatment in air at 250° to 300°C. Furthermore, their magnetic properties are Bs3000G, S0.7, S
(Coercive rectangularity) 0.8, Hc 500-800 Oe, suitable for density recording media (see table). Adding Co and Cu simultaneously in this way had the advantage of increasing Hc and promoting γFe 2 O 3 formation. Example 3 4.0-5.0% by weight of Co by the same manufacturing method as above,
Fe 3 O 4 sintered bodies containing 5 to 7.5% by weight of Cu as oxide were prepared, and P Ar =
6×10 -4 ~8×10 -3 Torr, D=130mm, SR=100
Co was deposited on the same substrate under ~1000Å/min
A Cu alloy Fe 3 O 4 film was formed. These membranes are 275−
By oxidizing in air at 300℃
A high coercive force medium of Hc900−1300Oe was obtained (see table). As a comparative example, the coercive force of a γ-Fe 2 O 3 film containing 6 wt% Co and 7.5 wt% Cu was 1300 to 1500 Oe, which exceeded the limit of sufficient recording with a normal ferrite magnetic head. .

【表】 実施例2に示したターゲツト.スパツタ条件に
よつて外径210mmのアルマイト被覆したアルミ合
金デイスク基板にCo、Cu含有Fe3O4膜を形成し、
これを酸化してCo、Cu含有γ−Fe2O3膜磁気デ
イスクを試作した。このデイスクをデイスクR/
W試験機に装着しトラツク幅20μm、記録密度
24000FRP1における再生出力を観測したところ、
デイスク全面に亘り円周方向に均一な再生出力が
得られることを確認した。 以上のように本発明にかかる磁性酸化物薄形成
用スパツタ・ターゲツトを用いれば磁気デイスク
媒体等に用いる酸化物磁性薄膜であつて、従来の
ものよりγ−Fe2O3化処理温度が低く基板への負
担を軽減し、且つ基板全面に亘つて均一安定に効
率よく広範囲の磁気特性を有する酸化物磁性薄膜
を形成することが可能になる。
[Table] Targets shown in Example 2. A Co and Cu-containing Fe 3 O 4 film was formed on an alumite-coated aluminum alloy disk substrate with an outer diameter of 210 mm using sputtering conditions.
By oxidizing this, a Co and Cu-containing γ-Fe 2 O 3 film magnetic disk was fabricated. This disk is disk R/
Installed on W test machine, track width 20μm, recording density
When I observed the playback output on 24000FRP1,
It was confirmed that uniform reproduction output could be obtained in the circumferential direction over the entire surface of the disk. As described above, if the sputtering target for forming a magnetic oxide thin film according to the present invention is used, the oxide magnetic thin film used for magnetic disk media etc. can be formed at a lower γ-Fe 2 O 3 processing temperature than conventional ones. It becomes possible to uniformly, stably, and efficiently form an oxide magnetic thin film having a wide range of magnetic properties over the entire surface of the substrate while reducing the burden on the substrate.

Claims (1)

【特許請求の範囲】 1 金属鉄に対して1.0〜7.5重量パーセントのCu
を酸化物として含むFe3O4焼結体からなる磁性酸
化物薄膜形成用スパツタターゲツト。 2 金属鉄に対して1.0〜7.5重量パーセントのCu
と2.0〜5.0重量パーセントのCoをそれぞれを酸化
物として含むFe3O4焼結体からなる磁性酸化物薄
膜形成用スパツタターゲツト。
[Claims] 1. 1.0 to 7.5 weight percent of Cu based on metal iron
A sputter target for forming a magnetic oxide thin film made of a Fe 3 O 4 sintered body containing Fe 3 O 4 as an oxide. 2 1.0 to 7.5 weight percent Cu relative to metallic iron
A sputter target for forming a magnetic oxide thin film consisting of a Fe 3 O 4 sintered body containing 2.0 to 5.0 weight percent of Co as oxides.
JP56103065A 1981-07-01 1981-07-01 Sputter target for forming magnetic thin film with oxide Granted JPS584914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56103065A JPS584914A (en) 1981-07-01 1981-07-01 Sputter target for forming magnetic thin film with oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56103065A JPS584914A (en) 1981-07-01 1981-07-01 Sputter target for forming magnetic thin film with oxide

Publications (2)

Publication Number Publication Date
JPS584914A JPS584914A (en) 1983-01-12
JPH0430171B2 true JPH0430171B2 (en) 1992-05-21

Family

ID=14344261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56103065A Granted JPS584914A (en) 1981-07-01 1981-07-01 Sputter target for forming magnetic thin film with oxide

Country Status (1)

Country Link
JP (1) JPS584914A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143161U (en) * 1981-03-03 1982-09-08

Also Published As

Publication number Publication date
JPS584914A (en) 1983-01-12

Similar Documents

Publication Publication Date Title
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
JPH0430171B2 (en)
JPH06168822A (en) Vertical magnetized film, multilayer film for vertical magnetizing and manufacture of vertical magnetizing film
US4641213A (en) Magnetic head
JPS58100412A (en) Manufacture of soft magnetic material
JPS6313256B2 (en)
JP2570337B2 (en) Soft magnetic laminated film
JPS62117143A (en) Production of magnetic recording medium
JP2546275B2 (en) Soft magnetic thin film
JP3181723B2 (en) Soft magnetic alloy film
JPS6057211B2 (en) Manufacturing method of magnetic recording media
JP2522284B2 (en) Soft magnetic thin film
JPS60109215A (en) Spatter target for forming iron oxide magnetic thin film
JPH0365650B2 (en)
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JPH0540916A (en) Magnetic head
JPH03173915A (en) Production of magnetic recording medium
JPS63146417A (en) Soft magnetic thin film
JPH0365649B2 (en)
JPS6032261B2 (en) Method for manufacturing magnetic recording media
JPH0552567B2 (en)
JPS6126131B2 (en)
JPS6249724B2 (en)
JPH08241813A (en) Soft magnetic thin film material for magnetic head
JPS61224125A (en) Magnetic recording medium