JPS6032261B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS6032261B2
JPS6032261B2 JP14688176A JP14688176A JPS6032261B2 JP S6032261 B2 JPS6032261 B2 JP S6032261B2 JP 14688176 A JP14688176 A JP 14688176A JP 14688176 A JP14688176 A JP 14688176A JP S6032261 B2 JPS6032261 B2 JP S6032261B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic
magnetic recording
recording media
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14688176A
Other languages
Japanese (ja)
Other versions
JPS5370804A (en
Inventor
宏一 牧野
正喜 篠原
若竹 松田
誠示 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujitsu Ltd
Priority to JP14688176A priority Critical patent/JPS6032261B2/en
Publication of JPS5370804A publication Critical patent/JPS5370804A/en
Publication of JPS6032261B2 publication Critical patent/JPS6032261B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は主として磁気ディスクに用いる磁気記録媒体の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a method of manufacturing a magnetic recording medium used for a magnetic disk.

このような磁気記録媒体はAI基板上に薄い磁性膜を施
して構成され、この薄い磁性膜を形成するため従来一般
に粉末状のフェライトをスピンコートする塗膜法やメッ
キ法が用いられている。
Such magnetic recording media are constructed by depositing a thin magnetic film on an AI substrate, and in order to form this thin magnetic film, a coating method in which powdered ferrite is spin-coated or a plating method is conventionally used.

ところで記録媒体の記録密度を向上するには、情報を記
録するトラック相互の干渉を弱くすべく薄膜化し、コン
タクトスタート、ストップ方式の採用に伴って記録媒体
がスタートとストップ過程でヘッドと接触摩擦を生じる
点に鑑み所定の機械的強度を有し、更に磁気特性を向上
すること等が必要である。しかるに前述の従釆一般に行
われている塗膜法では薄膜化が困難であり、メッキ法で
は耐蝕性や耐摩性に欠け保護膜が必要になる等の問題が
ある。そこで近年か)る高密度磁気記録媒体の要求を満
たすべく、基板上に反応スパッタ法或いは気相成長法等
により鉄を含む非磁性酸化物のQ−Fe203薄膜を形
成し、これを還元処理して磁性産化物のFの04薄膜に
するという製造方法が提案されている。
By the way, in order to improve the recording density of a recording medium, the film must be made thinner to reduce the interference between the tracks on which information is recorded, and with the adoption of the contact start/stop method, the recording medium will reduce contact friction with the head during the start and stop process. In view of this, it is necessary to have a predetermined mechanical strength and further improve magnetic properties. However, with the conventional coating method described above, it is difficult to form a thin film, and with the plating method, there are problems such as lack of corrosion resistance and abrasion resistance and the need for a protective film. Therefore, in order to meet the recent demands for high-density magnetic recording media, a thin film of Q-Fe203, a non-magnetic oxide containing iron, is formed on a substrate by reactive sputtering or vapor phase growth, and this is reduced. A manufacturing method has been proposed in which a magnetic product F04 thin film is formed.

しかしこの方法により現在行われているものは、還元処
理時の温度が350ooという高温でしかもその還元マ
ージンが小さく、磁気特性の保磁力(Hc)及び角型比
(Br/段)が小さいという欠点がある。本発明はこの
ような欠点を解消すべ〈提案されたもので、反応スパッ
タ法等による非磁性酸化物のQ−F財03薄膜を処理し
て磁性酸化物の薄膜を形成する場合において、還元処理
温度範囲を広くし磁気特性の保磁力や角型比の高い製造
方法を提供することにある。
However, the current method using this method has the drawbacks that the temperature during the reduction treatment is as high as 350 oo, the reduction margin is small, and the coercive force (Hc) and squareness ratio (Br/stage) of the magnetic properties are small. There is. The present invention has been proposed to solve these drawbacks, and when forming a thin film of magnetic oxide by processing a Q-F Goods 03 thin film of non-magnetic oxide by reactive sputtering etc., reduction treatment is required. It is an object of the present invention to provide a manufacturing method that widens the temperature range and has high magnetic properties such as coercive force and squareness ratio.

このため本発明によると、Q−Fe203にCr, C
u,C。を所定量添加して、200℃ないし35000
に越える広い温度範囲での還元処理を可能にすると共に
高保磁力を有するFe304薄膜を形成する。またこう
して形成されるFe304を所定の温度範囲で酸化処理
して、角型性及び下地との密着性を改善したッ−F財0
3薄膜を形成するものである。次いで本発明の製造方法
について詳細に説明すると、まずAI基板上にCr,C
u,C。
Therefore, according to the present invention, Q-Fe203 contains Cr, C
u, C. Add a predetermined amount of
This method enables reduction treatment in a wide temperature range exceeding 100% and forms an Fe304 thin film having a high coercive force. In addition, the Fe304 thus formed was oxidized at a predetermined temperature range to improve its squareness and adhesion to the base.
3 to form a thin film. Next, the manufacturing method of the present invention will be explained in detail. First, Cr, C
u,C.

の添加元素が金属イオン濃度で所定量含まれる膜厚lA
m以下のQ−F財03薄膜を反応スパッタして形成し、
次いでこれを比の還元雰囲気中で、所定の温度範囲にて
還元処理することによりFe304薄膜を形成するもの
である。するとCuの添加により還元温度が下がって還
元マージンが大きくなり、Crの添加により還元マージ
ンが更に広がり、C。の添加により保磁力が高くなる。
これについて第1図及び第2図の特性曲線により詳細に
説明する。第1図の特性曲線は前述の還元マージンにつ
いて示したもので電気抵抗約70ないし60000の範
囲がF錨04の領域であり、破線の無添加のものは還元
温度が300oo前後の非常に狭い範囲の値でしかFe
3Qになり得ないことがわかる。これに対し一点鎖線の
Cuのみが添加するものは、Fe304になり得る還元
温度が200qoから300o0を少し越えた温度範囲
に迄広がり、更にCuとCrを添加したものは実線で示
されるように還元温度が更に350qoを越えた値に広
がる。このような特性はCuの場合金属イオン濃度で1
5%迄、Crの場合には同じように金属イオン濃度で1
0%迄可能である。また第2図に特性曲線は保磁力につ
いて示したもので、この線図からCoの添加量が増加す
るのに従っては)、比例的に保磁力も増大し、これから
最適な保磁力を任意に設定することができるが、実際に
は金属イオン濃度10%以下で充分である。なお、この
C。の存在は還元性にほとんど影響しないので、Fの0
4の形成において別個に取扱うことができて非常に都合
が良い。またこうして形成されたF鰭04薄膜を、更に
150qoないし450『0の温度範囲の空気または酸
化雰囲気中で熱処理することによりy−Fe2Qの薄膜
を形成するものである。
Film thickness lA containing a specified amount of additive elements at metal ion concentration
A Q-F Goods 03 thin film of less than m is formed by reactive sputtering,
This is then subjected to reduction treatment in a specific reducing atmosphere at a predetermined temperature range to form an Fe304 thin film. Then, the addition of Cu lowers the reduction temperature and increases the reduction margin, and the addition of Cr further widens the reduction margin, resulting in C. The coercive force increases by adding .
This will be explained in detail with reference to the characteristic curves shown in FIGS. 1 and 2. The characteristic curve in Figure 1 shows the above-mentioned reduction margin, and the electrical resistance range of about 70 to 60,000 is the region of F anchor 04, and the broken line with no additives has a reduction temperature in a very narrow range of around 300oo. Fe only at the value of
I can see that it can't happen in the 3rd quarter. On the other hand, when only Cu is added (dotted chain line), the reduction temperature at which Fe304 can be formed extends from 200qo to slightly over 300o0, and when Cu and Cr are added, the reduction temperature is as shown by the solid line. The temperature further increases to values exceeding 350 qo. In the case of Cu, this characteristic is 1 at the metal ion concentration.
Up to 5%, in the case of Cr, the metal ion concentration is 1
Possible up to 0%. In addition, the characteristic curve in Figure 2 shows the coercive force, and from this diagram it can be seen that as the amount of Co added increases, the coercive force increases proportionally, and from this point on, the optimal coercive force can be set arbitrarily. However, in reality, a metal ion concentration of 10% or less is sufficient. Furthermore, this C. Since the presence of F has almost no effect on reducibility, the 0 of F
It is very convenient to be able to handle them separately in the formation of 4. Further, the thus formed F-fin 04 thin film is further heat-treated in air or an oxidizing atmosphere in a temperature range of 150 qo to 450 qo to form a y-Fe2Q thin film.

これによるy−Fe203もFの04と同じように磁性
酸化物で磁気記録媒体を構成することができ、この酸化
処理過程でCrにより角型比が非常に向上し、更に下地
との密着性も改善される。続いて本発明の製造方法の−
実施例について説明すると、3%Cr,2%Cu,2%
C。
Due to this, y-Fe203 can be used to construct magnetic recording media with magnetic oxides, just like F04, and in this oxidation treatment process, the squareness ratio is greatly improved by Cr, and the adhesion with the base is also improved. Improved. Next, the manufacturing method of the present invention -
To explain an example, 3% Cr, 2% Cu, 2%
C.

を含むF9ターゲットを用い50%02−50%Ar混
合ガス中で反応スパッタして、アルマイト処理を施した
AI基板上にQ−F既03薄膜を膜厚1仏肌以下で形成
し、これを比中で250℃、1時間還元処理してF凶0
4の薄膜を形成する。その後更にこのFe304を空気
中30ぴ0で熱処理してy−F班03の薄膜を形成する
ものである。この結果保磁力700Q、角型比0.8の
磁気特性が得られた。以上説明したように本発明の製造
方法によると、非磁性酸化膜を温度範囲の広い雰囲気中
で還元することができて、薄い磁性酸化膜を容易に得る
ことが可能になり、更に磁気特性も向上するので、磁気
記録媒体の高密度化が達成される。
A Q-F 03 thin film was formed on an alumite-treated AI substrate by reactive sputtering in a 50% 02-50% Ar mixed gas using an F9 target containing F
4. Form a thin film. Thereafter, this Fe304 is further heat-treated in air at 30 pm to form a thin film of y-F group 03. As a result, magnetic properties with a coercive force of 700Q and a squareness ratio of 0.8 were obtained. As explained above, according to the manufacturing method of the present invention, a non-magnetic oxide film can be reduced in an atmosphere with a wide temperature range, making it possible to easily obtain a thin magnetic oxide film and further improving magnetic properties. As a result, higher density of magnetic recording media can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来と本発明による還元マージンの状態を示す
特性線図、第2図は本発明による保磁力の状態を示す特
性線図である。 Q−F203・・・・・・非磁性酸化物、Fe304,
ッーF203・・・・・・磁性酸化物。 ※2図 籍1図
FIG. 1 is a characteristic diagram showing the state of the reduction margin according to the conventional method and the present invention, and FIG. 2 is a characteristic diagram showing the state of the coercive force according to the present invention. Q-F203...Nonmagnetic oxide, Fe304,
F203...Magnetic oxide. *2 books 1 illustration

Claims (1)

【特許請求の範囲】 1 基板上にCr,Cu,Coを添加する非磁性酸化物
のα−Fe_2O_3薄膜を形成し、次いでこれを還元
処理して磁性酸化物のFe_3O_4薄膜を得ることを
特徴とする磁気記録媒体の製造方法。 2 基板上にCr,Cu,Coを添加する非磁性酸化物
のα−Fe_2O_3薄膜を形成し、次いでこれを還元
処理して磁性酸化物のFe_3O_4薄膜になし、更に
熱処理して酸化することにより磁性酸化物のα−Fe_
2O_3薄膜を得ることを特徴とする磁気記録媒体の製
造方法。
[Claims] 1. A method characterized by forming an α-Fe_2O_3 thin film of a non-magnetic oxide to which Cr, Cu, and Co are added on a substrate, and then subjecting it to a reduction treatment to obtain a Fe_3O_4 thin film of a magnetic oxide. A method for manufacturing a magnetic recording medium. 2 Form a non-magnetic oxide α-Fe_2O_3 thin film to which Cr, Cu, and Co are added on the substrate, then reduce it to form a magnetic oxide Fe_3O_4 thin film, and further heat-treat and oxidize it to make it magnetic. Oxide α-Fe_
A method for producing a magnetic recording medium, characterized by obtaining a 2O_3 thin film.
JP14688176A 1976-12-07 1976-12-07 Method for manufacturing magnetic recording media Expired JPS6032261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14688176A JPS6032261B2 (en) 1976-12-07 1976-12-07 Method for manufacturing magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14688176A JPS6032261B2 (en) 1976-12-07 1976-12-07 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS5370804A JPS5370804A (en) 1978-06-23
JPS6032261B2 true JPS6032261B2 (en) 1985-07-26

Family

ID=15417673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14688176A Expired JPS6032261B2 (en) 1976-12-07 1976-12-07 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS6032261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205826A (en) * 1981-06-12 1982-12-17 Hitachi Condenser Co Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPS5370804A (en) 1978-06-23

Similar Documents

Publication Publication Date Title
Hisano et al. Research and development of metal powder for magnetic recording
Yoshii et al. High density recording characteristics of sputtered γ‐Fe2O3 thin‐film disks
US4608093A (en) Ferromagnetic particles with stable magnetic characteristics and method of preparing same
GB2073766A (en) High density magnetic recording medium
JPS6032261B2 (en) Method for manufacturing magnetic recording media
US4371567A (en) High coercivity, cobalt-doped ferrimagnetic iron oxide particulates
JPH11110732A (en) Magnetic recording medium
JP2756467B2 (en) Metal magnetic powder for short wavelength magnetic recording medium and magnetic recording medium using the same
JPH11110731A (en) Magnetic recording medium
JPH11251122A (en) Precursor for manufacturing magnetic powder and ferromagnetic metal power obtained from the same
JPS6057211B2 (en) Manufacturing method of magnetic recording media
JPS6136684B2 (en)
JPH0430171B2 (en)
JPH056327B2 (en)
JPS6313256B2 (en)
JP3242102B2 (en) Magnetic powder and method for producing the same
JP2940117B2 (en) Ferromagnetic metal particles for magnetic recording media
US5384158A (en) Method for preparing a magnetic recording medium
JPS6333286B2 (en)
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same
JPH02187916A (en) Perpendicular magnetic recording medium and production thereof
JPH01232517A (en) Thin metallic film type magnetic recording medium
JPH05307741A (en) Magnetic recording medium
JPH0561206B2 (en)
JPH0257321B2 (en)