JPS6353721A - Preparation of thin oxide film - Google Patents

Preparation of thin oxide film

Info

Publication number
JPS6353721A
JPS6353721A JP19566786A JP19566786A JPS6353721A JP S6353721 A JPS6353721 A JP S6353721A JP 19566786 A JP19566786 A JP 19566786A JP 19566786 A JP19566786 A JP 19566786A JP S6353721 A JPS6353721 A JP S6353721A
Authority
JP
Japan
Prior art keywords
target
thin film
sputtering
oxide thin
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19566786A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Otani
佳光 大谷
Shigeru Hirono
廣野 滋
Bunichi Yoshimura
吉村 文一
Akira Terada
寺田 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19566786A priority Critical patent/JPS6353721A/en
Publication of JPS6353721A publication Critical patent/JPS6353721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable high-density magnetic recording by subjecting a main target to oxidation reaction sputtering under the flow of an oxidizing gas thereto, subjecting an auxiliary target to sputtering under the flow of an inert gas thereto, regulating electric power to be thrown and adding a metallic element into a thin oxide film. CONSTITUTION:The main target 4 and the auxiliary target 5 are disposed to the lower side of a bell-jar 1 and an alumite coated aluminum alloy disk as a substrate 2 is held by a holder 3 installed in parallel with the target surface in the upper part of the bell-jar. An introducing pipe 6 for a gaseous mixture composed of argon and oxygen is installed near the main target and an introducing pipe 7 for gaseous Ar near the auxiliary target, respectively in the positions upper than the top ends of the targets 4, 5. The gaseous pressure in the bell-jar is maintained constant and the electric power is varied and thrown to the main target 4 and the auxiliary target 5, respectively by a high-frequency bipolar sputtering system to execute sputtering and to form hematite. Coercive force is thereby decreased in the bottom of the medium and an overlap writing characteristic is improved.

Description

【発明の詳細な説明】 〈産業トの利用分野〉 本発明は、高記録密度磁気記録装置の磁気記録薄膜媒体
として用いられる酸化物薄膜の作製法に関するものであ
り、例えば、オスミウム(すなわちOs)を含任するマ
グヘマイト(すなわちγ−FO203)薄膜の製造方法
に関する。
Detailed Description of the Invention <Field of Industrial Application> The present invention relates to a method for producing an oxide thin film used as a magnetic recording thin film medium of a high recording density magnetic recording device. The present invention relates to a method for producing a thin film of maghemite (i.e., γ-FO203) containing

〈従来の技術〉 マグヘマイト簿膜(γ−Fe203)は磁気ディスフ、
磁気テープ等の磁気記録媒体の記録層として利用されて
いる。特に、特願昭59−54205、特願昭59−1
55140で提案されている、O8を含有するγ−F 
e 203rAは保磁力Hcと角形(残留磁化M、、/
飽和磁化M、)が優れた酸化鉄磁性膜である。さらにO
s含有γ−Fe203膜は特願昭59−27358.特
願昭59−155140で示されているように、高密度
記録が可能な垂直磁気記録媒体としての利用も提案され
ている。
<Prior art> Maghemite film (γ-Fe203) is a magnetic disk,
It is used as a recording layer of magnetic recording media such as magnetic tape. In particular, patent application No. 59-54205, patent application No. 59-1
γ-F containing O8 proposed in 55140
e 203rA is the coercive force Hc and the square shape (residual magnetization M, , /
This is an iron oxide magnetic film with excellent saturation magnetization M,). Further O
The s-containing γ-Fe203 film is disclosed in Japanese Patent Application No. 59-27358. As shown in Japanese Patent Application No. 59-155140, its use as a perpendicular magnetic recording medium capable of high-density recording has also been proposed.

以上のOs含有γ−Fe203薄膜を作製するには従来
衣のような製造方法が行なわれていた。
In order to produce the above Os-containing γ-Fe203 thin film, a conventional manufacturing method has been used.

すなわち (1)基板上に先づFeとOsの合金ターゲット。i.e. (1) First, an alloy target of Fe and Os is placed on the substrate.

FeとO8の焼結ターゲット、 Osベレットを配置し
たFeターゲット等の反応スパッタリングでO3を含有
したベマタイト(α−Fe2D3)を主成分とする薄膜
を形成し、得られた薄膜をH2等の還元性雰囲気中で加
熱し、マグネタイト(Fc304膜ラック分とする薄膜
に還元する。しかる後にFc304膜を大気中で加熱す
ることによって、Osを含有するγ−Fe20.膜を作
製する方法(特願昭57−164134、59−542
05に関連)、(2)  基板−ヒに先ずFeとOsの
合金ターゲット。
A thin film mainly composed of bematite (α-Fe2D3) containing O3 is formed by reactive sputtering using a sintered target of Fe and O8, a Fe target with an Os pellet, etc., and the resulting thin film is treated with a reducing agent such as H2. A method of producing a γ-Fe20 film containing Os by heating the Fc304 film in the atmosphere and reducing it to a thin film containing magnetite (Fc304 film rack). -164134, 59-542
(Related to 05), (2) Substrate - First, an alloy target of Fe and Os.

FeとOsの焼結ターゲット、 Osベレットを配置し
たFeターゲット等の反応スパッタリングあるいはOs
を含有するFe3O4ターゲット、Osベレットを配置
したFe、04ターゲツトのスパッタリングを用いてO
8を含有したマグネタイト薄膜を形成し、得られた薄膜
を大気中で加熱することによってO8を含有するγ−F
e2O3膜を作製する方法の2つの方法である(特願昭
59−155140関連)。
Reactive sputtering such as sintered Fe and Os targets, Fe targets with Os pellets, or Os
Fe3O4 target containing O
γ-F containing O8 is formed by forming a magnetite thin film containing O8 and heating the obtained thin film in the atmosphere.
There are two methods for producing an e2O3 film (related to Japanese Patent Application No. 155140/1983).

これら従来の作製法はともに、スパッタリングによる膜
形成の前段階すなわちターゲットにおけるOs元素の組
成を制御して、FeとO8あるいはFe、04とO8を
同一なスパッタ雰囲気中におき、スパッタリングを行な
い、酸化鉄中にO8を添加するものであった。
In both of these conventional manufacturing methods, the composition of Os element in the target is controlled before film formation by sputtering, and Fe and O8 or Fe, 04 and O8 are placed in the same sputtering atmosphere, sputtering is performed, and oxidation is performed. It involved adding O8 to iron.

〈発明が解決しようとする問題点〉 しかしながら添加元素であるOsは、(1)高融点で質
量あたりの価格が高い(1g〜6000円)。
<Problems to be Solved by the Invention> However, the additive element Os has (1) a high melting point and a high price per mass (1 g to 6,000 yen).

(2)原子量が大きい、(3)酸化雰囲気中で酸化しや
すく、しかもその酸化物0804の沸点が非常に低い等
の性質があるため、従来の作製法では次のような問題点
があった。
(2) It has a large atomic weight, (3) It is easily oxidized in an oxidizing atmosphere, and the boiling point of its oxide 0804 is extremely low, so conventional production methods have had the following problems. .

(イ) ターゲットとしてOsベレットを配置したFe
(Fe30.) 、あるいはFeとO8の焼結体を用い
ると組成の経時変化や割れが生じやすい。
(b) Fe with Os pellet placed as a target
(Fe30.) or a sintered body of Fe and O8, the composition tends to change over time and cracks tend to occur.

これを防ぐために合金ターゲットを用いる方法かあるが
、Feと高融点のOsとの合金ターゲットを作製するた
めには粉末を焼結して電子ビームあるいはアーク溶解す
る必要がある。このため歩留りが悪く、加工費が高くな
り、実質的作製コストが上昇する。
To prevent this, there is a method of using an alloy target, but in order to produce an alloy target of Fe and Os having a high melting point, it is necessary to sinter the powder and perform electron beam or arc melting. For this reason, the yield is poor, the processing cost is high, and the actual manufacturing cost is increased.

(ロ)  Os元素は反応スパッタリング中に酸化しや
すいため、Os元素が酸化物として酸化鉄中の介在物と
なったり、あるいはスパッタ中に蒸発損失しやすく、磁
気特性の再現性が悪いつ (ハ)O8元素は原子量が大きいため、スパッタ粒子の
エネルギーが高く、主成分である酸化鉄膜が基板に形成
される段階で酸化鉄膜の結晶性を劣化させる。特に膜厚
の薄い領域での結晶性が悪く、飽和磁化、角形性の低下
を引きおこす。
(b) Since the Os element is easily oxidized during reactive sputtering, the Os element becomes an oxide as an inclusion in iron oxide, or is easily lost by evaporation during sputtering, resulting in poor reproducibility of magnetic properties. ) Since the O8 element has a large atomic weight, the energy of the sputtered particles is high, and the crystallinity of the iron oxide film, which is the main component, is deteriorated at the stage when the iron oxide film is formed on the substrate. In particular, the crystallinity in the thin film region is poor, causing saturation magnetization and a decrease in squareness.

本発明の目的は上記の欠点を解決し、酸化鉄薄膜の結晶
性をそこなわずに、低コストで酸化鉄薄膜中にUsを添
加でき、しかも高密度磁気記録が可能な磁気記録媒体の
作製法を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks, and to produce a magnetic recording medium in which Us can be added to an iron oxide thin film at low cost without damaging the crystallinity of the iron oxide thin film, and which is capable of high-density magnetic recording. It is about providing law.

更に、本発明の他の目的は、成分の異なる複数のターゲ
ットを同一のスパッタリング装置内に配置してスパッタ
リングを行うに際し、一方のターゲットの元素を酸化さ
せつつ、他方のターゲットの元素を酸化反応に関与させ
ずに膜形成を行える方法を提供することにある。
Furthermore, another object of the present invention is to oxidize the elements of one target while causing the elements of the other target to undergo an oxidation reaction when sputtering a plurality of targets having different components in the same sputtering apparatus. It is an object of the present invention to provide a method for forming a film without any involvement.

〈問題点を解決するための手段〉 斯かる目的を達成する本発明の構成はスパッタ装置内に
成分の異なる主、副ターゲットを配置すると共に該主タ
ーゲットに対して酸化性ガスを流して酸化反応スパッタ
リングを行うことにより基板に酸化物薄膜を形成する一
方、前記副ターゲットに対して不活性ガスを流してスパ
ッタリングを行うと共に独立に投入電力を調整して上記
酸化物薄膜中に金属元素を添加することを特徴とする。
<Means for Solving the Problems> The configuration of the present invention to achieve the above object is to arrange a main target and a sub target having different components in a sputtering apparatus, and to cause an oxidation reaction by flowing an oxidizing gas to the main target. Sputtering is performed to form an oxide thin film on the substrate, while sputtering is performed by flowing an inert gas to the sub-target, and a metal element is added into the oxide thin film by independently adjusting the input power. It is characterized by

く作   用〉 スパッタ装置内において主ターゲットに対して酸化性ガ
スを流してスパッタリングを行うと、基板上に主ターゲ
ットの元素が酸化物・薄膜を形成する。酸化反応スパッ
タリングである。また、副ターゲットに対して不活性ガ
スを流しながらスパッタリングを行うと、副ターゲット
の元素は酸化反応に関与せずに上記酸化物薄膜中に添加
されることとなる。ここで酸化物膜の形成は公知の反応
スパッタで良く、副ターゲットの表面状態は金属状態と
なっており、その添加量は投入電力によって制御される
。従って、副ターゲットの金属元素としてOs元素を用
い、基板上に酸化物薄膜として酸化鉄薄膜を形成する場
合、所定の投入電力の制御によってOs元素の濃度勾配
を付与することができるから、主成分である酸化鉄薄膜
の堆禎初期段階では、結晶性の劣化を防ぐためにO8を
添加せず、膜厚の増加とともにOsターゲットへの投入
電力を増加させ添加量を増加させると、結晶性良好な酸
化鉄となる。さらに利点となるのは、このようにして得
られた酸化鉄膜は薄膜の深さ方向に磁気特性の勾配かで
きる。すなわち膜の底部ではHcが低く、上層部でH,
は大きい構成の媒体ができる。記録する際のヘッドの磁
界は膜底部はど弱くなるため、媒体の底部でIICが小
さくなっていると、媒体全体に記録することが可能とな
り、重ね書き特性が向上するという効果がある。
Effect> When sputtering is performed by flowing an oxidizing gas to the main target in a sputtering device, the elements of the main target form an oxide/thin film on the substrate. This is oxidation reaction sputtering. Furthermore, if sputtering is performed while flowing an inert gas to the sub-target, the elements of the sub-target will be added to the oxide thin film without participating in the oxidation reaction. Here, the oxide film may be formed by known reactive sputtering, the surface state of the sub-target is in a metallic state, and the amount added is controlled by the input power. Therefore, when using the Os element as the metal element of the sub-target and forming an iron oxide thin film as an oxide thin film on the substrate, it is possible to impart a concentration gradient of the Os element by controlling the predetermined input power. At the initial stage of deposition of iron oxide thin films, O8 is not added to prevent deterioration of crystallinity, but as the film thickness increases, the power input to the Os target is increased to increase the amount of addition, resulting in good crystallinity. Becomes iron oxide. A further advantage is that the iron oxide film thus obtained has a magnetic property gradient in the depth direction of the thin film. In other words, Hc is low at the bottom of the membrane, and Hc is low at the top,
allows for large composition media. The magnetic field of the head during recording is weaker at the bottom of the film, so if IIC is small at the bottom of the medium, it becomes possible to record on the entire medium, which has the effect of improving overwriting characteristics.

〈実施例1〉 第1図及び第2図は本発明の第1の実施例を説明する図
であって、1はベルジャ、2は基板、3は基板ホルダー
、4は主ターゲット、5は副ターゲット、6は主ターゲ
ットへのゲス導入管、7は副ターゲットへのガス導入管
、8は真空排気系、9.10は高周波電源である。
<Embodiment 1> FIGS. 1 and 2 are diagrams explaining the first embodiment of the present invention, in which 1 is a bell jar, 2 is a substrate, 3 is a substrate holder, 4 is a main target, and 5 is a sub-target. 6 is a gas introduction tube to the main target, 7 is a gas introduction tube to the sub target, 8 is a vacuum exhaust system, and 9.10 is a high frequency power source.

ベルジャ1の下側に主ターゲット(Fe、直径12cm
)4および副ターゲット(O8,直径5cn+)5を配
置し、基板2としては8インチのアルマイト被覆アルミ
合金ディスクをベルジャ上部にターゲツト面に平行に設
置されたホルダー3で保持した。主ターゲット近傍には
アルゴン(Ar)と酸素(0□)が1=1の混合ガス導
入管6を、副ターゲット近傍にはArガス導入管7を、
それぞれターゲット4.5の上端より1cm上部に設置
した。Ar−02混合ガスは、10cc/min、 A
rガスは2cc/minとし、ベルジャ内ガス圧を2 
X 10’Torrに保って、それぞれ高周波2極スパ
ツタ方式で主ターゲット4には 1.5kll、副ター
ゲット5には0〜toowの電力を変化させて没入し、
スパッタリングを行ない膜厚0,12μmのα−Fe2
0.を形成した。
The main target (Fe, diameter 12cm) is placed under the belljar 1.
) 4 and an auxiliary target (O8, diameter 5cn+) 5 were arranged, and as the substrate 2, an 8-inch alumite-coated aluminum alloy disk was held by a holder 3 installed above the bell jar parallel to the target surface. A mixed gas introduction pipe 6 containing argon (Ar) and oxygen (0□) with 1=1 is installed near the main target, and an Ar gas introduction pipe 7 is installed near the secondary target.
Each was placed 1 cm above the upper end of target 4.5. Ar-02 mixed gas is 10cc/min, A
The r gas was set at 2 cc/min, and the gas pressure inside the bell jar was set at 2 cc/min.
While maintaining the X 10' Torr, the main target 4 was immersed with a power of 1.5 kll and the sub target 5 was immersed with a power of 1.5 kll and 0 to too, respectively, using the high frequency bipolar sputtering method.
α-Fe2 with a film thickness of 0.12 μm by sputtering
0. was formed.

X線回折では、α−Fe203構造で異相は認められず
、XFAによりOsの添加量を調べたところ、第3図に
示すようにO8元素の含有@(金属元素のみの比率)は
゛、投入電力に比例して0〜2.2at96まで変化し
た。これら薄膜について、加湿水素気流中で310℃に
3時間加熱し、マグネタイト (Fe304)膜を得、
さらに大気中で300℃、3時間加熱酸化して、γ−F
 e 20.膜とした。この際の+1cを第4図に示す
。副ターゲットの没入電力によって、Hcはほぼ比例し
て増加しており、Osの添加効果が明らかになりている
。本方法によるスパッタでは副ターゲット5の表面状態
には、酸化等の黒化は認められず、さらに磁気特性の再
現性も 100時間程度のスパッタでもほとんど変化は
なかった。また主ターゲット4の反応スパッタを行ない
ながら副ターゲット5のスパッタでOsを従来方法と同
様な効果で添加でき、しかも投入電力でOs添加量を制
御できた。
In X-ray diffraction, no foreign phase was observed in the α-Fe203 structure, and when the amount of Os added was investigated by XFA, as shown in Figure 3, the content of O8 element (ratio of only metal elements) was It changed from 0 to 2.2at96 in proportion to. These thin films were heated to 310°C for 3 hours in a humidified hydrogen stream to obtain a magnetite (Fe304) film.
Furthermore, γ-F was oxidized by heating at 300°C for 3 hours in the air.
e20. It was made into a film. +1c at this time is shown in FIG. Hc increases almost proportionally with the immersion power of the sub-target, and the effect of Os addition becomes clear. In sputtering using this method, no blackening due to oxidation or the like was observed on the surface condition of the sub-target 5, and the reproducibility of the magnetic properties hardly changed even after sputtering for about 100 hours. In addition, while performing reactive sputtering of the main target 4, Os could be added by sputtering the sub target 5 with the same effect as in the conventional method, and moreover, the amount of Os added could be controlled by the input power.

く実 施 例 2〉 次に実施例1と同様なベルジャ1により主ターゲット4
のスパッタを同様に120分行ない、副ターゲット5の
スパッタは主ターゲット4のスパッタ開始時では電力投
入せず(二120分の間にIW/minで電力を徐々に
増加させて、膜厚方向でO8添加量を変化させたα−F
e203薄膜を作製した。この薄膜は、XFAによる組
成分析では、薄膜全体として、約0.83at、%のO
sを含有しているが、ESCAによる深さ方向分布測定
では基板側から表面側にかけてOs添加量が増加した薄
膜が形成されている。比較のために従来方法で膜厚方向
に均一にO3が分布し0.85at%のOsを含有する
α−Fe203膜を作製した。この際には、主ターゲッ
ト4のスパッタ条件を同じにして、主ターゲット上のO
Sベレットの量を制御することで添加量を制御した。両
薄膜を実施例1と同様な熱処理を行なって、ギャップ長
(’2g) = 0.27μm、コア幅=50μm、コ
イルターン数=20、のMn−Znフェライトヘッドを
用い、周速20m/s (浮上量的0.2μm)で重ね
書き特性を調べたところ、(2f=1000bpm、 
O/W= If’/2f)従来法による07Wは一20
dBのところを、 Osの濃度勾配をつけた薄膜は一3
1dBと1ldBも良好であることがわかった。このよ
うに、従来のようにターゲットのOs組成で酸化鉄薄膜
中のO8含有量を制御する場合には、酸化鉄薄膜中のO
s含有量の深さ方向分布を調節することは不可能であっ
たか、本発明の作製方法においては容易に変化させるこ
とができ、重ね書き特性が改善される。
Example 2> Next, the main target 4 was
sputtering was carried out in the same manner for 120 minutes, and the power was not turned on at the start of sputtering of the main target 4 for the sputtering of the sub-target 5 (the power was gradually increased at IW/min during the second 120 minutes, and α-F with varying O8 addition amount
An e203 thin film was produced. Composition analysis of this thin film by XFA revealed that the thin film as a whole contained approximately 0.83 at.
However, depth distribution measurements using ESCA show that a thin film is formed in which the amount of Os added increases from the substrate side to the surface side. For comparison, an α-Fe203 film containing 0.85 at % Os and with O3 uniformly distributed in the film thickness direction was fabricated using a conventional method. At this time, the sputtering conditions for the main target 4 are the same, and the O
The amount added was controlled by controlling the amount of S pellet. Both thin films were heat treated in the same manner as in Example 1, using a Mn-Zn ferrite head with gap length ('2g) = 0.27 μm, core width = 50 μm, number of coil turns = 20, and a circumferential speed of 20 m/s. (Flying height 0.2μm) When examining the overwriting characteristics, (2f=1000bpm,
O/W = If'/2f) 07W according to the conventional method is -20
At dB, a thin film with a concentration gradient of Os is -3
It was found that 1 dB and 1 ldB were also good. In this way, when controlling the O8 content in the iron oxide thin film by the Os composition of the target as in the past, the O8 content in the iron oxide thin film is
It has been impossible to adjust the depth distribution of s content, but it can be easily changed in the fabrication method of the present invention, and the overwriting characteristics are improved.

く実 施 例 3〉 第5図〜第7図に示すように主ターゲット4、副ターゲ
ット5.そしてスパッタ中に基板2の円周方向に磁場を
印加することができる磁Villをベルジャ内に配置し
、アルゴンと酸素の比率85:15の混合ガスを導入し
、ガス圧を3.5X 1O−2Torrに保ち、以下の
2種類の薄膜0.1μmの酸化鉄薄膜を形成した。
Embodiment Example 3 As shown in FIGS. 5 to 7, the main target 4, the sub target 5. Then, a magnetic Vill capable of applying a magnetic field in the circumferential direction of the substrate 2 during sputtering is placed in the bell jar, and a mixed gas of argon and oxygen at a ratio of 85:15 is introduced to increase the gas pressure to 3.5X 1O- The following two types of iron oxide thin films with a thickness of 0.1 μm were formed while maintaining the temperature at 2 Torr.

(1)主ターゲット4のスパッタ電力を3 kW。(1) Sputtering power for main target 4 is 3 kW.

副ターゲット5の電力を100Wで形成したFe50.
膜 +2)  Tllと同じスパッタ条件で、ベルジャ1内
の磁極11を使用し、膜の堆積中にディスク円周方向に
約2kOeの磁場を印加して作製した Fe3O4膜 これら Fe3O4膜は約1.2at!l、のOsi含
有していた。これら膜を320℃で3hr大気中酸化を
行ないγ−Fe2O3とした時の磁気特性を、従来の作
製法(Fe−1,2at!kos合金ターゲットを用い
、ガス圧4 X 1O−2Torr、スパッタ電力2.
8kWで得たFe50.膜を大気中で酸化した膜)によ
る1、2atlOs含有膜の磁気特性と比較して表1に
示す。
Fe50.
Fe3O4 film was produced under the same sputtering conditions as Tll, using the magnetic pole 11 in bell jar 1, and applying a magnetic field of about 2 kOe in the disk circumferential direction during film deposition.These Fe3O4 films are about 1.2 at. ! It contained Osi of 1. These films were oxidized in the air at 320°C for 3 hours to form γ-Fe2O3, and their magnetic properties were evaluated using the conventional manufacturing method (using a Fe-1,2at!kos alloy target, gas pressure of 4 x 1O-2Torr, sputtering power 2.
Fe50. obtained at 8kW. Table 1 shows a comparison of the magnetic properties of a 1,2 atlOs-containing film obtained by oxidizing the film in the atmosphere.

以下余白 表1 ※ただし、薄膜(2)では、ディスクの円周方向に測定
した場合の値 表から明らかなように、本発明の作製法では、保磁力、
角形比、飽和磁化の値が従来方法よりも増加している。
Margin Table 1 below *However, in the case of thin film (2), as is clear from the value table when measured in the circumferential direction of the disk, in the production method of the present invention, coercive force,
The squareness ratio and saturation magnetization values are increased compared to the conventional method.

さらに、ディスクの円周方向に磁場を印加しながら膜形
成を行なったγ−Fe2O3膜において、円周方向の角
形比と保磁力が向旧する。
Furthermore, in the γ-Fe2O3 film formed while applying a magnetic field in the circumferential direction of the disk, the squareness ratio and coercive force in the circumferential direction change.

また、この磁場の印加方向を膜面垂直方向とすれば、垂
直磁気異方性膜の形成も可能である。
Furthermore, if the direction of application of this magnetic field is perpendicular to the film surface, it is also possible to form a perpendicular magnetic anisotropic film.

このように、O3を含有する酸化鉄薄膜の形成において
、ターゲットでOs組成を制御するのではなく、主ター
ゲット4では酸化鉄形成反応を生じせしめ副ターゲット
5を使用して。
In this way, in forming an iron oxide thin film containing O3, the Os composition is not controlled by the target, but the iron oxide forming reaction is caused in the main target 4, and the sub target 5 is used.

0sをメタル状態として酸化鉄中に添加することにより
、酸化鉄薄膜の結晶性をそこなわずにO8の添加が可能
となり、しかもOs添加量の膜厚方向勾配を形成できる
ため重ね書き特性が向上する等の利点がある。
By adding 0s to iron oxide in a metal state, it is possible to add O8 without damaging the crystallinity of the iron oxide thin film, and it is also possible to form a gradient in the amount of Os added in the film thickness direction, improving overwriting characteristics. There are advantages such as:

〈発明の効果〉 以上、実施例に基づいて具体的に説明したように、本発
明はスパッタリングにより酸化物薄膜を形成するに際し
、主ターゲットの元素を酸化させつつ、副ターゲットの
元素を酸化反応に関与させずに膜形成を行うことができ
、更に副ターゲットの元素の添加量に膜厚方向の勾配を
もたせることができる。
<Effects of the Invention> As described above in detail based on Examples, the present invention, when forming an oxide thin film by sputtering, oxidizes the main target element while subjecting the sub-target element to an oxidation reaction. It is possible to form a film without any involvement, and furthermore, it is possible to create a gradient in the amount of elements added to the sub-target in the direction of the film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明する説明図、第2
図は第1図のn−n線矢視図、第3図はOsターゲット
への投入電力と酸化鉄中のO3添加量の関係を示すグラ
フ、第4図はOsターゲットへの投入電力とγ−Fe2
03薄膜の保持力との関係を示すグラフ、第5図は本発
明の他の実施例を説明する説明図、第6図は第5図中V
I−VI線矢視図、第7図はMi極付近を示す拡大図で
ある。 図面中、 1はベルジャ、2は基板、3は基板ホルダー。 4は主ターゲット、5は副ターゲット、6は主ターゲッ
トへのガス導入管、7は副ターゲットへのガス導入管、
8は真空排気系、9.10は高周波電源、11は磁極で
ある。
FIG. 1 is an explanatory diagram for explaining the first embodiment of the present invention, and FIG.
The figure is a view taken along the nn line in Figure 1, Figure 3 is a graph showing the relationship between the power input to the Os target and the amount of O3 added in iron oxide, and Figure 4 is a graph showing the relationship between the power input to the Os target and the amount of O3 added to the iron oxide. -Fe2
03 A graph showing the relationship with the holding force of the thin film, FIG. 5 is an explanatory diagram explaining another embodiment of the present invention, and FIG.
The I-VI line arrow view and FIG. 7 are enlarged views showing the vicinity of the Mi pole. In the drawing, 1 is a bell jar, 2 is a board, and 3 is a board holder. 4 is a main target, 5 is a sub target, 6 is a gas introduction pipe to the main target, 7 is a gas introduction pipe to the sub target,
8 is a vacuum exhaust system, 9.10 is a high frequency power source, and 11 is a magnetic pole.

Claims (4)

【特許請求の範囲】[Claims] (1)スパッタ装置内に成分の異なる主、副ターゲット
を配置すると共に該主ターゲットに対して酸化性ガスを
流して酸化反応スパッタリングを行うことにより基板に
酸化物薄膜を形成する一方、前記副ターゲットに対して
不活性ガスを流してスパッタリングを行うと共に独立に
投入電力を調整して上記酸化物薄膜中に金属元素を添加
することを特徴とする酸化物薄膜の作製法。
(1) A thin oxide film is formed on the substrate by arranging main and sub targets having different components in a sputtering device and performing oxidation reaction sputtering by flowing an oxidizing gas to the main target, while forming an oxide thin film on the substrate. A method for producing an oxide thin film, characterized in that sputtering is performed by flowing an inert gas into the oxide thin film, and a metal element is added to the oxide thin film by independently adjusting input power.
(2)特許請求の範囲第1項において、前記主ターゲッ
トはFeを主成分とし、前記副ターゲットはOsを主成
分とすることを特徴とする酸化物薄膜の作製法。
(2) The method for producing an oxide thin film according to claim 1, wherein the main target has Fe as a main component, and the sub target has Os as a main component.
(3)特許請求の範囲第2項において、前記酸化物薄膜
は酸化鉄薄膜であり、該薄膜中に前記金属元素としてO
s元素を添加することを特徴とする酸化物薄膜の作製法
(3) In claim 2, the oxide thin film is an iron oxide thin film, and the metal element in the thin film is O.
A method for producing an oxide thin film characterized by adding an s element.
(4)特許請求の範囲第1項において、前記酸化性ガス
としてAr−O_2混合ガスを使用し、前記不活性ガス
としてArガスを使用することを特徴とする酸化物薄膜
の作製法。(5)特許請求の範囲第1項において、前記
酸化物薄膜を形成中、前記基板に垂直あるいは平行方向
に磁界を印加することを特徴とする酸化物薄膜の作製法
(4) The method for producing an oxide thin film according to claim 1, characterized in that an Ar-O_2 mixed gas is used as the oxidizing gas, and Ar gas is used as the inert gas. (5) The method for producing an oxide thin film according to claim 1, characterized in that a magnetic field is applied in a direction perpendicular or parallel to the substrate during formation of the oxide thin film.
JP19566786A 1986-08-22 1986-08-22 Preparation of thin oxide film Pending JPS6353721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19566786A JPS6353721A (en) 1986-08-22 1986-08-22 Preparation of thin oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19566786A JPS6353721A (en) 1986-08-22 1986-08-22 Preparation of thin oxide film

Publications (1)

Publication Number Publication Date
JPS6353721A true JPS6353721A (en) 1988-03-08

Family

ID=16344990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19566786A Pending JPS6353721A (en) 1986-08-22 1986-08-22 Preparation of thin oxide film

Country Status (1)

Country Link
JP (1) JPS6353721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115870A (en) * 2009-12-30 2011-07-06 鸿富锦精密工业(深圳)有限公司 Sputtering coating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115870A (en) * 2009-12-30 2011-07-06 鸿富锦精密工业(深圳)有限公司 Sputtering coating device

Similar Documents

Publication Publication Date Title
US4232071A (en) Method of producing magnetic thin film
US5034286A (en) Perpendicular magnetic storage medium
Inagaki et al. Ferrite thin films for high recording density
JPS6122852B2 (en)
GB2129832A (en) Magnetic recording media
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPS6353721A (en) Preparation of thin oxide film
JP2579184B2 (en) Magnetic recording media
JPH028376B2 (en)
JPH01107344A (en) Magneto-optical recording medium and production thereof
JPS59125607A (en) High saturation magnetization and high permeability magnetic film
JPS59157828A (en) Magnetic recording medium
JP3531679B2 (en) Magnetic recording media
KR0164459B1 (en) Cobalt ferrite magnetic thin film and its manufacturing method
JPH0311531B2 (en)
JPS6353714A (en) Magnetic recording medium
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP3181723B2 (en) Soft magnetic alloy film
JPH01248312A (en) Perpendicular magnetic recording medium
JPS6043202A (en) Vertical magnetic recording and reproducing device
JPS6022722A (en) Thin film magnetic head
JPS59112425A (en) Magnetic recording medium
JPS63146417A (en) Soft magnetic thin film
JPH0416850B2 (en)
JPH0191314A (en) Perpendicular magnetic recording medium