JPS5947766A - Insulated gate type semiconducor device and manufacture thereof - Google Patents

Insulated gate type semiconducor device and manufacture thereof

Info

Publication number
JPS5947766A
JPS5947766A JP57156655A JP15665582A JPS5947766A JP S5947766 A JPS5947766 A JP S5947766A JP 57156655 A JP57156655 A JP 57156655A JP 15665582 A JP15665582 A JP 15665582A JP S5947766 A JPS5947766 A JP S5947766A
Authority
JP
Japan
Prior art keywords
type
type region
gate
polycrystalline
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57156655A
Other languages
Japanese (ja)
Inventor
Shigeo Otaka
成雄 大高
Isao Yoshida
功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57156655A priority Critical patent/JPS5947766A/en
Publication of JPS5947766A publication Critical patent/JPS5947766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To contrive to improve gate protection effect by simplify manufacturing processes by connecting a p<+>-n-p<+> junction diode as the protection element for a p-channel MOSFET. CONSTITUTION:The photoetching to expose channel parts is performed, and then n-type regions 5 serving as the channel parts are formed in self-alignment by phosphorus ion implantation and diffusion. Boron impurity is deposited or diffused at high concentration with LTP films 6 left by removing a part by photoetching as the mask. Thereby, p<+> type regions 7 serving as sources are formed at a part of the channel parts, the part 8 of the exposure of a polycrystalline Si layer is changed into p<+> type one; accordingly the p<+>-n-p<+> junction is obtained between the masked n type part. After a PSG is formed as a layer insulation film 9, and contact photoetching is performed, aluminum is adhered, and then the source electrode 10 connected to the p<+> type polycrystalline Si layer on one side of the p<+>-n-p<+> junction and the gate electrode 11 connected to the polycrystalline Si layer 8 on the other side are formed.

Description

【発明の詳細な説明】 本発明1は一つの半導体基体上にpチャネルM0SFm
T(絶縁ゲート形電界効果トランジスタ)とその保護ダ
イオード紮有する半導体装置に関する。
Detailed Description of the Invention The present invention 1 provides a p-channel M0SFm on one semiconductor substrate.
The present invention relates to a semiconductor device having a T (insulated gate field effect transistor) and its protective diode.

筒出力MO8FFiTとして、ドレインとなるn型シリ
コン基&衣面にp型領域ケ設け、このp型領域の一部に
n4−型領域を設けてソースとなし、ソースの設けらn
ないp型領域表17iiに薄い酸化膜を弁してゲート電
極全没け、このゲート電極への電圧印加によってソース
・ドレイン間のp型領域表面のチャネル電流音制御する
nチャネル縦形M0811PETにおいて、外部サージ
電圧から薄いゲート絶縁膜r保餓するために基板の11
0部衣面上にNい絶縁膜ミオして多結晶シリコン層ヶ形
成し、この多結晶層に選択的不純物拡散によるn  p
n接合ダイオード全膜設て前記MO8FETのゲート・
ソース間に接続する構造は既に本願出願人により提案さ
几ているところである。
As a cylinder output MO8FFiT, a p-type region is provided on the n-type silicon base and coating surface that becomes the drain, an n4- type region is provided in a part of this p-type region to serve as a source, and the source is provided with an n-type region.
In the n-channel vertical M0811PET, a thin oxide film is placed on the p-type region without the gate electrode to completely submerge the gate electrode, and by applying a voltage to this gate electrode, the channel current on the surface of the p-type region between the source and drain is controlled. 11 of the substrate to protect the thin gate insulating film from surge voltage.
A polycrystalline silicon layer is formed by forming an N insulating film on the surface of the substrate, and Np is formed by selective impurity diffusion into this polycrystalline layer.
The gate of the MO8FET is equipped with an n-junction diode throughout the film.
A structure for connecting sources has already been proposed by the applicant.

上記拾遺によ11ば、上記n  pn  ハック・ツー
φバンク接合ダイオードはnチャネルMO8FI!;T
のn+型ソース拡散工程を兼用させることで比較的にB
〕+なプロセスで得ることができ、そ11による保穫効
果tユ太きbことが認めらn、る。しかし多結晶シリコ
ン層によるバックφンー・バンク接合ダイオードに関し
ては、npn  型よシもp+np″−型の方が尾、答
が速いことが実験的により判明した。そこで前記のnチ
ャネルMO8FL!!Tにp”np+型(31,#にダ
イオード?接続したもの?一つの半導体基体上に形成し
ようとする場合、n 型ソース拡散工程奮タ゛イオード
形成に利用するわけには行かず、prlp  接合形成
のためにl[たにp+マスク拡散工程r追加する必要が
あシその結果製造プロセスが極めて復雑化することにな
った。
According to item 11 above, the n pn hack-to-φ bank junction diode is an n-channel MO8FI! ;T
By combining the n+ type source diffusion process, B
] It can be obtained by a positive process, and it is recognized that the preservation effect due to this method is increased. However, for back φ-bank junction diodes made of polycrystalline silicon layers, it has been experimentally found that the p+np''- type has a faster response time than the npn type.Therefore, the above-mentioned n-channel MO8FL!!T When trying to form a p"np+ type (diode connected to 31,#) on one semiconductor substrate, the n-type source diffusion process cannot be used to form the diode, and is used to form the prlp junction. In addition, it was necessary to add a p+ mask diffusion step to the method, and as a result, the manufacturing process became extremely complicated.

本願発明者は上記した問題にかんがみて、従来あlシか
えりみらit、なかったpチャネルMO8FETの保麟
素子としてp np  接合ダイオード?接続すること
に着目した。したがって本発明の目的は製造プロセスが
簡単であってゲート保睡効果の丁ぐnた保膿素子付きパ
ワーMO8FETを提供することにある。
In view of the above-mentioned problems, the inventors of the present application have decided to use a pnp junction diode as a protective element for a p-channel MO8FET, which was not available in the past. We focused on connecting. Therefore, an object of the present invention is to provide a power MO8FET with a storage element that has a simple manufacturing process and has a gate storage effect.

以下本発明を適用した一笑施列とじでpチャネルパワー
M OS W FI Tの構造プロセスの各工程に従っ
て詳述する。
Each step of the structural process of a p-channel power MOSFET to which the present invention is applied will be described in detail below.

(1)第1席1全参照し高比抵抗p型シリコン単結晶基
vil奮用意し、酸化性雰囲気中で表面を熱酸化して厚
い(5000〜8000A )酸化1m(81oz)膜
2全形厄した後、この犀い酸化膜2の一部を選択エッチ
【4.て基板1の表面全露出し、その後熱酸化(ゲート
酸化)により薄い(通常1300A程度)ゲート酸化膜
3′f:形成する。
(1) Refer to the first seat 1 and prepare a high resistivity p-type silicon single crystal base vil, and thermally oxidize the surface in an oxidizing atmosphere to form a thick (5000-8000A) oxidized 1m (81oz) film 2. After cleaning, selectively etch a part of this thin oxide film 2 [4. The entire surface of the substrate 1 is exposed, and then a thin (usually about 1300 Å) gate oxide film 3'f is formed by thermal oxidation (gate oxidation).

(2)  シリコン化合物の熱分解等の方法に、cシ全
面にシリコン勿堆積して第2図に示すように多結晶シリ
コン層4奮形成する。この後全面にP(リン)不純物イ
オン打込みによシ多結晶シリコン=2n型化する。この
場合必要とするゲート保砕素子の耐圧によってP打込み
量?コントロール(例えば打込ミエネルギ: 125に
8V、 表面不純物#/ff:10s 2〜101 ’
 atOm8 cA )する。
(2) Using a method such as thermal decomposition of a silicon compound, silicon is deposited on the entire surface of the substrate to form a polycrystalline silicon layer as shown in FIG. Thereafter, P (phosphorus) impurity ions are implanted into the entire surface to make polycrystalline silicon=2n type. In this case, the amount of P implanted depends on the required voltage resistance of the gate crushing element? Control (e.g. implant energy: 125 to 8V, surface impurity #/ff: 10s 2~101'
atOm8 cA).

(3)第3図に示すようにチャネル部全露出するための
ホトエッチ7行なう。
(3) As shown in FIG. 3, photoetching 7 is performed to fully expose the channel portion.

(4)P(IJン)イオン打込み、拡散葡行ない氾番図
で示すようにチャネル部となるn型領域5全自己整合的
に形成する、なお、多結晶シリコン層へのPイオン打込
みにこの工程で行なってもよい。
(4) P (IJ) ion implantation and diffusion As shown in the diagram, the n-type region 5 that will become the channel part is formed in a fully self-aligned manner. It may be performed in the process.

(5)全面にLTP(低温生成酸化)膜6ケ第5図のよ
うに形成する。
(5) Six LTP (low temperature generated oxidation) films are formed on the entire surface as shown in FIG.

(6)  ホトエッチによシ一部紮除去して残ったLT
P)漠6ケマスクとしてB(ボロン)不純物ケ商濃度に
デポジット乃至拡散することにより第6図に示すように
チャネル部の一部にソースとなるp+型伸域7紮形成す
るとともに多結晶シリコン層の露出するiH1分8kp
″”型化し、マスク311.7tn型部分との間にp+
np+接合ケ得接合 ケア)  この後、第7図に示すように層間絶縁膜9と
してP2O(リン・シリケートガラス)又にポリイミド
糸待(脂葡形成し、コンタクトホトエッチ後、アルミニ
ウムケ密N(又はスパッタ)し、p″−np+接合の一
方1j、lIのp+型多結晶シリコン層に接続するソー
ス電極(配Ivjり10と池万側のp+型多結晶シリコ
ン層8に接続するゲート電極(同図でに実線の配線とし
て示(7てめる)11−形成する。
(6) Remaining LT after partially removing the ligature by photoetching
P) By depositing or diffusing B (boron) impurity as a mask to a high concentration, a p+ type extension region 7 which becomes a source is formed in a part of the channel part as shown in FIG. 6, and a polycrystalline silicon layer is formed. iH exposed 1 minute 8kp
``'' type, and between the mask 311.7tn type part and the p+
After that, as shown in FIG. 7, an interlayer insulating film 9 is formed using P2O (phosphorus silicate glass) or polyimide thread, and after contact photoetching, an aluminum film is formed. or sputtering), and a source electrode connected to the p+ type polycrystalline silicon layer 1j and lI on one side of the p''-np+ junction (layer 10) and a gate electrode connected to the p+ type polycrystalline silicon layer 8 on the side of the p''-np+ junction. In the figure, the wiring shown as a solid line (point 7) 11- is formed.

なお、ゲート保護ダイオードはp  np  k基本と
じてこfl’zN個直列に接続することによってN倍の
耐圧ゲイ()ることができる。
It should be noted that the gate protection diode can be increased in breakdown voltage by N times by connecting p np k basic gates fl'zN pieces in series.

第8図は上記プロセスによル製造さtl、たpチャネル
MO8FETとそのゲート保Hφダ・イオードの動作原
理ケ説明するためにモデル化した図で第9図はその等価
回路図である。同図に示すようにpチャネルMO8FE
Tとしてはドレイン側となるp型基板lとソースp 型
領域7とに挾’Ej1.7t、n型領域表面がチャネル
部5aとなってゲート(a)への電圧印加によって上記
チャネル部における一TEID Cソース・ドレイン電
流)がfltlJ 11δれ、ゲート(G)とソース(
8)との間に介挿8れ足長結晶シリコン層からなるバッ
ク拳ツー〇バック構造のp np  ダイオードがIM
、#!にダイオードとしてMO8FET?外部FET型
圧からゲート絶縁膜2保膿する。このような保護ダイオ
ードがない場合薄いゲート酸化膜3の静電破壊強度が低
く、取扱いによる破壊が生じたが、上記のような保賎ダ
イオードを接続することで静電破壊に対する耐性が大き
くなった。!侍に多結晶シリコンのpn接合を用いた作
、I灸ダイオードの場合、n+ pn十型の場合よシも
p  np  型の方が応答が速いため静市、破壊強度
レベルが同上した。例えば静菖容j#C=200 p 
Fでの破壊テストでeよ約1.5〜2倍に向上した。
FIG. 8 is a modeled diagram for explaining the operating principle of a p-channel MO8FET manufactured by the above process and its gate protection Hφ diode, and FIG. 9 is an equivalent circuit diagram thereof. As shown in the figure, p-channel MO8FE
As T, there is a gap between the p-type substrate l on the drain side and the source p-type region 7, and the surface of the n-type region becomes the channel part 5a, and by applying a voltage to the gate (a), one part in the channel part is TEID C source/drain current) is fltlJ 11δ, and the gate (G) and source (
8) A pnp diode with a back fist-to-back structure consisting of a long crystalline silicon layer inserted between the IM
, #! MO8FET as a diode? The gate insulating film 2 is impregnated from external FET type pressure. Without such a protection diode, the electrostatic breakdown strength of the thin gate oxide film 3 was low and damage occurred due to handling, but by connecting the protection diode as described above, resistance to electrostatic breakdown increased. . ! In the case of an I moxibustion diode made using a pn junction of polycrystalline silicon, the response of the pnp type was faster than that of the n+pn ten type, so the breakdown strength level was the same as above. For example, Shizukayo j #C = 200 p
In the destructive test with F, it was improved by about 1.5 to 2 times compared to e.

本発明VCよればp ” n p+接合ダイオード紫p
チャネルハヮーMO8FETと同じ基体上に形成するも
のであって、pチャネルパワーM OS F ETの製
造プロセスにおいてn型チャネル部拡散工程とp 型ソ
ース拡散工程全その11利用丁t’Lばνrfcに工程
葡追加することなくゲート保譲素子の挿入が可能でるる
According to the VC of the present invention, p ” n p+ junction diode purple p
It is formed on the same substrate as the channel power MOSFET, and in the manufacturing process of the p-channel power MOSFET, the n-type channel part diffusion process and the p-type source diffusion process are all used. It is possible to insert a gate protection element without adding anything.

本発明はパワーMOEIFET、詩にpチャネルパワー
MO8F1!iTの全てに16用して有効である。
The present invention is a power MOEIFET, a p-channel power MO8F1! It is effective to use 16 for all iT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は本発明kpチャネルパワーMCJE
JFETの製造プロセスに通用した場合の一実MfJ列
全示す上極断面図でるる。 第8図は本発明によるp+” p+Jlj(iタイオー
ド付きpチャネルパワーMO日F m T (1)動作
原理葡説明するFめの(・莫型酊「面図、 第9図tよ第8図に等flliの回路図である。 1・・・p型シリコン基板(ドレイン)、2・・・J’
Jい酸化膜、3・・・辿い酸化膜(ゲート酸化膜)、4
・・・多結晶シリコン層、5・・・チャネル部n型領域
、6・・・L T P膜、7・・・ソースル+副領域、
8・・・p 型化した多結晶シリコンノ醋、9・・・層
間絶紅膜、10・・ソース電極(配線)、11・・・ゲ
ート電極(配線)。 29 第  1  図 第  2  図 第  3  図 第  4 図 第  5  図 第  7 図
Figures 1 to 7 show the kp channel power MCJE of the present invention.
This is a cross-sectional view of the upper pole showing the entire MfJ array when it is applied to the JFET manufacturing process. Fig. 8 shows the p+"p+Jlj(i diode-equipped p-channel power MOF m T (1) operation principle according to the present invention. It is a circuit diagram of the same flli. 1...p-type silicon substrate (drain), 2...J'
J oxide film, 3...Tracing oxide film (gate oxide film), 4
... Polycrystalline silicon layer, 5... Channel part n-type region, 6... LTP film, 7... Source + sub region,
8... P-type polycrystalline silicon base, 9... Interlayer insulation film, 10... Source electrode (wiring), 11... Gate electrode (wiring). 29 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】 1、  p型半尋体基体奮ドレインとして、このp型十
尋体基体表面の一部にn四半S体領域3〔設け、このn
型領域の表面の一部にp 型領域を設けてソースとなし
、p 型領域の設けられないn型領域の表面に瀞す絶縁
膜を弁し1り−1・’jlL極奮設け、このケート電極
への電圧印加によってソース・ドレイン間のn型領域表
面のチャネル電流を制御する絶縁ゲート電界効果トラン
ジスタ奮イfL、この絶縁り゛−ト亀界効果トランジス
タの形成81″Lft、いp型半辱体基体の油部表面に
賄い絶f萱l良を弁して多結晶半導体層を形成し、この
多結晶半導体層r(p″rn p−’−接接合収設”i
: F7iJ記M Of3 ’M y、I、 UNI掛
5ンジスタのゲート保I用ダイオードとして接続したこ
と全特徴とするP3縁ゲート形半専体装匝。 2、p型シリコン基板上の一部にjlいシリコン酸化膜
t、110都に薄−シリコン酸化膜を形成する]−程、
その上全面にシリコン全堆積して多結晶シリコン/iJ
’(r形成する工程、薄い酸化膜とその上の多結晶シリ
コン層を部分的にエッチして基板の一部盆露出する工程
、ドナ不純物を導入することによシシリコン基板の露出
する部分の表面にn型領域全形成するとともに多結晶シ
リコン層′t−n型化する工程、n型領域及び多結晶シ
リコン層の表面の一部全マスクして高濃度アクセプタ不
純′吻全導入することによ5n型領域の表面の一部にp
 型領域全形成するとともに多結晶シリコン層にpnp
+接合全形成する工程とt! L、上記p型基板全ドレ
インとし、p+型領領域ソースとし、ソース・ドレイン
に挾まれたn型領域上の多結晶層rゲートとする絶縁ゲ
ート形電界効果トランジスタ金構厄するとともに上記p
  np  結合ケ上記絶縁ゲート形電界効果トランジ
スタのゲート保設ダイオードとして接続することヲ爵留
とする絶縁ゲート形半導体装置の製造法。
[Scope of Claims] 1. As a p-type half-body substrate excitation drain, an n-quadrant S-body region 3 is provided on a part of the surface of this p-type ten-half body substrate;
A p-type region is provided on a part of the surface of the type region to serve as a source, and an insulating film is provided on the surface of the n-type region where no p-type region is provided. An insulated gate field effect transistor that controls the channel current on the surface of an n-type region between the source and drain by applying a voltage to the gate electrode is formed. A polycrystalline semiconductor layer is formed on the surface of the oil part of the semi-abrasive body base, and this polycrystalline semiconductor layer r(p"rn p-' - junction accommodation"i)
: F7iJ M Of3 'My, I, P3 edge gate type semi-dedicated box, which is connected as a gate protection diode for a 5-unit UNI transistor. 2. Form a thin silicon oxide film on a part of the p-type silicon substrate and a thin silicon oxide film on 110 parts.
On top of that, silicon is completely deposited on the entire surface and polycrystalline silicon/iJ
'(r forming process, partially etching the thin oxide film and the polycrystalline silicon layer thereon to expose a portion of the substrate, introducing donor impurities into the surface of the exposed part of the silicon substrate) In this step, the entire n-type region is formed and the polycrystalline silicon layer is made into a t-n type.The n-type region and the surface of the polycrystalline silicon layer are partially masked and a high concentration acceptor impurity is completely introduced. P on part of the surface of the 5n type region
While forming the entire mold region, PNP is applied to the polycrystalline silicon layer.
+Process of forming all the joints and t! L, an insulated gate field effect transistor metal structure in which the p-type substrate is the entire drain, the p + type region is the source, and the polycrystalline layer r gate is on the n-type region sandwiched between the source and drain;
A method of manufacturing an insulated gate type semiconductor device in which the np coupling is connected as a gate preservation diode of the above insulated gate type field effect transistor.
JP57156655A 1982-09-10 1982-09-10 Insulated gate type semiconducor device and manufacture thereof Pending JPS5947766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57156655A JPS5947766A (en) 1982-09-10 1982-09-10 Insulated gate type semiconducor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57156655A JPS5947766A (en) 1982-09-10 1982-09-10 Insulated gate type semiconducor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5947766A true JPS5947766A (en) 1984-03-17

Family

ID=15632397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156655A Pending JPS5947766A (en) 1982-09-10 1982-09-10 Insulated gate type semiconducor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5947766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280359A (en) * 1988-05-06 1989-11-10 Fuji Electric Co Ltd Insulated-gate type semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345978A (en) * 1976-10-08 1978-04-25 Hitachi Ltd Insulated-gate-protective semiconductor device
JPS5664465A (en) * 1979-10-29 1981-06-01 Seiko Epson Corp C-mos integrated circuit
JPS57143852A (en) * 1981-03-03 1982-09-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345978A (en) * 1976-10-08 1978-04-25 Hitachi Ltd Insulated-gate-protective semiconductor device
JPS5664465A (en) * 1979-10-29 1981-06-01 Seiko Epson Corp C-mos integrated circuit
JPS57143852A (en) * 1981-03-03 1982-09-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280359A (en) * 1988-05-06 1989-11-10 Fuji Electric Co Ltd Insulated-gate type semiconductor device

Similar Documents

Publication Publication Date Title
US3652908A (en) Fabrication of insulated gate field-effect transistors involving ion implantation
US6372593B1 (en) Method of manufacturing SOI substrate and semiconductor device
US4471373A (en) Semiconductor integrated circuit device with memory MISFETS and thin and thick gate insulator MISFETS
US4103415A (en) Insulated-gate field-effect transistor with self-aligned contact hole to source or drain
GB1594957A (en) Process for fabricating an mos semiconductor circuit
JPH039631B2 (en)
JPH0212836A (en) Manufacture of semiconductor device
JPS62174966A (en) Manufacture of semiconductor device
US4637128A (en) Method of producing semiconductor device
JPS58501848A (en) High-density CMOS device with conductively interconnected wells and method of manufacturing the same
JPS5947766A (en) Insulated gate type semiconducor device and manufacture thereof
JP3180781B2 (en) Method for manufacturing MOS type semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS582067A (en) Manufacture of semiconductor device
JPS5522879A (en) Insulation gate type field effect semiconductor device
EP0035690B1 (en) Semiconductor device using component insulation and method of manufacturing the same
JPS5742169A (en) Production of semiconductor device
JPH0621364A (en) Semiconductor device
JPS5522885A (en) Insulation gate type field effect semiconductor device
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JPS5678156A (en) Charge pump semiconductor memory
JPS60143656A (en) Semiconductor device
JPH03205870A (en) Semiconductor device
JPS6237811B2 (en)
JPS62112361A (en) Complementary semiconductor device