JPH06338409A - Mangetic thin film and its manufacture - Google Patents

Mangetic thin film and its manufacture

Info

Publication number
JPH06338409A
JPH06338409A JP12861493A JP12861493A JPH06338409A JP H06338409 A JPH06338409 A JP H06338409A JP 12861493 A JP12861493 A JP 12861493A JP 12861493 A JP12861493 A JP 12861493A JP H06338409 A JPH06338409 A JP H06338409A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
added
group
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12861493A
Other languages
Japanese (ja)
Inventor
Makoto Kameyama
誠 亀山
Masaaki Matsushima
正明 松島
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12861493A priority Critical patent/JPH06338409A/en
Publication of JPH06338409A publication Critical patent/JPH06338409A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • H01F10/142Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel containing Si
    • H01F10/145Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel containing Si containing Al, e.g. SENDUST

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture an excellent magnetic thin film by a method wherein C and O are added to an Fe-Al-Si-based alloy thin film and at least one out of Ti, Zr, Hf, V, Nb and Ta as group IVa elements and group Va elements is added or, in addition, also Ru is added. CONSTITUTION:Symbols (a) to (g) represent comsition ratios in atomic %, and a symbol T represents at least one out of Ti, Zr, Hf, V, Nb and Ta as group IVa elements and group Va elements. The title magnetic thin film is composed of a soft magnetic alloy which is indicated by a composition formula of FeaAlbSicCdOeTf, where respective values for the symbols (a) to (f) are a+b+c+ d+e+f=100, 8<=b<=12, 14<=c<=18, 0.5<=d<=8, 0.2<=e<=6 and 0.1<=f<=5. Alternatively, the title magnetic thin film is featured in such a way that it is composed of a soft magnetic alloy which is indicated by a composition formula of FeaAlbSicCdOeTfRug, where respective values for the symbols (a) to (g) are a-b+c+d+e+f+g+=100, 8<=b<=12, 14<=c<=18, 0.5<=d<=8, 0.2<=e<=6, 0.1<=f<=5 and 0.1<=g<=3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性薄膜及びその製造方
法に関し、特にFe,Si,Alを主成分としてC,O
等を含有させた軟磁性合金からなり、高密度記録用磁気
ヘッドに好適な磁性薄膜及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic thin film and a method for manufacturing the same, and more particularly to Fe, Si and Al as main components, and C and O.
The present invention relates to a magnetic thin film made of a soft magnetic alloy containing, for example, a magnetic thin film suitable for a magnetic head for high density recording, and a method for manufacturing the magnetic thin film.

【0002】[0002]

【従来の技術】近年、磁気記録の分野では高記録密度化
に伴い、狭トラック,短波長,高周波帯域化の方向にあ
る。この高記録密度化に対応して、磁気記録媒体として
磁性粉にFe,Co,Ni等の強磁性金属の粉末を用い
たメタルテープや、強磁性金属材料を蒸着によりベース
フィルム上に被着した蒸着テープ等が使用される様にな
ってきた。そして、この種の磁気記録媒体は高い残留磁
束密度Brを有するために、記録再生に用いる磁気ヘッ
ドの磁気コアの材料にも高い飽和磁束密度Bsを有する
ことが要求されている。
2. Description of the Related Art In recent years, in the field of magnetic recording, along with the increase in recording density, there is a trend toward narrower tracks, shorter wavelengths, and higher frequency bands. In response to this increase in recording density, a metal tape using magnetic powder such as Fe, Co, and Ni powder of ferromagnetic metal as a magnetic recording medium, or a ferromagnetic metal material is deposited on the base film by vapor deposition. Vapor deposition tape has come to be used. Since this type of magnetic recording medium has a high residual magnetic flux density Br, the material of the magnetic core of the magnetic head used for recording / reproducing is also required to have a high saturation magnetic flux density Bs.

【0003】従来の高飽和磁束密度の軟磁性材料とし
て、Fe−Al−Si系のいわゆるセンダスト合金が代
表的なものであるが、センダスト合金薄膜は比較的高硬
度を有するものの、例えばフェライト材に比べると耐摩
耗性に劣り、また金属材料であるので錆び易い等の欠点
を有している。また、前記メタルの蒸着テープをスチル
走行させるとテープからの何らかの影響により、腐食摩
耗が発生し、使用不可能となってしまう。
As a conventional soft magnetic material having a high saturation magnetic flux density, a so-called sendust alloy of the Fe-Al-Si system is typical, but the sendust alloy thin film has a relatively high hardness, but is, for example, a ferrite material. Compared with this, it is inferior in wear resistance, and since it is a metal material, it has drawbacks such as easy rust. Further, when the metal vapor deposition tape is made to run still, corrosive wear occurs due to some influence from the tape, making it unusable.

【0004】このため、センダスト薄膜の主成分である
Fe,Al,Siの他に例えばTi,Cr,Nb,白金
族等の添加物を添加して上記錆を防いだり、硬度を高め
て耐摩耗性を向上させる方法がある。
For this reason, in addition to Fe, Al, and Si which are the main components of the sendust thin film, additives such as Ti, Cr, Nb, and platinum group metals are added to prevent the above-mentioned rust, and increase hardness to improve wear resistance. There is a method to improve the sex.

【0005】しかしながら、上記添加物を加えると、セ
ンダスト合金薄膜の飽和磁束密度Bsが低下してしま
い、メタルテープの様な高い残留磁束密度を有する磁気
記録媒体に対処する上で不利である。
However, the addition of the above-mentioned additives lowers the saturation magnetic flux density Bs of the sendust alloy thin film, which is disadvantageous in dealing with a magnetic recording medium having a high residual magnetic flux density such as a metal tape.

【0006】そこで、上述の様な添加物ではなく、窒素
や酸素を添加することにより、飽和磁束密度を低下させ
ることなく硬度や透磁率を大幅に改善することが特開昭
60-220913号、特開昭60-218820号、特開昭60-218821
号、及び特開昭60-220914号により提案されている。
Therefore, by adding nitrogen or oxygen instead of the above-mentioned additives, it is possible to significantly improve hardness and magnetic permeability without lowering the saturation magnetic flux density.
60-220913, JP-A-60-218820, JP-A-60-218821
And JP-A-60-220914.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来例では以下のような問題点があった。
However, the above-mentioned conventional example has the following problems.

【0008】まず第1に、成膜時の応力が問題となる。
図9に示したように基板10に薄膜11を成膜した場
合、(a)のように応力がプラスのときはその応力によ
り薄膜11の成膜面側が凹になるように基板10が反
り、(b)のように応力がマイナスのときは成膜面側が
凸となるように反る。
First of all, the stress during film formation becomes a problem.
When the thin film 11 is formed on the substrate 10 as shown in FIG. 9, when the stress is positive as shown in (a), the stress causes the substrate 10 to warp so that the film forming surface side of the thin film 11 becomes concave, When the stress is negative as in (b), the film formation surface side warps so as to be convex.

【0009】この応力による反りが磁気ヘッドの製造工
程上に大きな問題となる。例えば、磁気コアの磁気ギャ
ップに面して軟磁性合金薄膜を成膜する、いわゆるメタ
ルインギャップヘッドの製造工程を例にとると、図10
に示すようにトラック幅Tを決めるトラック溝13とコ
イル巻線用の巻線溝14を形成した1対のフェライトブ
ロック15に対し、Arに窒素や酸素を混入した雰囲気
中でのスパッタリングにより上記従来例の軟磁性合金薄
膜を成膜すると、薄膜からのマイナスの応力によりブロ
ック15が反ってしまう。そして、この成膜を行なった
フェライトブロック15の一対を突き合わせてガラスボ
ンディングにより接合する工程において、ブロック15
が反っていると、図11に符号12で示すようにブロッ
ク15どうしの両端に隙間があいてしまい、磁気ギャッ
プgの形成が不均一になってしまう。また、さらに反り
の量が大きい時はフェライトブロック15が割れてしま
う場合もある。
The warp caused by this stress becomes a serious problem in the manufacturing process of the magnetic head. For example, taking a manufacturing process of a so-called metal-in-gap head in which a soft magnetic alloy thin film is formed facing the magnetic gap of the magnetic core, as shown in FIG.
The pair of ferrite blocks 15 having the track groove 13 for determining the track width T and the winding groove 14 for the coil winding as shown in FIG. 2 are sputtered in an atmosphere in which Ar is mixed with nitrogen or oxygen. When the soft magnetic alloy thin film of the example is formed, the block 15 warps due to the negative stress from the thin film. Then, in the step of abutting a pair of the ferrite blocks 15 on which the film has been formed and bonding them by glass bonding, the blocks 15
If it is warped, gaps are formed at both ends of the blocks 15 as indicated by reference numeral 12 in FIG. 11, and the formation of the magnetic gap g becomes uneven. Further, when the amount of warp is further large, the ferrite block 15 may be cracked.

【0010】また、第2の問題点として、上記のガラス
ボンディングを行なう時に気泡が発生してしまい、これ
もヘッドの製造工程上大きな問題となる。
A second problem is that air bubbles are generated during the above glass bonding, which is also a serious problem in the head manufacturing process.

【0011】また、第3の問題点として、Arガスに窒
素や酸素を混入した雰囲気中でのスパッタリングにより
センダスト膜を成膜すると、センダスト膜の磁気異方性
が大きくなり、ある方向に磁界をかけた時は透磁率が大
きいが、それと直交方向に磁界をかけた時は透磁率が低
くなってしまうという現象が起きる。
A third problem is that when the sendust film is formed by sputtering in an atmosphere in which Ar gas is mixed with nitrogen or oxygen, the magnetic anisotropy of the sendust film increases and a magnetic field is applied in a certain direction. When applied, the magnetic permeability is large, but when a magnetic field is applied in the direction orthogonal to that, the magnetic permeability decreases.

【0012】この異方性の発生の仕方を説明すると、例
えば後述する図1のスパッタ装置で耐食性、耐摩耗性を
考慮した十分な窒素及び酸素の添加量で成膜すると、図
12の様な回転基板ホルダー3において、a方向(円周
方向)とb方向(動径方向)でa方向に磁界をかけて透
磁率を測定した方が高くなり、b方向の方が小さくな
る。つまり、a方向が磁化困難軸方向、b方向が磁化容
易軸方向となる。
A method of generating this anisotropy will be described. For example, when a film is formed with a sufficient amount of nitrogen and oxygen added in consideration of corrosion resistance and wear resistance in a sputtering apparatus shown in FIG. In the rotating substrate holder 3, the magnetic permeability in the a direction (circumferential direction) and the b direction (radial direction) in the a direction is higher when the magnetic permeability is measured, and the magnetic permeability is smaller in the b direction. That is, the a direction is the hard axis direction and the b direction is the easy axis direction.

【0013】そこで、窒素の添加量に対する異方性の変
化の関係を調べた結果、図13の様になり、2.7原子
%以上添加すると異方性は逆転する。しかし、前述した
蒸着テープ走行による腐食摩耗は、窒素の添加量が3原
子%を超えないと発生してしまうので、窒素を添加する
ことにより腐食摩耗を防ぐことのできる領域では必らず
円周方向が困難軸方向となってしまう。
Then, as a result of investigating the relationship of the change of the anisotropy with respect to the added amount of nitrogen, the result is as shown in FIG. 13, and the anisotropy is reversed when the addition amount of 2.7 atomic% or more. However, the corrosive wear due to the running of the vapor deposition tape described above occurs unless the amount of nitrogen added exceeds 3 atomic%. Therefore, it is inevitable that the corrosive wear will be prevented in the area where the corrosive wear can be prevented by adding nitrogen. The direction becomes a difficult axis.

【0014】磁気ヘッドにした時にどちらの方向の透磁
率が高い方が良いかは、そのヘッドの構造にもより、定
まっていないが、所望の方向に困難軸を持っていける
(異方性を制御できる)方が磁気ヘッドの設計、製作上
利点がある。
It is not determined in which direction the magnetic permeability is higher when the magnetic head is used, depending on the structure of the head, but it is possible to bring the hard axis in the desired direction (anisotropy It is more advantageous to design and manufacture the magnetic head.

【0015】本発明は以上のような従来の問題点に鑑み
てなされたもので、高飽和磁束密度で耐食性に優れるの
みならず、成膜時の応力が小さく、ガラスボンディング
時の気泡の発生もなく、磁気異方性の制御も可能である
磁性薄膜及びその製造方法を提供することにある。
The present invention has been made in view of the conventional problems as described above, and not only has a high saturation magnetic flux density and excellent corrosion resistance, but also has a small stress during film formation and generates bubbles during glass bonding. It is another object of the present invention to provide a magnetic thin film in which magnetic anisotropy can be controlled and a manufacturing method thereof.

【0016】[0016]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の磁性薄膜は、CO2ガスを導入した雰囲気
中でのスパッタリングにより成膜し、Fe,Al,Si
系合金にC,Oを添加するとともに、IVa族ないしVa
族元素のTi,Zr,Hf,V,Nb,Taの少なくと
も1種を添加した軟磁性合金、あるいはこれに更にRu
を添加した軟磁性合金からなるものとし、各元素の含有
量は、Alが8〜12原子%,Siが14〜18原子
%,Cが0.5〜8原子%,Oが0.2〜6原子%,IV
a族ないしVa族元素が0.1〜5原子%,Ruが0.
1〜3原子%とし、残りがFeとする。
In order to solve the above problems, the magnetic thin film of the present invention is formed by sputtering in an atmosphere into which CO2 gas is introduced, and Fe, Al, Si
In addition to adding C and O to the system alloys, group IVa or Va
A soft magnetic alloy to which at least one of the group elements Ti, Zr, Hf, V, Nb, and Ta is added, or Ru is further added.
Is added to the soft magnetic alloy, and the content of each element is 8 to 12 atom% of Al, 14 to 18 atom% of Si, 0.5 to 8 atom% of C, and 0.2 to O of O. 6 atom%, IV
0.1 to 5 atomic% of Group a to Va elements and Ru of 0.
1 to 3 atomic% and the rest is Fe.

【0017】[0017]

【作用】上記の磁性薄膜の組成によれば、C,Oの添加
により磁性薄膜の硬度および電気比抵抗が増大し、成膜
時の応力は小さくなる。ただし、透磁率は劣化するが、
IVa族ないしVa族元素の添加によりそれを改善でき
る。また、これらの添加量により磁気異方性を制御する
ことができる。さらに、Ruの添加により、耐食性、耐
摩耗性をより改善できる。
According to the composition of the magnetic thin film described above, the addition of C and O increases the hardness and the electrical specific resistance of the magnetic thin film and reduces the stress during film formation. However, although the magnetic permeability deteriorates,
It can be improved by the addition of Group IVa or Group Va elements. Further, the magnetic anisotropy can be controlled by the addition amount of these. Furthermore, by adding Ru, the corrosion resistance and wear resistance can be further improved.

【0018】また、CO2ガスを導入した雰囲気中での
スパッタリングによれば、CO2ガスと他の雰囲気のガ
スとの流量比によってC,Oの添加量を調整することが
できる。
Further, according to the sputtering in the atmosphere in which the CO2 gas is introduced, the added amounts of C and O can be adjusted by the flow rate ratio between the CO2 gas and the gas in another atmosphere.

【0019】[0019]

【実施例】本発明者は、前述した課題を解決するため、
鋭意研究した結果、Fe,Al,Siを主成分とする磁
性薄膜の合金にC,Oを添加し、さらにIVa族ないしV
a族元素のTi,Zr,Hf,V,Nb,Taの少なく
とも1種を添加することにより飽和磁束密度を低下させ
ることなく、硬度、透磁率、耐食性を改善でき、成膜時
の応力も低減できることがわかった。また、さらにRu
を添加することにより、耐食性、耐摩耗性を更に改善で
きることもわかった。以下、その成膜を行なった実施例
を図を参照して説明する。
EXAMPLE The present inventor solves the above-mentioned problems by
As a result of earnest studies, C, O was added to the alloy of the magnetic thin film containing Fe, Al, Si as the main components, and IVa group or V group was added.
By adding at least one of Ti, Zr, Hf, V, Nb, and Ta of the group a element, hardness, permeability, and corrosion resistance can be improved without lowering the saturation magnetic flux density, and the stress during film formation is also reduced. I knew I could do it. In addition, Ru
It was also found that the corrosion resistance and the wear resistance can be further improved by adding. Hereinafter, an example in which the film is formed will be described with reference to the drawings.

【0020】まず、図1に実施例の磁性薄膜の成膜に用
いたスパッタ装置を示してある。この装置は対向ターゲ
ット式スパッタリング法により成膜を行なうものであ
る。このスパッタ装置において、真空チャンバー2内で
1対のターゲット1が対向して配置され、それぞれに対
しDC電源6によって負の電位が印加される。そして、
マスフローメータ5を介して真空チャンバー2内の真空
中に導入されたスパッタリング雰囲気のガスがイオン化
され、負の電界によって加速されターゲット1に衝突す
ることにより、ターゲット1をスパッタリングする。そ
の際、ターゲット1の裏側に配置されたマグネット9に
よって発生する磁界Hによってスパッタリング雰囲気の
ガスイオンのプラズマが集束される。これによって回転
基板ホルダ3上に保持された試料の基板4上へ磁性薄膜
の成膜を効率良く高速に行なうことができる。なお、図
1において、7はシールド板、8は絶縁および真空シー
ル部である。
First, FIG. 1 shows a sputtering apparatus used for forming the magnetic thin film of the embodiment. This apparatus forms a film by a facing target type sputtering method. In this sputtering apparatus, a pair of targets 1 are arranged to face each other in a vacuum chamber 2, and a negative potential is applied to each of them by a DC power source 6. And
The gas in the sputtering atmosphere introduced into the vacuum in the vacuum chamber 2 via the mass flow meter 5 is ionized, accelerated by a negative electric field and collided with the target 1, thereby sputtering the target 1. At that time, the plasma of gas ions in the sputtering atmosphere is focused by the magnetic field H generated by the magnet 9 arranged on the back side of the target 1. As a result, the magnetic thin film can be efficiently and rapidly formed on the substrate 4 of the sample held on the rotating substrate holder 3. In FIG. 1, 7 is a shield plate and 8 is an insulating and vacuum seal portion.

【0021】このようなスパッタ装置で実施例の磁性薄
膜を成膜した。ここでターゲット1として、Fe72.
22原子%、Al10.68原子%、Si17.10原
子%からなる合金ターゲットを使用した。またスパッタ
リング雰囲気のガスとして、純ArガスにCO2ガスを
導入し、両者の流量比でCとOの添加量を調整した。さ
らに、IVa族ないしVa族元素のTi,Zr,Ta等及
びRuのいずれかの金属チップ(5×5×1mmt)を
ターゲット1上に置くことにより前記各元素を添加し、
組成の調整を行なった。また膜厚は5μm、熱処理は5
50℃、25分窒素中で行なった。
The magnetic thin film of the example was formed with such a sputtering apparatus. Here, as the target 1, Fe72.
An alloy target composed of 22 atomic%, Al 10.68 atomic% and Si 17.10 atomic% was used. Further, as a gas for the sputtering atmosphere, CO2 gas was introduced into pure Ar gas, and the addition amounts of C and O were adjusted by the flow rate ratio between the two. Further, by placing a metal tip (5 × 5 × 1 mmt) of any one of Ti, Zr, Ta, etc. of the IVa group to the Va group elements on the target 1, the above elements are added,
The composition was adjusted. The film thickness is 5 μm, and the heat treatment is 5
It was carried out at 50 ° C. for 25 minutes in nitrogen.

【0022】ここで実施例の磁性薄膜の組成を選択した
経緯を説明する。
The process of selecting the composition of the magnetic thin film of the embodiment will be described below.

【0023】まず、CとOに関して、スパッタリング雰
囲気へのCO2ガスの添加量(Arガスとの流量比)
と、成膜される磁性薄膜の硬さ(ヌープ硬度),成膜時
の応力,電気比抵抗,透磁率の関係を図2〜図4に示し
てある。これらの図からわかるように、C,Oの添加に
より、硬さは増大し、電気比抵抗は増大し、成膜時の応
力は圧縮側(マイナス)に働く。その応力は先述した従
来例の窒素添加、酸素添加の場合よりも小さく約1/4
である。一方、透磁率はC,Oの添加により低下してし
まう。
First, regarding C and O, the amount of CO2 gas added to the sputtering atmosphere (flow rate ratio with Ar gas)
2 to 4 show the relationship among the hardness of the magnetic thin film to be formed (Knoop hardness), the stress during film formation, the electrical resistivity, and the magnetic permeability. As can be seen from these figures, the addition of C and O increases the hardness, increases the electrical resistivity, and the stress during film formation acts on the compression side (minus). The stress is smaller than that in the case of adding nitrogen and oxygen of the conventional example described above and is about 1/4.
Is. On the other hand, the magnetic permeability decreases due to the addition of C and O.

【0024】ちなみにO2添加の場合、C,Oの添加と
同様に硬さ、電気比抵抗はある程度増大するが、応力が
N2と同様圧縮側(マイナス)に大きく、流量比3%に
おいて−8.0×109dyn/cm2であった。
By the way, when O2 is added, the hardness and electric resistivity increase to some extent as in the case of adding C and O, but the stress is large on the compression side (minus) like N2, and when the flow rate ratio is 3%, -8. It was 0 × 10 9 dyn / cm 2 .

【0025】また、CO2の流量比と、磁性薄膜中に含
有するC,Oの量の関係は図5のようになる。
The relationship between the flow rate ratio of CO2 and the amounts of C and O contained in the magnetic thin film is as shown in FIG.

【0026】ここで、デジタルVTR等を考慮すると、
使用周波数帯域が20〜30MHzになり、この様な高
周波で透磁率を確保するには、うず電流による損失を少
なくする必要がある。そして、膜厚5μmとして30M
Hzまでうず電流損失が生じない電気比抵抗100μΩ
cmにするためのC,Oの添加量は、少なくともCが
2.3原子%、Oが0.6原子%以上必要である。
Here, considering a digital VTR or the like,
The frequency band used becomes 20 to 30 MHz, and in order to secure the magnetic permeability at such a high frequency, it is necessary to reduce the loss due to the eddy current. And 30M for a film thickness of 5 μm
Electrical resistivity 100μΩ without eddy current loss up to Hz
The amount of C and O added to be cm is required to be at least 2.3 atomic% of C and 0.6 atomic% or more of O.

【0027】しかし、C,Oの添加により透磁率が劣化
してしまう。そこでIVa族ないしVa族元素であるT
i,Zr,Hf,V,Nb,Taの少なくとも1種を磁
性薄膜中に添加すると、図6及び図7に示す様に透磁率
の特性が改善された。なお、図6は、CO2添加量が3
%の時のTi,Zr,Taチップのターゲット上への置
き数と透磁率の関係を示している。また図7はTi添加
量と透磁率の関係を示し、CO2添加量が3%と6%の
場合と、さらにRuを添加した場合の関係を示してい
る。
However, the addition of C and O deteriorates the magnetic permeability. Therefore, T which is an IVa group or Va group element
When at least one of i, Zr, Hf, V, Nb and Ta was added to the magnetic thin film, the magnetic permeability characteristics were improved as shown in FIGS. 6 and 7. In addition, in FIG. 6, the amount of CO2 added is 3
The relationship between the number of Ti, Zr, and Ta chips placed on the target and the magnetic permeability is shown when%. FIG. 7 shows the relationship between the amount of Ti added and the magnetic permeability, and shows the relationship when the amount of CO2 added is 3% and 6% and when Ru is further added.

【0028】C,Oを同時に添加していくと透磁率が下
がるのは、X線回折の結果から、Fe3C,FeOが生
成され、磁壁に引っかかりが生じ、磁区の回転を妨げる
ものと思われる。これに対しIVa族ないしVa族の様な
C,Oと結合し易い元素を添加すると、X線回折の結果
Fe3C,FeOに相当するピークが消失し、このこと
により特性が向上するものと思われる。
From the results of X-ray diffraction, it is considered that Fe3C and FeO are produced and the magnetic domain walls are caught and the rotation of the magnetic domains is hindered by the fact that the magnetic permeability decreases when C and O are added at the same time. On the other hand, when an element such as IVa group or Va group that easily bonds with C or O is added, the peak corresponding to Fe3C or FeO disappears as a result of X-ray diffraction, and this seems to improve the characteristics. .

【0029】また、X線回折による結晶粒の大きさの変
化はFe,Al,SiにC,Oを添加することにより細
かくなり、IVa族,Va族を添加すると更に細かくなる
傾向にある。しかしながら、磁気モーメントの結合距離
(約400オングストローム)に比べ粒径が大きく、近
年盛んに行われている微結晶(100オングストローム
位)とは異なった結晶構造を有している。前記微結晶と
呼ばれるものの中に、Feに対し過剰なCと遷移金属を
添加し、遷移金属とCの化合物がFe(αFe)の粒界
のまわりに存在してFeの粒成長を抑えるといわれてい
るものがある。この微細化により、見かけの結晶磁気異
方性を低減し、軟磁気特性を得るものである。しかし、
αFeが表面にでると錆び易く、耐食性の点で不十分で
ある。これに対し本願発明の磁性薄膜は、Fe,Si,
Alを主成分としてC,O,遷移金属(IVa族,Va
族)を添加しており、上記の微結晶膜とは異なるもので
ある。
The change in crystal grain size due to X-ray diffraction becomes finer by adding C and O to Fe, Al and Si, and tends to become finer by adding IVa group and Va group. However, the grain size is larger than the bond length of the magnetic moment (about 400 Å), and has a crystal structure different from that of microcrystals (about 100 Å) which has been actively performed in recent years. It is said that an excess of C and a transition metal is added to Fe in the so-called microcrystals, and a compound of the transition metal and C is present around the grain boundary of Fe (αFe) to suppress the grain growth of Fe. There is something. This refinement reduces the apparent crystal magnetic anisotropy and obtains soft magnetic characteristics. But,
If αFe appears on the surface, it easily rusts and is insufficient in terms of corrosion resistance. On the other hand, the magnetic thin film of the present invention is composed of Fe, Si,
C, O, transition metal (group IVa, Va)
Group) is added, which is different from the above microcrystalline film.

【0030】そして、上述のようにC,Oの添加により
硬さ、電気比抵抗が増大するが、Cが0.5原子%以
下、Oが0.2原子%以下であると、その効果が見られ
ず、また、Cが8原子%、Oが6原子%を超えると透磁
率の低下を招く。
As described above, the addition of C and O increases the hardness and the electrical resistivity, but when C is 0.5 atom% or less and O is 0.2 atom% or less, the effect is obtained. Not seen, and when C exceeds 8 atom% and O exceeds 6 atom%, the magnetic permeability lowers.

【0031】また、IVa族,Va族元素については、添
加量が0.1原子%より少ないと前記透磁率の改善が見
られず、5原子%を超えると透磁率が劣化してしまう。
Regarding the IVa group and Va group elements, if the added amount is less than 0.1 atom%, the above-mentioned magnetic permeability is not improved, and if it exceeds 5 atom%, the magnetic permeability deteriorates.

【0032】さらにAlとSiの含有量については、A
lが8〜12原子%、Siが14〜18原子%の範囲よ
り多くても少なくても特性が劣化してしまう。
Regarding the contents of Al and Si, A
If 1 is larger or smaller than the range of 8 to 12 atomic% and Si is 14 to 18 atomic%, the characteristics are deteriorated.

【0033】これらのことから、各元素の含有量、添加
量は、Alが8〜12原子%、Siが14〜18原子
%、Cが0.5〜8原子%、Oが0.2〜6原子%、IV
a族ないしVa族元素が0.1〜5原子%とし、残りを
Feとすることにした。
From these facts, the content and addition amount of each element are as follows: Al is 8 to 12 atomic%, Si is 14 to 18 atomic%, C is 0.5 to 8 atomic%, and O is 0.2 to. 6 atom%, IV
The elements of group a to Va are 0.1 to 5 atomic%, and the rest is Fe.

【0034】また、さらにRuを添加する場合は、その
添加量が0.1原子%以下では耐食性向上の効果がな
く、3原子%を越えると軟磁気特性が劣化してしまうの
で、添加量は0.1〜3原子%とする。なお、この場
合、Fe以外の元素の添加量の範囲は変えることなく、
Ruの添加量だけFeを減らす。
When Ru is further added, the effect of improving the corrosion resistance is not obtained if the added amount is 0.1 atomic% or less, and the soft magnetic characteristics are deteriorated if the added amount exceeds 3 atomic%. The amount is 0.1 to 3 atom%. In this case, without changing the range of the addition amount of elements other than Fe,
Fe is reduced by the amount of Ru added.

【0035】以上のように決定した組成比の範囲内で各
元素の組成比を変えて実施例の磁性薄膜の試料を14種
類成膜した。また比較例(従来例)の試料としてFe,
Al,SiにNのみを添加した磁性薄膜と、Oのみを添
加した磁性薄膜を成膜した。
14 kinds of magnetic thin film samples of the examples were formed by changing the composition ratio of each element within the composition ratio range determined as described above. Further, as a comparative example (conventional example), Fe,
A magnetic thin film in which only N was added to Al and Si and a magnetic thin film in which only O was added were formed.

【0036】そして、それぞれの試料について組成を分
析し、100KHzと6MHzでの透磁率μ、保磁力H
c、飽和磁束密度Bs、膜厚、成膜時の応力、ヌープ硬
度、電気比抵抗を測定し、また耐食性試験を行なった。
なお薄膜の組成はEPMA(X線マイクロアナライザー
法)により測定した。透磁率μはフェライトヨーク法に
より測定した。飽和磁束密度Bsは15Kエルステッド
の磁界をかけてVSM(試料振動型磁束計)にて測定
し、保磁力 HcもVSMにて測定した。ヌープ硬度は
重量25gで15秒間加重することにより測定した。ま
た、耐食性の評価は、薄膜を1NのHCl水溶液中に4
時間浸漬し、その前後での飽和磁束密度Bsの残存率で
示した。それぞれの測定結果を次の表1、表2に示し、
耐食性試験の結果を図8に示す。
The composition of each sample was analyzed, and the magnetic permeability μ and coercive force H at 100 KHz and 6 MHz were measured.
c, saturation magnetic flux density Bs, film thickness, stress during film formation, Knoop hardness, and electrical resistivity were measured, and a corrosion resistance test was conducted.
The composition of the thin film was measured by EPMA (X-ray microanalyzer method). The magnetic permeability μ was measured by the ferrite yoke method. The saturation magnetic flux density Bs was measured by a VSM (sample vibration type magnetometer) by applying a magnetic field of 15 K Oersted, and the coercive force Hc was also measured by the VSM. The Knoop hardness was measured by applying a weight of 25 g for 15 seconds. In addition, the corrosion resistance was evaluated by coating the thin film with 1N HCl aqueous solution.
It was immersed for a period of time and the residual ratio of the saturation magnetic flux density Bs before and after the immersion was shown. The respective measurement results are shown in Tables 1 and 2 below.
The results of the corrosion resistance test are shown in FIG.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表1、表2からわかるように、成膜時の応
力は、比較例の試料が−8.3〜−10.5×109
yn/cm2と圧縮側に大きいのに対し、本実施例の試
料は、−1.0〜−2.4×109dyn/cm2と格段
に小さい。
As can be seen from Tables 1 and 2, the stress during film formation was -8.3 to -10.5 × 10 9 d for the sample of Comparative Example.
yn / cm 2 is large on the compression side, whereas the sample of this example is remarkably small, −1.0 to −2.4 × 10 9 dyn / cm 2 .

【0040】また、硬度、電気比抵抗は、比較例と本実
施例とでほぼ同等である。
The hardness and the electrical resistivity are almost the same in the comparative example and this example.

【0041】透磁率については、比較例では円周方向の
透磁率が高く動径方向の透磁率が低いものしか得られな
かった。これに対し、本実施例では試料1,2に示す様
に、透磁率の高くなる方向を組成により制御することが
できる。前述のように、従来例の窒素添加の場合、メタ
ルテープによる腐食摩耗を抑える量以上を添加した場
合、必らず円周方向の透磁率が高くなるが、本実施例の
場合、腐食摩耗を抑えることのできるC,Oの添加量
で、円周方向や動径方向の透磁率を高くすることができ
る。
Regarding the magnetic permeability, in the comparative example, only those having a high magnetic permeability in the circumferential direction and a low magnetic permeability in the radial direction were obtained. On the other hand, in this example, as shown in Samples 1 and 2, the direction in which the magnetic permeability increases can be controlled by the composition. As described above, in the case of adding nitrogen in the conventional example, the magnetic permeability in the circumferential direction is inevitably increased when adding more than the amount that suppresses the corrosive wear due to the metal tape. The magnetic permeability in the circumferential direction and the radial direction can be increased by the amount of C and O that can be suppressed.

【0042】さらに、各試料の磁性薄膜を用いて、メタ
ルインギャップ型の磁気ヘッドを作製し、気泡の状態を
調べたところ、比較例1,2に示した磁性薄膜を使用す
ると、接合ガラス中に気泡が発生した。これに対し、本
実施例の磁性薄膜では、ほとんど皆無であった。この原
因として以下のことが考えられる。
Further, a metal-in-gap type magnetic head was produced using the magnetic thin films of the respective samples, and the state of bubbles was examined. When the magnetic thin films shown in Comparative Examples 1 and 2 were used, the bonding glass Bubbles were generated in. On the other hand, the magnetic thin film of this example was almost absent. The possible causes are as follows.

【0043】オージエ分析により、550℃、25分間
窒素中で熱処理したフェライト基板上に成膜された比較
例1(窒素入り)と実施例1(C、O、Ti入り)の試
料の表面分析を行った。このデプスプロファイルによ
り、窒素入りは表面が酸化し易く、酸素と結合し易い状
態にあることがわかった。一方、実施例1により成膜さ
れた試料は、表面に不働態膜が形成され、比較例1に比
べ酸化しにくいことがわかった。ここで接合ガラスが、
膜面に接触すると、窒素添加の膜は、ガラス中の酸素を
うばい、ガラスが還元され易くなる。還元され易くなる
と、ガラス中の酸素が遊離し、これが気泡になるものと
思われ、実施例の場合このようなことがないので気泡が
発生しにくいと思われる。
Surface analysis of samples of Comparative Example 1 (containing nitrogen) and Example 1 (containing C, O, Ti) formed on a ferrite substrate heat-treated in nitrogen at 550 ° C. for 25 minutes was performed by Auger analysis. went. From this depth profile, it was found that when nitrogen was contained, the surface was easily oxidized and was easily bonded to oxygen. On the other hand, it was found that the sample formed in Example 1 had a passive film formed on the surface and was less likely to be oxidized than Comparative Example 1. Here, the bonded glass is
Upon contact with the film surface, the nitrogen-added film absorbs oxygen in the glass and the glass is easily reduced. When it is easily reduced, it is considered that oxygen in the glass is released, and this becomes bubbles, and in the case of the example, this is not the case, and bubbles are unlikely to occur.

【0044】また、図8からわかるように、耐食性につ
いても本実施例の方が比較例より優れている。
As can be seen from FIG. 8, the corrosion resistance of this example is superior to that of the comparative example.

【0045】以上のように、本実施例の磁性薄膜は、比
較例に比べて成膜時の応力が格段に小さく、磁気異方性
の制御も可能であり、ガラスボンディング時の気泡の発
生もなく、耐食性にも優れていた。
As described above, the magnetic thin film of this example has a remarkably smaller stress during film formation than that of the comparative example, the magnetic anisotropy can be controlled, and bubbles are not generated during glass bonding. It was also excellent in corrosion resistance.

【0046】ところで、上述した実施例において磁性薄
膜へのC,Oの添加はCO2ガスをスパッタリング雰囲
気へ導入することにより行なうものとしたが、CO2ガ
スの導入ともに、ターゲット上にカーボンチップを置く
方法とCH4ガスを流す方法が考えられ、この様にして
Oに対するCの量を増やすことが可能である。
By the way, in the above-mentioned embodiments, the addition of C and O to the magnetic thin film was carried out by introducing CO2 gas into the sputtering atmosphere. However, with the introduction of CO2 gas, a carbon chip is placed on the target. It is possible to increase the amount of C with respect to O in this way.

【0047】しかし、Cの量が膜中含有量で8原子%を
超えると、特性が劣化してしまう。この原因として、こ
の膜のX線回折を測定するとFe3Cに相当するピーク
が見られることから、セメンタイト(Fe3C)の生成
により、磁区の回転が妨げられることが考えられる。
However, if the amount of C exceeds 8 atom% in the film content, the characteristics deteriorate. The cause of this is that when X-ray diffraction of this film is measured, a peak corresponding to Fe3C is seen, so that it is considered that the rotation of magnetic domains is hindered by the generation of cementite (Fe3C).

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
Fe,Al,Si系合金薄膜にC,Oを添加するととも
に、IVa族ないしVa族元素のTi,Zr,Hf,V,
Nb,Taの少なくとも1種を添加する、あるいは更に
Ruをも添加することにより、高い硬度で電気比抵抗が
大きく、耐食性にも優れ、さらに成膜時の応力が小さ
く、ガラスボンディング時の気泡の発生も皆無で、磁気
異方性の制御も可能である優れた磁性薄膜を提供するこ
とができる。
As described above, according to the present invention,
In addition to adding C and O to the Fe, Al, and Si-based alloy thin film, Ti, Zr, Hf, V, and
By adding at least one of Nb and Ta, or by further adding Ru, the hardness is high, the electrical resistivity is large, the corrosion resistance is excellent, the stress during film formation is small, and the bubbles during glass bonding are formed. It is possible to provide an excellent magnetic thin film that does not occur at all and whose magnetic anisotropy can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の磁性薄膜を成膜するのに使用
したスパッタ装置の構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a sputtering apparatus used for forming a magnetic thin film according to an example of the present invention.

【図2】スパッタリング雰囲気のCO2ガス添加量(A
rガスとの流量比)と、成膜される磁性薄膜の硬さ及び
応力との関係を示す線図である。
FIG. 2 CO2 gas addition amount in sputtering atmosphere (A
FIG. 6 is a diagram showing a relationship between a flow rate ratio to r gas) and hardness and stress of a magnetic thin film to be formed.

【図3】同じくCO2添加量と磁性薄膜の電気比抵抗と
の関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the amount of CO 2 added and the electrical resistivity of the magnetic thin film.

【図4】同じくCO2添加量と磁性薄膜の透磁率との関
係を示す線図である。
FIG. 4 is a diagram showing the relationship between the amount of CO2 added and the magnetic permeability of the magnetic thin film.

【図5】スパッタリング雰囲気のArガスに対するCO
2ガスの流量比と成膜される磁性薄膜中のCとOの含有
量との関係を示す線図である。
FIG. 5: CO against Ar gas in a sputtering atmosphere
FIG. 3 is a diagram showing the relationship between the flow rate ratio of 2 gases and the contents of C and O in a magnetic thin film to be formed.

【図6】磁性薄膜の添加元素による磁気特性の改善の様
子を示すもので、CO2添加量が3%の時のTi,Z
r,Taチップのターゲット上への置き数と透磁率の関
係を示す線図である。
FIG. 6 shows how the magnetic properties are improved by the additive element of the magnetic thin film. Ti, Z when the amount of CO2 added is 3%
FIG. 6 is a diagram showing a relationship between the number of r and Ta chips placed on a target and magnetic permeability.

【図7】磁性薄膜のTi添加による磁気特性の改善の様
子を示すもので、Ti添加量と透磁率の関係を示す線図
である。
FIG. 7 is a diagram showing how magnetic properties are improved by adding Ti to a magnetic thin film, and is a diagram showing the relationship between the amount of Ti added and magnetic permeability.

【図8】実施例と比較例の磁性薄膜について行なった耐
食性試験の結果を示すグラフ図である。
FIG. 8 is a graph showing the results of a corrosion resistance test performed on magnetic thin films of Examples and Comparative Examples.

【図9】磁性薄膜の成膜時の応力による基板の反りの状
態を示した説明図である。
FIG. 9 is an explanatory diagram showing the state of warpage of the substrate due to the stress during the formation of the magnetic thin film.

【図10】磁気ヘッドの製造工程においてトラック溝と
巻線溝を加工したコア材のフェライトブロックを示す斜
視図である。
FIG. 10 is a perspective view showing a ferrite block of a core material in which a track groove and a winding groove are processed in a magnetic head manufacturing process.

【図11】反ったフェライトブロックどうしを突き合わ
せた様子を誇張して示す説明図である。
FIG. 11 is an explanatory view exaggeratingly showing a state where warped ferrite blocks are butted against each other.

【図12】スパッタ装置の回転基板ホルダ上の基板の配
置と方向を示す説明図である。
FIG. 12 is an explanatory view showing the arrangement and direction of the substrate on the rotating substrate holder of the sputtering apparatus.

【図13】磁性薄膜の窒素含有量と、成膜時の基板ホル
ダの円周方向、動径方向の透磁率との関係を示す線図で
ある。
FIG. 13 is a diagram showing the relationship between the nitrogen content of the magnetic thin film and the magnetic permeability in the circumferential direction and radial direction of the substrate holder during film formation.

【符号の説明】[Explanation of symbols]

1 ターゲット 2 真空チャンバー 3 回転基板ホルダ 4 基板 5 マスフローメータ 6 DC電源 7 シールド板 8 絶縁及び真空シール部 9 マグネット 1 Target 2 Vacuum Chamber 3 Rotating Substrate Holder 4 Substrate 5 Mass Flow Meter 6 DC Power Supply 7 Shield Plate 8 Insulation and Vacuum Seal 9 Magnet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 a,b,c,d,e,fは原子%組成比
の値を示し、TはIVa族ないしVa族元素のTi,Z
r,Hf,V,Nb,Taの内の少なくとも1種とし
て、 Fea Alb Sic Cd Oe Tf なる組成式で示され、 前記a,b,c,d,e,fのそれぞれの値は、 a+b+c+d+e+f=100 8≦b≦12 14≦c≦18 0.5≦d≦8 0.2≦e≦6 0.1≦f≦5 である軟磁性合金からなることを特徴とする磁性薄膜。
1. A, b, c, d, e, and f are atomic% composition ratio values, and T is Ti or Z of a group IVa or Va group element.
At least one of r, Hf, V, Nb, and Ta is represented by the composition formula FeaAlbSicCdOeTf, and each value of a, b, c, d, e, and f is a + b + c + d + e + f = 100 8 ≤ b ≤ 12 14 ≤ c ≤ 18 0.5 ≤ d ≤ 8 0.2 ≤ e ≤ 6 0.1 ≤ f ≤ 5 A magnetic thin film comprising a soft magnetic alloy.
【請求項2】 a,b,c,d,e,f,gは原子%組
成比の値を示し、TはIVa族ないしVa族元素のTi,
Zr,Hf,V,Nb,Taの内の少なくとも1種とし
て、 Fea Alb Sic Cd Oe Tf Rug なる組成式で示され、 前記a,b,c,d,e,f,gのそれぞれの値は、 a+b+c+d+e+f+g=100 8≦b≦12 14≦c≦18 0.5≦d≦8 0.2≦e≦6 0.1≦f≦5 0.1≦g≦3 である軟磁性合金からなることを特徴とする磁性薄膜。
2. A, b, c, d, e, f, and g are atomic% composition ratio values, and T is Ti of the IVa group or Va group element.
At least one of Zr, Hf, V, Nb, and Ta is represented by a composition formula FeaAlbSicCdOeTfRug, and the respective values of a, b, c, d, e, f, and g are: , A + b + c + d + e + f + g = 100 8 ≦ b ≦ 12 14 ≦ c ≦ 18 0.5 ≦ d ≦ 8 0.2 ≦ e ≦ 6 0.1 ≦ f ≦ 5 0.1 ≦ g ≦ 3 Magnetic thin film characterized by.
【請求項3】 CO2ガスを導入した雰囲気中でのスパ
ッタリングにより請求項1または2に記載の磁性薄膜を
成膜することを特徴とする磁性薄膜の製造方法。
3. A method for producing a magnetic thin film, which comprises depositing the magnetic thin film according to claim 1 by sputtering in an atmosphere in which CO 2 gas is introduced.
JP12861493A 1993-05-31 1993-05-31 Mangetic thin film and its manufacture Pending JPH06338409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12861493A JPH06338409A (en) 1993-05-31 1993-05-31 Mangetic thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12861493A JPH06338409A (en) 1993-05-31 1993-05-31 Mangetic thin film and its manufacture

Publications (1)

Publication Number Publication Date
JPH06338409A true JPH06338409A (en) 1994-12-06

Family

ID=14989145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12861493A Pending JPH06338409A (en) 1993-05-31 1993-05-31 Mangetic thin film and its manufacture

Country Status (1)

Country Link
JP (1) JPH06338409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241813A (en) * 1995-01-16 1996-09-17 Lg Electron Inc Soft magnetic thin film material for magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241813A (en) * 1995-01-16 1996-09-17 Lg Electron Inc Soft magnetic thin film material for magnetic head

Similar Documents

Publication Publication Date Title
US6632520B1 (en) Magnetic film
US5478416A (en) Magnetic alloy
JPH06338409A (en) Mangetic thin film and its manufacture
JPH08288138A (en) Soft magnetic thin film and magnetic head using the film
JP3167808B2 (en) Soft magnetic thin film
JPH03265104A (en) Soft magnetic alloy film
JP3121933B2 (en) Soft magnetic thin film
JP2996553B2 (en) Soft magnetic alloy thin film
JP3238216B2 (en) Soft magnetic thin film
JP2522284B2 (en) Soft magnetic thin film
JP3087265B2 (en) Magnetic alloy
JPH0745432A (en) Soft magnetic alloy film and its formation
JPH04285153A (en) Multi-layer magnetic film and its formation
JPH0789526B2 (en) Crystalline soft magnetic thin film
JPH02175618A (en) Magnetic alloy
JPH06240417A (en) Magnetic alloy
JPH0746654B2 (en) Soft magnetic thin film
JPH0789527B2 (en) Crystalline soft magnetic thin film
JPH0746656B2 (en) Crystalline soft magnetic thin film
JPH08241813A (en) Soft magnetic thin film material for magnetic head
JPH07169010A (en) Magnetic head using soft magnetic thin film
JP2003017354A (en) Method of manufacturing soft magnetic film
JPH0935935A (en) Manufacture of soft magnet film
JPH04288805A (en) Soft magnetic thin film
JPH03292705A (en) Ferromagnetic film and magnet head using thereof