JPH0621364A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0621364A
JPH0621364A JP4175643A JP17564392A JPH0621364A JP H0621364 A JPH0621364 A JP H0621364A JP 4175643 A JP4175643 A JP 4175643A JP 17564392 A JP17564392 A JP 17564392A JP H0621364 A JPH0621364 A JP H0621364A
Authority
JP
Japan
Prior art keywords
region
conductivity type
ferroelectric film
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4175643A
Other languages
Japanese (ja)
Inventor
Maho Ushikubo
真帆 牛久保
Kazuyuki Hamada
和之 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4175643A priority Critical patent/JPH0621364A/en
Publication of JPH0621364A publication Critical patent/JPH0621364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device enabling simplification of a process, by forming an electrode on a laminated ferroelectric film. CONSTITUTION:When a voltage of -Vcc is impressed on an electrode 15 and a silicon substrate 1 is grounded, the part of a P2T film 12 covered with the electrode 15 is polarized upward and, therefore, holes are induced in the surface of the silicon substrate 1 in the part of a P region 2 between a drain region 4 and a source region 5. When a voltage of +Vcc is impressed on an electrode 16 and the silicon substrate 1 is grounded likewise, the part of the P2T film 12 covered with the electrode 16 is polarized downward and, therefore, electrons are induced in the surface of the silicon substrate 1 having no impurities between the drain region 4 and the source region 5. Accordingly, a Pn junction is formed between the drain region and the source region by the holes and the electrons and a ferroelectric film in an isolating region can be prepared simultaneously when a gate ferroelectric film of FET is prepared. Therefore a process of isolating discrete FETs can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関する。さ
らに詳しくはプレーナ型のFET構造を持つ不揮発性メ
モリにおいて個々のFET間の分離領域に強誘電体膜を
用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device. More specifically, it relates to a semiconductor device using a ferroelectric film in an isolation region between individual FETs in a nonvolatile memory having a planar FET structure.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】一般
に、MOSFET間の配線を絶縁膜の上で行うと、2つ
のMOSFET間では同じようなMOS構造となるため
に、配線の電圧により絶縁膜の下でチャネルが形成さ
れ、リークが発生することがある。このリークをなくす
ために、従来CMOS集積回路におけるnMOSFET
とpMOSFETの分離をフィールド絶縁膜を厚くす
る、表面不純物密度を高くする等の方法が使われてき
た。
2. Description of the Related Art Generally, when wiring between MOSFETs is performed on an insulating film, a similar MOS structure is formed between two MOSFETs. Channels may form below and leaks may occur. In order to eliminate this leak, nMOSFETs in conventional CMOS integrated circuits have been used.
The method of separating the pMOSFET from the pMOSFET has been used such as thickening the field insulating film and increasing the surface impurity density.

【0003】しかしながら、フィールド絶縁膜を厚くす
る方法は、絶縁膜が厚くなりすぎてMOSFETのゲー
ト絶縁膜との段差が大きくなり、配線時に断線を生じる
恐れがあった。また表面不純物密度を高くする方法では
nMOSFETとpMOSFETを分離するためには2
つのMOSFET間に不純物をドープする必要があり、
製造工程が多くなるという問題があった。
However, in the method of thickening the field insulating film, the insulating film becomes too thick and the step difference with the gate insulating film of the MOSFET becomes large, which may cause disconnection at the time of wiring. In addition, in order to separate the nMOSFET and pMOSFET by the method of increasing the surface impurity density, 2
It is necessary to dope impurities between two MOSFETs,
There is a problem that the number of manufacturing processes increases.

【0004】[0004]

【課題を解決するための手段及び作用】かくして、本発
明によれば第1の導電型を有する半導体基板の一表面層
に、第1の導電型とは反対の第2の導電型を有する不純
物領域と、該不純物領域の一表面層に相対向して配設さ
れた第1の導電型を有する一対の高濃度不純物領域と、
該第1の高濃度不純物領域をまたぐように前記半導体基
板表面上に形成された強誘電体膜及び該強誘電体膜上に
形成された電極からなる素子と、前記第2の導電型を有
する不純物領域に接することなく前記半導体基板の一表
面層に相対向して配設された第2の導電型からなる一対
の高濃度不純物領域と、該第2の導電型を有する高濃度
不純物領域をまたぐように前記半導体基板表面上に形成
された強誘電体膜及び該強誘電体膜上に形成された電極
からなる素子と、前記素子間を分離するように前記半導
体基板上に形成された強誘電体膜及び該強誘電体膜上に
形成された2つの電極を具備することを特徴とする半導
体装置が提供される。
Thus, according to the present invention, one surface layer of a semiconductor substrate having a first conductivity type has an impurity having a second conductivity type opposite to the first conductivity type. A region, and a pair of high-concentration impurity regions having a first conductivity type and arranged to face one surface layer of the impurity region,
An element having a ferroelectric film formed on the surface of the semiconductor substrate so as to straddle the first high-concentration impurity region and an electrode formed on the ferroelectric film; and having a second conductivity type. A pair of high-concentration impurity regions of the second conductivity type, which are arranged to face each other on one surface layer of the semiconductor substrate without contacting the impurity regions, and a high-concentration impurity region having the second conductivity type. A device formed of a ferroelectric film formed on the surface of the semiconductor substrate so as to stride and an electrode formed on the ferroelectric film, and a device formed on the semiconductor substrate so as to separate the devices from each other. There is provided a semiconductor device comprising a dielectric film and two electrodes formed on the ferroelectric film.

【0005】使用される基板としては、半導体材料であ
れば特に限定されるものではないがシリコン基板等が好
ましい。n型又はp型の第1の導電型の基板の一表面層
に、第1の導電型である基板とは反対の第2の導電型を
有する不純物領域を形成する。そのための注入イオンと
して、p型の導電領域とする場合はホウ素等が挙げら
れ、n型の導電層とする場合はP,As等が挙げられ
る。注入条件としては30〜150KeV、1×10 12
〜5×1013ions/cm2程度の濃度でイオン注入したの
ち、例えば非酸化性雰囲気中600〜1300℃で5分
〜1時間程度アニール処理することによって形成するこ
とができる。
The substrate used is a semiconductor material.
If it is not particularly limited, a silicon substrate or the like is preferable.
Good One surface layer of n-type or p-type first conductivity type substrate
A second conductivity type opposite to the first conductivity type substrate.
An impurity region having is formed. With the implanted ions for that
Then, when the p-type conductive region is used, boron or the like is used.
In the case of an n-type conductive layer, P, As, etc. may be mentioned.
It Injection conditions are 30 to 150 KeV, 1 × 10 12
~ 5 x 1013ions / cm2Ion-implanted at about the same concentration
Then, for example, in a non-oxidizing atmosphere at 600 to 1300 ° C for 5 minutes
It can be formed by annealing for about 1 hour.
You can

【0006】第2の導電型を有する不純物領域の一表面
層に、第1の導電型を有する一対の高濃度不純物領域
(ソース領域及びドレイン領域)を形成する。そのため
の注入イオンとして、p+型の導電領域とする場合はホ
ウ素等が挙げられ、n+型の導電層とする場合はP,A
s等が挙げられる。注入条件としては、10〜50Ke
V、1×1015〜5×1016ions/cm2程度の濃度でイオ
ン注入したのち、例えば非酸化性雰囲気中600〜13
00℃で5分〜1時間程度アニール処理することによっ
て形成することができる。
A pair of high-concentration impurity regions (source region and drain region) having the first conductivity type are formed in one surface layer of the impurity region having the second conductivity type. Boron or the like may be used as the implanted ions for that purpose when the p + type conductive region is used, and P and A are used when the n + type conductive layer is used.
s and the like. The injection conditions are 10 to 50 Ke.
V after ion implantation at a concentration of about 1 × 10 15 to 5 × 10 16 ions / cm 2 , for example, 600 to 13 in a non-oxidizing atmosphere.
It can be formed by annealing at 00 ° C. for about 5 minutes to 1 hour.

【0007】n型又はp型の第1の導電型の基板の一表
面層に、第2の導電型領域に接することなく第2の導電
型を有する一対の高濃度不純物領域(ソース領域及びド
レイン領域)を形成する。そのための注入イオンとし
て、p+型の導電領域とする場合はホウ素等が挙げら
れ、n+型の導電層とする場合はP,As等が挙げられ
る。注入条件としては10〜50KeV、1×1015
5×1016ions/cm2程度の濃度でイオン注入したのち、
例えば非酸化性雰囲気中600〜1300℃で5分〜1
時間程度アニール処理することによって形成することが
できる。
On one surface layer of the n-type or p-type first conductivity type substrate, a pair of high-concentration impurity regions (source region and drain) having the second conductivity type without being in contact with the second conductivity type region. Area) is formed. Boron or the like may be used as the implanted ions for forming the p + type conductive region, and P, As or the like may be used as forming the n + type conductive layer. The injection conditions are 10 to 50 KeV, 1 × 10 15 to
After ion implantation at a concentration of about 5 × 10 16 ions / cm 2 ,
For example, in a non-oxidizing atmosphere at 600 to 1300 ° C. for 5 minutes to 1
It can be formed by annealing for about an hour.

【0008】次に強誘電体膜をMOCVD法、スパッタ
リング法等によって、第1の導電型を有する高濃度不純
物領域、第2の導電型を有する高濃度不純物領域をまた
ぐように積層し、同時に各素子間を分離するように半導
体基板上に積層する。使用できる強誘電体膜としてはチ
タン酸ジルコン酸鉛(PZT)、PLZT等が挙げら
れ,この強誘電体膜9は公知の方法、例えばPZTを用
いる場合、MOCVD法によってPb(C254、Z
n(DPM)4及びTi(i−C374等を用いて膜厚
0.1〜10μmで形成することが好ましい。
Next, a ferroelectric film is laminated by MOCVD, sputtering or the like so as to straddle the high-concentration impurity region having the first conductivity type and the high-concentration impurity region having the second conductivity type, and at the same time, each of them is formed. It is laminated on a semiconductor substrate so as to separate the elements. Examples of the ferroelectric film that can be used include lead zirconate titanate (PZT) and PLZT. The ferroelectric film 9 can be formed by a known method, for example, when PZT is used, Pb (C 2 H 5 ) is formed by MOCVD. 4 , Z
It is preferable to use n (DPM) 4 and Ti (i-C 3 H 7 ) 4 to form a film having a thickness of 0.1 to 10 μm.

【0009】次に、積層された強誘電体膜上に電極を形
成する。ここで同時に各素子間を分離するように半導体
基板上に積層された強誘電体膜上の電極は、各素子間の
境を中心として5〜10nmの間隔で2つ形成する。こ
の電極の形成方法としては公知の方法、例えば、金属タ
ーゲットを用いるスパッタリング法、CVD法あるいは
蒸着法等によって形成することができ、電極の膜厚は
0.1〜10μm程度が好ましい。また電極に使用され
る材料としては、例えばAl、Pt等、通常電極として
用いられる金属を用いることができる。
Next, electrodes are formed on the laminated ferroelectric films. Here, two electrodes on the ferroelectric film laminated on the semiconductor substrate at the same time so as to separate the respective elements are formed at intervals of 5 to 10 nm with the boundary between the elements as the center. The electrode can be formed by a known method, for example, a sputtering method using a metal target, a CVD method, an evaporation method, or the like, and the thickness of the electrode is preferably about 0.1 to 10 μm. Further, as the material used for the electrodes, for example, Al, Pt, or other metals that are commonly used for electrodes can be used.

【0010】以上の工程によって本発明の半導体装置が
形成できる。
The semiconductor device of the present invention can be formed by the above steps.

【0011】[0011]

【実施例】以下図1に基づいてさらに詳細に説明する。
図1は本発明の強誘電体記憶素子の断面構造を示した図
である。1は第1の導電型を有するn型シリコン基板、
2はn型シリコン基板表面層にほう素をドープした第2
の導電型を有する不純物領域であるp領域、3及び4は
p領域2のシリコン基板表面層にリンを高濃度にドープ
した第1の導電型を有するn+高濃度不純物領域である
ソース領域及びドレイン領域、5及び6はn型シリコン
基板表面層にほう素を高濃度にドープした第2の導電型
を有するp+高濃度不純物領域であるソース領域及びド
レイン領域、7及び9はn+領域及びp+領域のソース電
極、8及び10はn+領域及びp+領域のドレイン電極、
11、12及び13はソース電極とドレイン電極間のシ
リコン基板1の表面上に形成された強誘電体膜、14、
15、16及び17は強誘電体膜11、12及び13上
に積層された電極である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A more detailed description will be given below with reference to FIG.
FIG. 1 is a view showing a sectional structure of a ferroelectric memory element of the present invention. 1 is an n-type silicon substrate having a first conductivity type,
2 is the second n-type silicon substrate surface layer doped with boron
Are p + regions 3 and 4 which are impurity regions having a conductivity type of n + high concentration impurity regions having a first conductivity type in which the silicon substrate surface layer of the p region 2 is heavily doped with phosphorus, and The drain regions 5 and 6 are source regions and drain regions which are p + high-concentration impurity regions having a second conductivity type in which the surface layer of the n-type silicon substrate is heavily doped with boron, and 7 and 9 are n + regions. And p + region source electrodes, 8 and 10 are n + region and p + region drain electrodes,
11, 12 and 13 are ferroelectric films formed on the surface of the silicon substrate 1 between the source electrode and the drain electrode, 14,
Reference numerals 15, 16 and 17 are electrodes laminated on the ferroelectric films 11, 12 and 13.

【0012】作製方法は以下の通りである。n型シリコ
ン基板1を熱酸化して酸化膜膜を形成し、所望の領域の
酸化膜をエッチングによって除去した。次に露出したn
型シリコン基板1の表面層にほう素を100KeV、1
×1013ions/cm2でイオン注入し、1000℃でアニー
ル処理を施してp領域2を形成した。次に露出させた領
域に熱酸化法によって酸化膜を形成し、所望の領域の酸
化膜をエッチングによって除去した。次に露出させたp
領域2の表面層にリンを50KeV、5×1015ions/c
m2でイオン注入し、1000℃でアニール処理を施して
+領域であるソース領域3及びドレイン領域4を形成
した。次に露出させた領域に熱酸化法によって酸化膜を
形成した。さらにp領域2に接しない基板1の領域にイ
オン注入するために所望の領域の酸化膜をエッチングに
よって除去した。次に露出させた基板1の表面層にほう
素を20KeV、5×1015ions/cm2でイオン注入し、
1000℃でアニール処理を施してp+領域であるソー
ス領域5及びドレイン領域6を形成し、露出させた領域
に熱酸化法によって酸化膜を形成した。
The manufacturing method is as follows. The n-type silicon substrate 1 was thermally oxidized to form an oxide film, and the oxide film in a desired region was removed by etching. Next exposed n
Type silicon substrate 1 has a surface layer of boron of 100 KeV, 1
Ions were implanted at × 10 13 ions / cm 2 and annealed at 1000 ° C. to form the p region 2. Next, an oxide film was formed in the exposed region by a thermal oxidation method, and the oxide film in a desired region was removed by etching. Next exposed p
Phosphorus is added to the surface layer of the region 2 at 50 KeV, 5 × 10 15 ions / c
Ion implantation was performed at m 2 and annealing treatment was performed at 1000 ° C. to form a source region 3 and a drain region 4 which are n + regions. Next, an oxide film was formed on the exposed region by a thermal oxidation method. Further, the oxide film in a desired region was removed by etching in order to implant ions into the region of the substrate 1 not in contact with the p region 2. Next, boron is ion-implanted into the exposed surface layer of the substrate 1 at 20 KeV and 5 × 10 15 ions / cm 2 ,
Annealing treatment was performed at 1000 ° C. to form a source region 5 and a drain region 6 which are p + regions, and an oxide film was formed on the exposed region by a thermal oxidation method.

【0013】次にソース領域3とドレイン領域4、ソー
ス領域5とドレイン領域6及びソース領域5とドレイン
領域4の間の酸化膜をエッチングで除去し、露出したシ
リコン基板1の表面上に膜厚300nmでPZT膜(P
t(Zr1-XTiX)O3:X=0.3〜0.6)11、
12及び13をPb(C254、Zn(DPM)4及び
Ti(i−C374を用いてMOCVD法によって形
成し、全面に熱酸化法によって酸化膜を形成した。
Next, the oxide film between the source region 3 and the drain region 4, the source region 5 and the drain region 6 and between the source region 5 and the drain region 4 is removed by etching to form a film on the exposed surface of the silicon substrate 1. PZT film (P
t (Zr 1-X Ti X ) O 3 : X = 0.3 to 0.6) 11,
12 and 13 are formed by Pb (C 2 H 5) 4 , Zn (DPM) 4 and Ti (i-C 3 H 7 ) MOCVD method using 4, an oxide film was formed by the entire surface thermal oxidation.

【0014】次に、ソース領域3及び5、ドレイン領域
4及び6、PZT膜11、12及び13及びPZT膜1
2上の酸化膜をエッチングで取り除き、それぞれAl電
極7、8、9、10、14、15、16及び17をスパ
ッタ法により膜厚0.3μmで形成した。ここで電極1
5及び16はn型基板1とp型拡散領域との境を中心と
して10nmの間隔で積層しPZT膜12を十分覆うよ
うに作製した。
Next, the source regions 3 and 5, the drain regions 4 and 6, the PZT films 11, 12 and 13 and the PZT film 1 are formed.
The oxide film on 2 was removed by etching, and Al electrodes 7, 8, 9, 10, 14, 15, 16 and 17 were formed to a thickness of 0.3 μm by the sputtering method. Here electrode 1
5 and 16 were laminated at intervals of 10 nm centering on the boundary between the n-type substrate 1 and the p-type diffusion region, and were manufactured so as to sufficiently cover the PZT film 12.

【0015】この素子の動作は次の通りである。電極1
5に−VCCの電圧を印加し、シリコン基板1を接地する
ことにより、PZT膜12のうち電極15によって覆わ
れている部分は上向きに分極する。このため、ドレイン
領域4とソース領域5の間のp領域2の部分のシリコン
基板1の表面には正孔が誘起される。同様に、電極16
に+VCCの電圧を印加し、シリコン基板1を接地するこ
とにより、PZT膜12のうち電極16によって覆われ
ている部分は下向きに分極する。このため、ドレイン領
域4とソース領域5の間の不純物拡散のないシリコン基
板1の表面に電子が誘起される。この誘起された正孔と
電子によりドレイン領域4とソース領域5の間にpn結
合が形成され、従来の表面不純物密度を高くして分離す
る方法と同等な効果が得られる。
The operation of this device is as follows. Electrode 1
5 a voltage of -V CC is applied to, by grounding the silicon substrate 1, the portion covered by the electrodes 15 of the PZT film 12 is polarized upward. Therefore, holes are induced on the surface of the silicon substrate 1 in the portion of the p region 2 between the drain region 4 and the source region 5. Similarly, the electrode 16
By applying a voltage of + V CC to and grounding the silicon substrate 1, the portion of the PZT film 12 covered by the electrode 16 is polarized downward. For this reason, electrons are induced on the surface of the silicon substrate 1 where there is no impurity diffusion between the drain region 4 and the source region 5. A pn bond is formed between the drain region 4 and the source region 5 by the holes and electrons thus induced, and an effect equivalent to that of the conventional method of increasing the surface impurity density and separating is obtained.

【0016】[0016]

【発明の効果】この素子構造によれば、分離領域の強誘
電体膜がFETのゲート強誘電体膜作製時に同時に作製
できるので、個々のFETを分離するプロセスが簡略化
され、低コスト化が実現できる。
According to this element structure, the ferroelectric film in the isolation region can be formed at the same time when the gate ferroelectric film of the FET is formed. Therefore, the process for separating the individual FETs is simplified and the cost is reduced. realizable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1 n型シリコン基板 2 p型ドープ領域 3 n+ソース領域 4 n+ドレイン領域 5 p+ソース領域 6 p+ドレイン領域 7、8、9、10 電極 11、12、13 強誘電体膜 14、15、16、17 電極1 n-type silicon substrate 2 p-type doped region 3 n + source region 4 n + drain region 5 p + source region 6 p + drain region 7, 8, 9, 10 electrodes 11, 12, 13 ferroelectric film 14, 15 , 16, 17 electrodes

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電型を有する半導体基板の一表
面層に、第1の導電型とは反対の第2の導電型を有する
不純物領域と、該不純物領域の一表面層に相対向して配
設された第1の導電型を有する一対の高濃度不純物領域
と、該第1の高濃度不純物領域をまたぐように前記半導
体基板表面上に形成された強誘電体膜及び該強誘電体膜
上に形成された電極からなる素子と、前記第2の導電型
を有する不純物領域に接することなく前記半導体基板の
一表面層に相対向して配設された第2の導電型からなる
一対の高濃度不純物領域と、該第2の導電型を有する高
濃度不純物領域をまたぐように前記半導体基板表面上に
形成された強誘電体膜及び該強誘電体膜上に形成された
電極からなる素子と、前記素子間を分離するように前記
半導体基板上に形成された強誘電体膜及び該強誘電体膜
上に形成された2つの電極を具備することを特徴とする
半導体装置。
1. An impurity region having a second conductivity type opposite to the first conductivity type in one surface layer of a semiconductor substrate having a first conductivity type, and a surface region of the impurity region facing each other. And a pair of high-concentration impurity regions having a first conductivity type, a ferroelectric film formed on the surface of the semiconductor substrate so as to straddle the first high-concentration impurity region, and the ferroelectric film. An element formed of an electrode formed on a body film, and a second conductivity type disposed so as to face one surface layer of the semiconductor substrate without contacting the impurity region having the second conductivity type. From a pair of high-concentration impurity regions and a ferroelectric film formed on the surface of the semiconductor substrate so as to straddle the high-concentration impurity region having the second conductivity type, and an electrode formed on the ferroelectric film. Formed on the semiconductor substrate so as to separate the element and the element A semiconductor device comprising: a ferroelectric film formed on the ferroelectric film; and two electrodes formed on the ferroelectric film.
JP4175643A 1992-07-02 1992-07-02 Semiconductor device Pending JPH0621364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175643A JPH0621364A (en) 1992-07-02 1992-07-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175643A JPH0621364A (en) 1992-07-02 1992-07-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0621364A true JPH0621364A (en) 1994-01-28

Family

ID=15999678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175643A Pending JPH0621364A (en) 1992-07-02 1992-07-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0621364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771644B2 (en) 2003-07-02 2010-08-10 Ansell Healthcare Products Llc Textured surface coating for gloves and method of making
US7814570B2 (en) 2005-01-12 2010-10-19 Ansell Healthcare Products Llc Latex gloves and articles with geometrically defined surface texture providing enhanced grip method for in-line processing thereof
US9695292B2 (en) 2013-11-26 2017-07-04 Ansell Limited Effervescent texturing
US10292440B2 (en) 2015-03-10 2019-05-21 Ansell Limited Supported glove having an abrasion resistant nitrile coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771644B2 (en) 2003-07-02 2010-08-10 Ansell Healthcare Products Llc Textured surface coating for gloves and method of making
US7814570B2 (en) 2005-01-12 2010-10-19 Ansell Healthcare Products Llc Latex gloves and articles with geometrically defined surface texture providing enhanced grip method for in-line processing thereof
US9695292B2 (en) 2013-11-26 2017-07-04 Ansell Limited Effervescent texturing
US10292440B2 (en) 2015-03-10 2019-05-21 Ansell Limited Supported glove having an abrasion resistant nitrile coating

Similar Documents

Publication Publication Date Title
US6462366B1 (en) Ferroelectric nonvolatile transistor
KR930009030B1 (en) Process for forming bipolar transistor and high voltage cmos transistor in a single ic chip
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5607868A (en) Method of fabricating semiconductor device with channel ion implantation through a conductive layer
JP2591927B2 (en) DRAM cell manufacturing method
JPH0645603A (en) Mos thin-film transistor
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JPH05865B2 (en)
US5773339A (en) Method of making diffused layer resistors for semiconductor devices
JPH0621364A (en) Semiconductor device
JPS63278265A (en) Manufacture of semiconductor bicmos device
JP2629995B2 (en) Thin film transistor
JP3180781B2 (en) Method for manufacturing MOS type semiconductor device
JPH0379035A (en) Mos transistor and manufacture thereof
JPH05110003A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0330470A (en) Semiconductor device
JP2000340674A (en) Mos capacitor and manufacture of the same
JP2888055B2 (en) Thin film transistor
JPH06314697A (en) Manufacture of thin-film transistor
JP2001185555A (en) Method for manufacturing semiconductor device
JP2638685B2 (en) Semiconductor device and manufacturing method thereof
JP2971083B2 (en) Semiconductor device
JPH0621464A (en) Thin film mos transistor
KR20000027814A (en) Method for manufacturing dual gate oxidation layer of analog semiconductor device