JPH0552567B2 - - Google Patents

Info

Publication number
JPH0552567B2
JPH0552567B2 JP12611784A JP12611784A JPH0552567B2 JP H0552567 B2 JPH0552567 B2 JP H0552567B2 JP 12611784 A JP12611784 A JP 12611784A JP 12611784 A JP12611784 A JP 12611784A JP H0552567 B2 JPH0552567 B2 JP H0552567B2
Authority
JP
Japan
Prior art keywords
iron oxide
thin film
magnetite
mainly composed
containing additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12611784A
Other languages
Japanese (ja)
Other versions
JPS615438A (en
Inventor
Masamichi Tagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12611784A priority Critical patent/JPS615438A/en
Publication of JPS615438A publication Critical patent/JPS615438A/en
Publication of JPH0552567B2 publication Critical patent/JPH0552567B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は磁気デイスク装置等において記録媒体
として用いられる酸化鉄磁性薄膜の製造方法に関
する。 (従来技術とその問題点) 磁気記録装置における記録密度の向上は斯界の
変わらぬ趨勢であり、これを実現する為には磁気
記録体の薄層化、薄膜化が不可欠である。 そこで、高性能磁気記録体として薄膜化が容易
な連続薄膜媒体、特に酸化鉄磁性薄膜が注目され
ている。その理由は、(1)残留磁束密度が小さく、
媒体ノイズが小さい、(2)機械的強度と化学的安定
性に富み、金属薄膜に必要とされる保護膜を必要
とせず、その結果、(3)磁気ヘツド−媒体間がより
小さく出来高密度と低価格化に適しているという
点にある。 これらの酸化鉄磁性薄膜の形成法として種々提
案されているが、特開昭58−4914に見られるよう
にFe3O4焼結体をターゲツトとし、スパツタ法に
より直接Fe3O4を主成分とする酸化鉄磁性薄膜を
形成し、これを熱酸化しγ−Fe2O3を主成分とす
る酸化鉄磁性薄膜とする方法が簡便で量産性に適
している。ここに用いられる基板としては一般に
Al合金上に陽極酸化膜を被覆した基板が用いら
れている。しかし磁性膜のγ−Fe2O3化工程にお
ける熱酸化処理温度によつてはAl合金と酸化被
覆層との熱膨張の差によつてクラツクの発生や、
熱処理による基板の変化による影響で記録媒体の
S/N低下などの問題が生じるためγ−Fe2O3
処理温度は出来るだけ低い方が望ましい。 (発明の目的) 本発明はこのような従来の欠点を除去せしめて
熱酸化処理温度を低減させ高性能な磁気記録体を
提供することにある。 (発明の構成) マグネタイトを主成分とするフエライトもしく
は添加物を含むマグネタイトをターゲツトとし、
スパツタリングにより基板上にマグネタイトもし
くは添加物を含むマグネタイトを主成分とする酸
化鉄連続薄膜を形成した後、熱酸化しγ−Fe2O3
もしくはγ−Fe2O3とFe3O4を主成分とする、ま
たはこれらに添加物を含む酸化鉄連続薄膜を形成
する製造方法において酸化鉄連続薄膜の形成時の
スパツタ圧力を高スパツタ圧力から低スパツタ圧
力へ段階的にもしくは連続的に変えることを特徴
とする磁気記憶体の製造方法が得られる。 (構成の詳細な説明) 本発明は、上述の方法をとることにより従来技
術の問題点を解決した。すなわち、酸化鉄連続薄
膜の形成時のスパツタ圧力を上げる程酸化度の高
い膜が得られ、これを熱酸化すると酸化度の高い
膜程低い温度でγ−Fe2O3が得られる。したがつ
て本方法のように膜形成時に酸化度の高い組成の
膜を酸化が遅い下層へ設けることによつて膜全体
の酸化を容易に促進させることが出来る。 (実施例) 以下本発明の実施例について説明する。 まず、酸化鉄連続薄膜の形成時のスパツタ圧
PArを高スパツタ圧力から1×10-2Torr,4×
10-3Torr,2×10-3Torrと低スパツタ圧力へ3
段階圧力を変化させて形成した試料1、1×10-2
Torrから連続的に2×10-3Torrへ圧力を変化さ
せて形成した試料2、次に比較例として圧力2×
10-3Torr一定で形成した場合の試料3を作製し
た。スパツタターゲツトには2wt%Co,3wt%Cu
を含有したマグネタイトを用い、酸化鉄連続薄膜
の厚さ0.18μmとした。 試料1〜3を大気中で260℃(試料3について
は260℃と300℃以上で)1時間熱酸化した。表に
熱酸化後のそれぞれの薄膜の電気抵抗を示した。
(Industrial Application Field) The present invention relates to a method for manufacturing an iron oxide magnetic thin film used as a recording medium in a magnetic disk device or the like. (Prior art and its problems) Improvement in recording density in magnetic recording devices is a constant trend in the field, and in order to achieve this, it is essential to make magnetic recording bodies thinner and thinner. Therefore, continuous thin film media that can be easily made thin, particularly iron oxide magnetic thin films, are attracting attention as high-performance magnetic recording bodies. The reason is (1) the residual magnetic flux density is small;
(2) It has high mechanical strength and chemical stability, and does not require the protective film required for thin metal films.As a result, (3) the space between the magnetic head and the medium is smaller, resulting in higher density. The reason is that it is suitable for lowering prices. Various methods have been proposed for forming these iron oxide magnetic thin films, but as seen in JP-A-58-4914, Fe 3 O 4 sintered bodies are targeted and Fe 3 O 4 is directly formed as the main component by sputtering. A method of forming an iron oxide magnetic thin film containing γ-Fe 2 O 3 as a main component and thermally oxidizing it to form an iron oxide magnetic thin film containing γ-Fe 2 O 3 as a main component is simple and suitable for mass production. The substrate used here is generally
A substrate with an anodic oxide film coated on an Al alloy is used. However, depending on the thermal oxidation treatment temperature in the γ-Fe 2 O 3 conversion process of the magnetic film, cracks may occur due to the difference in thermal expansion between the Al alloy and the oxide coating layer.
It is desirable that the temperature of the γ-Fe 2 O 3 conversion treatment be as low as possible because problems such as a decrease in S/N of the recording medium occur due to changes in the substrate due to heat treatment. (Object of the Invention) The object of the present invention is to eliminate such conventional drawbacks, reduce the thermal oxidation treatment temperature, and provide a high-performance magnetic recording medium. (Structure of the invention) Targeting ferrite mainly composed of magnetite or magnetite containing additives,
After forming a continuous thin film of iron oxide mainly composed of magnetite or magnetite containing additives on a substrate by sputtering, it is thermally oxidized to form γ-Fe 2 O 3.
Or, in the production method of forming a continuous iron oxide thin film mainly composed of γ-Fe 2 O 3 and Fe 3 O 4 or containing additives, the sputtering pressure during formation of the iron oxide continuous thin film is changed from high sputtering pressure to high sputtering pressure. A method for manufacturing a magnetic memory body is obtained, which is characterized in that the sputtering pressure is changed stepwise or continuously to a low sputtering pressure. (Detailed Description of Configuration) The present invention solves the problems of the prior art by taking the above-described method. That is, as the sputtering pressure during formation of a continuous iron oxide thin film is increased, a film with a higher degree of oxidation can be obtained, and when this is thermally oxidized, γ-Fe 2 O 3 can be obtained at a lower temperature as the film has a higher degree of oxidation. Therefore, by providing a film having a composition with a high degree of oxidation on a lower layer where oxidation is slow during film formation as in the present method, oxidation of the entire film can be easily promoted. (Example) Examples of the present invention will be described below. First, the sputtering pressure during the formation of a continuous iron oxide thin film
P Ar from high sputtering pressure to 1×10 -2 Torr, 4×
10 -3 Torr, 2×10 -3 Torr and low sputter pressure3
Sample 1, 1×10 -2 formed by changing the step pressure
Sample 2 was formed by continuously changing the pressure from Torr to 2 × 10 -3 Torr, and then as a comparative example, the pressure was changed to 2 × 10 -3 Torr.
Sample 3 was prepared at a constant 10 -3 Torr. 2wt%Co, 3wt%Cu for sputter target
The thickness of the continuous iron oxide thin film was 0.18 μm using magnetite containing . Samples 1 to 3 were thermally oxidized in the atmosphere at 260°C (at 260°C and 300°C or higher for sample 3) for 1 hour. The table shows the electrical resistance of each thin film after thermal oxidation.

【表】 (発明の効果) 以上のように本発明によれば従来より大幅に熱
酸化温度を低減でき、クラツク発生やS/N低下
を防止できた。
[Table] (Effects of the Invention) As described above, according to the present invention, the thermal oxidation temperature can be significantly lowered than in the past, and crack generation and S/N reduction can be prevented.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネタイトを主成分とするフエライトもし
くは添加物を含むマグネタイトをターゲツトと
し、アルゴンガスによるスパツタリングにより基
板上にマグネタイトもしくは添加物を含むマグネ
タイトを主成分とする酸化鉄連続薄膜を形成した
後、熱酸化しγ−Fe2O3もしくはγ−Fe2O3とFe3
O4を主成分とするまたはこれらに添加物を含む
酸化鉄連続薄膜を形成する製造方法において、酸
化鉄連続薄膜の形成時のスパツタ圧力を高圧力か
ら低圧力へ段階的にもしくは連続的に変えること
を特徴とする磁気記憶体の製造方法。
1 Targeting ferrite mainly composed of magnetite or magnetite containing additives, a continuous thin film of iron oxide mainly composed of magnetite or magnetite containing additives is formed on the substrate by sputtering with argon gas, and then thermally oxidized. γ-Fe 2 O 3 or γ-Fe 2 O 3 and Fe 3
In a manufacturing method for forming a continuous thin film of iron oxide mainly composed of O 4 or containing additives, the sputtering pressure during formation of the continuous thin film of iron oxide is changed stepwise or continuously from high pressure to low pressure. A method for manufacturing a magnetic memory body, characterized in that:
JP12611784A 1984-06-19 1984-06-19 Production of magnetic storage medium Granted JPS615438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12611784A JPS615438A (en) 1984-06-19 1984-06-19 Production of magnetic storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12611784A JPS615438A (en) 1984-06-19 1984-06-19 Production of magnetic storage medium

Publications (2)

Publication Number Publication Date
JPS615438A JPS615438A (en) 1986-01-11
JPH0552567B2 true JPH0552567B2 (en) 1993-08-05

Family

ID=14927057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12611784A Granted JPS615438A (en) 1984-06-19 1984-06-19 Production of magnetic storage medium

Country Status (1)

Country Link
JP (1) JPS615438A (en)

Also Published As

Publication number Publication date
JPS615438A (en) 1986-01-11

Similar Documents

Publication Publication Date Title
JPS62128015A (en) Magneto-resistance effect type magnetic head
JPH0552567B2 (en)
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPS61195964A (en) Rust preventing method of permanent magnet alloy
JPS62117143A (en) Production of magnetic recording medium
JPH0430171B2 (en)
JPS6313256B2 (en)
JPS59110796A (en) Manufacture of magnetic disk substrate
JPH0628656A (en) Magnetic disk medium and its production
JPS61216125A (en) Production of magnetic recording medium
JPH0744107B2 (en) Soft magnetic thin film
JPS5952810A (en) Manufacture of iron-oxide magnetic thin film
JPS6057211B2 (en) Manufacturing method of magnetic recording media
JPS63104214A (en) Magnetic memory body and its production
JPH0261030A (en) Magnetic material and magnetic head
JPH07282410A (en) Structure of magnetic head and magnetic recorder using the same
JPH079864B2 (en) Method for producing Co-based amorphous magnetic film
JPH01130319A (en) Magnetic recording medium and its production
JPS6116002A (en) Magnetic head
JPH05334625A (en) Production of protective film and insulating film of thin film device and thin film magnetic head
JPS61224139A (en) Production of magnetic recording medium
JPS6120208A (en) Magnetic head
JPS61188734A (en) Magnetic disk
JPH0528483A (en) Production of metallic thin film tape magnetic recording medium
JPS5939014A (en) Method for manufacturing magnetic recording body with flexibility