JPS5946826A - Infrared-ray detector - Google Patents

Infrared-ray detector

Info

Publication number
JPS5946826A
JPS5946826A JP57158396A JP15839682A JPS5946826A JP S5946826 A JPS5946826 A JP S5946826A JP 57158396 A JP57158396 A JP 57158396A JP 15839682 A JP15839682 A JP 15839682A JP S5946826 A JPS5946826 A JP S5946826A
Authority
JP
Japan
Prior art keywords
infrared
bimorph
detector
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57158396A
Other languages
Japanese (ja)
Other versions
JPH0156367B2 (en
Inventor
Takeshi Nakada
武志 中田
Ichiro Nakahara
一郎 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57158396A priority Critical patent/JPS5946826A/en
Publication of JPS5946826A publication Critical patent/JPS5946826A/en
Publication of JPH0156367B2 publication Critical patent/JPH0156367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/38Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids
    • G01J5/44Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids using change of resonant frequency, e.g. of piezoelectric crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To interrupt exactly infrared rays made incident to an infrared-ray detecting body without being affected by room temp. (the temp. of an oscillator to increase the precision of detection, by providing a temp. detector outputting a DC signal for DC-biasing the oscillator. CONSTITUTION:A diode 56 for bimorph functioning as a temp. detector arranged in the vicinity of a bimorph 33 of an infrared-ray detector 4 is connected to a differential amplifier 57, an output of an inverter 59 is OV in such a case that the temp. of the bimorph 33 is 25 deg.C and positive DC voltage caused by raised temp. of 5 deg.C is outputted in the case of 30 deg.C, added with a pulse from the oscillator 45 by an adding device 60 and impressed to the first oscillating electrode 37. The bimorph 33 becomes the DC-biased state by DC voltage and bends to the A direction, the infrared-ray untransparent part of an opposing body 30 is situated circumferentially movably at the infrared-ray transparent part of an opposing body 27, and the infrared rays made incident to the infrared-ray detecting body 5 are intercepted perfectly.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は赤外線検出器に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to an infrared detector.

(ロ)従来技術及びその問題点 近時の赤外線検出器では、その赤外線検出部に例えば集
電型の赤外線検出体が内蔵されている。
(B) Prior art and its problems In recent infrared detectors, for example, a current collecting type infrared detector is built into the infrared detector.

斯る赤外線検出体は入射赤外線の変化量に基ついて電荷
を発生する特性を有し、又上記赤外線検出体の検出精度
は入射赤外線級の変化が周期的である径内上し、従って
上記赤外線検出体に入射する赤外線を周期的に断続する
必要があり、このために第1図a及びbに示す如く赤外
線検出器(1)のMij方にはモータ〈2)によって周
期的に回転駆動きれる金属チ3/バ(3)が配置きれて
いる。
Such an infrared detector has the property of generating electric charge based on the amount of change in incident infrared light, and the detection accuracy of the infrared detector increases within a radius where the change in the incident infrared light level is periodic. It is necessary to periodically interrupt the infrared rays incident on the detection object, and for this purpose, as shown in Figure 1 a and b, the Mij side of the infrared detector (1) is periodically driven to rotate by a motor (2). The metal tip 3/bar (3) is fully placed.

しかし乍ら、斯るチョンバ(3)は形状が大きくスペー
ス上の問題なとがある。
However, such a chomba (3) is large in shape and poses a problem in terms of space.

そこで、第2図に示す如き赤外線検出器〈4)が考え出
されている。同図において、(5)はタンタル酸’)f
つl、(LiTaO3)単結晶から成り入射赤外線変化
量に応じて電荷を発生ずる焦IE型の赤外線検出体、(
6)及び(7)は夫々該赤外線検出体の表、裏面にニク
ロク蒸着膜にて形成された表、裏面電極、(8)は銅、
燐青銅なとからなる金属性支持台で、該支持台上には、
上記裏面電極(7)を支持合(8ン上面に対向するよう
にして、上記赤外線検出体(5)が銀ペース1−なとの
導電性接着剤(9)にて固着されている。
Therefore, an infrared detector (4) as shown in FIG. 2 has been devised. In the same figure, (5) is tantalic acid') f
A pyro-IE type infrared detector, which is made of (LiTaO3) single crystal and generates a charge according to the amount of change in incident infrared rays;
6) and (7) are front and back electrodes formed on the front and back surfaces of the infrared detector using Nicroc vapor deposition films, respectively; (8) is copper;
A metal support made of phosphor bronze, on which are
The infrared detector (5) is fixed with a conductive adhesive (9) such as silver paste 1, so that the back electrode (7) is supported and faces the upper surface.

〈10)は上記赤外線検出体(5)が高抵抗であるが故
に、赤外線検出器(4)として低抵抗とするためのイン
ピーダンス変換回路(11)が配置されたアルミナ基板
、(12)は金属性のキャップ(13)及びヘッダ(1
4)からなる収納体で、該収納体内の上記ヘッダ(14
) Jlには上記支持台(8)及び基板(10)が固定
されている。(15)は上記ヘッダ(14)に直接的に
植設きれたアース端子で、該端子は上記支持台(8)及
び接着剤(9)を介して上記裏面電極(7)に電気的に
接続されている。(16)及び(17)は夫々上記へン
ダ(14〉に絶縁材り18)、(19)を介して植設芒
れた第1、第2リード端子、(20)は上記表面電極(
6)とインピーダンス変換回路(11)とを結線するリ
ード線、(21)、(22)はト記インピーダンス変換
回路(11〉と第1、第2リード端子(16〉、〈17
)とを結線するり一ド線である。
(10) is an alumina substrate on which an impedance conversion circuit (11) is arranged to make the infrared detector (4) low resistance because the infrared detector (5) has a high resistance, and (12) is a metal substrate. sexual cap (13) and header (1)
4), the header (14) inside the container.
) The support stand (8) and the substrate (10) are fixed to Jl. (15) is a ground terminal installed directly on the header (14), and this terminal is electrically connected to the back electrode (7) via the support base (8) and adhesive (9). has been done. (16) and (17) are the first and second lead terminals implanted via the insulating material 18 and (19) respectively on the solder (14); (20) is the surface electrode (
Lead wires (21) and (22) connect the impedance conversion circuit (11) and the first and second lead terminals (16> and 17).
) is connected with a single lead wire.

り23)は上記赤外線検出体(5)に表面電極(6)側
がら赤外線を入射七しめるへ]−記キ\・/プ(132
に穿設された開(二J、(24)は該開11を閉室4る
赤外線透過体で、該透過体は波及2〜15〃mの赤外線
に対する透過率が高い厚さ数100 a m O)7リ
ー1ン又はゲルマニウム板からなっている。
23) injects infrared rays into the infrared detector (5) from the surface electrode (6) side.
The opening (2J, (24)) is an infrared transmitting body that closes the opening 11, and the transmitting body has a thickness of several hundred am ) Made of 7-lead or germanium plate.

(25)はアルミ、ニウムなとからなり上記赤外線検出
体(5)及びインヒータ〉メ変換回路(11)の部分を
覆う/−ルド体、(26)は該シールド体の検出体(5
)L方に位置する部分に穿設された開111 ’Cある
(25) is a shield body made of aluminum or nium and covers the infrared detector (5) and the in-heater conversion circuit (11); (26) is a shield body made of aluminum or nickel;
) There is an opening 111'C drilled in the part located on the L side.

(27)は該開【1に11y、着辷れた゛F−面状の第
1体向体で、該第1体向体には第3図aに示−4々11
<、アルミニウム、金、銀なとの赤外線非運」b材料が
らなり紙面に平行な方向く第2図)に−Cにi4形線状
に延設きれた複数の第1赤外線非透過部(28)、(2
8)及び断る第1赤外線非透過ごIt(28)、(28
)−の各々の間に位置する第1赤外線透過部(29)、
 (29)。
(27) is a first facing body in the shape of a F-plane which has reached 11y on the opening [1,
A plurality of first infrared non-transparent parts (Fig. 2) extending in an i4-shaped line in a direction parallel to the paper surface (Fig. 2). 28), (2
8) and refuse the first infrared transmission
) - a first infrared transmitting part (29) located between each of
(29).

が形成されている。そし−(、−1−2第1赤外線非透
過部(28)、 (28)、 の幅W1、Woハ大々1
oo〃m、1205mで、上記第1赤外線透過部(29
)、(29)・の幅wl’、W2は一]二足W1、W2
と同一=l i、!、である。(30)は上記第1対向
体(27)に平行にして近接対向ずへく配置された平面
状の第2対向体で、該第2対向体には第3図すに示を如
く、上記第1赤外線非透過部(28)、 (28)、 
 と同一材料からなり紙面に平イJな方向(第2図)に
て扇形線状に延設された複数の第2赤外線非透過部(3
1)、 (31)、及び斯る第2赤外線非透過部(31
)、(31)、・の各々の間に位置する第2赤外線透過
部(32)、 (32)、か形成きれている。そして、
上記第2赤外線非透過部(31)、(31)、 ・の幅
w1、w2及び上記の第2赤外線透過部(32)、(3
2)、 の幅Wl’、W2’は夫々上記第1赤外線非透
過部(28)、(28)、・の幅W1、W2及び第1赤
外線透過部(29)、 (29)、 ・の幅wl  、
w2°と同一寸法である。
is formed. So-(,-1-2 first infrared non-transmissive part (28), (28), width W1, Wo ha approx. 1
ooッm, 1205 m, the first infrared transmitting section (29
), (29) width wl', W2 is 1] two pairs W1, W2
Same as = l i,! , is. (30) is a planar second opposing body disposed in parallel with the first opposing body (27), close to and opposite to the first opposing body; First infrared non-transmissive portion (28), (28),
A plurality of second infrared non-transmissive parts (3
1), (31), and the second infrared opaque portion (31)
), (31), and . The second infrared transmitting portions (32) and (32) are completely formed. and,
Widths w1 and w2 of the second infrared non-transmissive portions (31), (31), and the second infrared transmissive portions (32), (3
2) The widths Wl' and W2' of are respectively the widths W1 and W2 of the first infrared non-transmissive portions (28), (28), and the widths of the first infrared transmissive portions (29), (29), and wl,
It has the same dimensions as w2°.

(33)は強誘電体からなる2枚の圧電板或いは金属板
と強誘電体からなる圧電板を張り合わせて形成された振
動子、即ちバイモルフで、該バイモルフは直方体形状を
有しその長さρ、幅W、厚みaは夫々的30mm、 5
 mm、 0.5mmTある。そシテ、」二記バイモル
フ(33)は赤外線入射方向に垂直な方向、即ら横方向
に長くなるようにして左端(33)が上記ヘッダ(14
)に設けられた絶縁台(34)に固定され、右端(33
”)にL2第2対向体(3o)が装Mきれている。(3
5)はに記へノブ(14)に絶縁材(36)を介して植
設きれた第3リード端子、(37)、 (38)は第4
図にも丞ず如く上記バイモルフ(33)の左端(33′
)の両面に形成された第1、第2振動電極で、該第1、
第2振動電極は夫々上記第3リード端子(35)及びヘ
ッダ(14)(アース端T−(15))に接続さねてい
る。(39)はテフロンなとの樹脂からなる支持台で、
該支持台には。]二2第2対向体く3o)の遊端(30
)を摺動自在に支持する溝(4o)が刻設され(いる。
(33) is a vibrator formed by laminating two piezoelectric plates made of ferroelectric material or a metal plate and a piezoelectric plate made of ferroelectric material, that is, a bimorph, which has a rectangular parallelepiped shape and has a length ρ. , width W and thickness a are each 30 mm, 5
mm, 0.5mmT. The second bimorph (33) is made longer in the direction perpendicular to the infrared incident direction, that is, in the lateral direction, so that the left end (33) is aligned with the header (14).
) is fixed to the insulating stand (34) provided at the right end (33
”), the L2 second opposing body (3o) is fully mounted. (3
5) The third lead terminal is embedded in the knob (14) via the insulating material (36), (37) and (38) are the fourth lead terminals.
As shown in the figure, the left end (33') of the above bimorph (33)
) with first and second vibrating electrodes formed on both sides of the first and second vibrating electrodes.
The second vibrating electrodes are connected to the third lead terminal (35) and the header (14) (earth end T-(15)), respectively. (39) is a support made of resin such as Teflon.
On the support stand. ]22 The free end (30) of the second opposing body (3o)
) is carved with a groove (4o) that slidably supports it.

而して、]二二足1振動電極(37)には第3リード端
子(35)を介して所定の交流電圧、即ら周期的パルス
が印加諮れるのである力釈斯るパルスが印加されない場
合には、」−2第2対向体(3o)の第2赤外線非透過
部(31)、 (31)   は上記第1対向(4: 
(27)の第1赤外線透過部’<29)、(29)、・
 に完全に小畳する(第3区Cの斜線領域Jに位置する
)。そして、上記パルスか印加された場合には、上記パ
イセルフ(33)がA力面に撓み、第2赤外線非透過部
(31)、(31)  ・・は第1赤外線非透過部<2
8)、 (28)、・に完全に重畳する(第3図Cの杓
点領域■に位144る)。従って、」−2第1振動電極
(37)へパルスか周期的に印加されることにより、上
記バイモルフ(33)が周1[1]的にA、B方向に振
動し、上記赤外線検出体(5)には赤外線検出器(4)
外部の被検出体からの赤外線か周期的に入射する。断る
入射がなされると、赤外線検出体(5)に入射−4る赤
外線ばか周期的に変化4るために]、2赤外線検出体(
5)はこの変化針に応した電荷を発生ずる。そして、こ
の電荷は被検出体の温度と室温(第2対向体(30)の
温度)との温度差に基づいている。
Therefore, a predetermined alternating current voltage, that is, a periodic pulse, is applied to the second and second vibrating electrodes (37) via the third lead terminal (35), but no such pulses are applied. In this case, the second infrared non-transmissive portion (31), (31) of the second opposing body (3o) is the first opposing body (4:
The first infrared transmitting part' of (27)'<29), (29),
(located in the shaded area J of the third section C). When the above-mentioned pulse is applied, the pi-self (33) is bent in the A force plane, and the second infrared non-transmissive portions (31), (31) . . . become first infrared non-transmissive portion<2
8), (28), and (located at 144 in the ladle area ■ in Fig. 3C). Therefore, by periodically applying pulses to the ``-2 first vibrating electrode (37), the bimorph (33) vibrates in directions A and B in one cycle [1], and the infrared detector ( 5) has an infrared detector (4)
Infrared rays from an external object to be detected are periodically incident. When the infrared rays are incident on the infrared detector (5), the infrared rays incident on the infrared detector (5) change periodically.
5) generates a charge corresponding to this changing needle. This charge is based on the temperature difference between the temperature of the object to be detected and the room temperature (temperature of the second opposing object (30)).

第5図(4ト記赤外線検出器(4)を含む回路を示し、
赤外線検出器(4)内のインピーダンス変換回路<11
)は1010〜1011Ωの高人力抵抗(41)、FE
T(電界効果トランンスタ)(42)及び約10にΩの
出力抵抗(43)にて形成されている。
FIG. 5 shows a circuit including the infrared detector (4),
Impedance conversion circuit in infrared detector (4) <11
) is a high resistance of 1010 to 1011Ω (41), FE
It is formed by a T (field effect transistor) (42) and an output resistor (43) of approximately 10Ω.

そして、上記赤外線検出器(4)l:i第1リード端子
(]6)にて直7!lE電月−か供341さI[,1記
パイ−eルノ(33)ノ振動時ニハm2 リ−+:端r
(17)カC)?g!検出体の温度と室温との温度差に
応した振幅L!V4る第6図aの如き交流信υeが出力
される。(44)は室温δjll定をイjない室温に応
し/、的lメL111“・3を出力4る室温用ダイオー
ド、(45)は無安定;ルfパイブレークからなり第6
1″Abの如さ周期的バルー!、rを発振−4イ)発振
器、(46)は1.記パルスrにノ、(7)い′CL記
上記モルノ(33)を振動(lしめるノーめの周1+目
的パルスを出力°4る駆動回路、(47)、(,48)
、 (49)i、i直流増幅器、(50)はノイルタ増
幅器、(51)は同期検波器で、該検波器は、j記赤外
線検出’A:4 (4)からの交流信号eと」二足発振
器(45)からのペルスrとの同期をとり、被検出体の
温度か室温、J、り高い場合はその温度差に応した11
−のIf′I/AL I+”j シじを出力し、被検出
体の温度が室温より低い場合はその4度差に応した負の
直?lL信シ3を出力4イ)。
Then, direct 7! at the infrared detector (4) l:i first lead terminal (]6)! lEdengetsu-kasu 341 sa I[, 1st pie-e runo (33) no vibration time niha m2 Lee-+: end r
(17) C)? g! The amplitude L corresponding to the temperature difference between the temperature of the object to be detected and the room temperature! An alternating current signal υe as shown in FIG. 6a from V4 is output. (44) is a diode for room temperature that outputs the target L111"・3 in response to the room temperature where the room temperature δjll is not constant, and (45) is an astable;
1" Ab is like a periodic balloon!, oscillate r - 4 A) Oscillator, (46) is the 1. pulse r, (7) Drive circuit that outputs 1 + target pulse, (47), (,48)
, (49) i, i is a DC amplifier, (50) is a Noirtor amplifier, and (51) is a synchronous detector, which is an AC signal e from j infrared detection 'A: 4 (4) and '2. It is synchronized with the pulse r from the foot oscillator (45), and the temperature of the object to be detected is the room temperature, J, or if it is higher than that, 11 is adjusted according to the temperature difference.
- If'I/AL I+"j is output, and if the temperature of the object to be detected is lower than room temperature, a negative direct signal corresponding to the 4 degree difference is output (4a).

即ら、赤外線検出器(4)の出力文流ff4 ’;’ 
eとしては、被検出体の温度が室温より高いと1’ (
III ’I′:す゛イクルe+がパルスrと 致し、
被検出体の温度が室温より低いと負側半サイクルe−が
パルスrと一致する。そして、上記同期検波器(51)
からは、パルスrと正側半サイクルe十との一致がとれ
ると被検出体と室温との温度差に応した正の直流信号が
出力され、パルスrと負側半サイクルe−との一致かと
れると被検出体と室温との温度差に応した負の直流信号
が出力される。
That is, the output flow of the infrared detector (4) ff4';'
e is 1' (
III 'I': Cycle e+ meets pulse r,
When the temperature of the object to be detected is lower than room temperature, the negative half cycle e- coincides with the pulse r. And the synchronous detector (51)
When the pulse r and the positive half cycle e+ are matched, a positive DC signal corresponding to the temperature difference between the object to be detected and the room temperature is output, and the pulse r and the negative half cycle e- are matched. When it is removed, a negative DC signal corresponding to the temperature difference between the object to be detected and the room temperature is output.

(52)は斯る同期検波器(51)からの直流信号と室
温用ダイオード(44)の室温に応した直流信号とを互
いに加算憚る合成回路で、該回路は斯る加算にて被検出
体の温度に応した信号を出力する。(53)は斯る温度
信号を所望回路へ出力するだめの出力端子である。
(52) is a synthesis circuit that adds together the DC signal from the synchronous detector (51) and the DC signal corresponding to the room temperature of the room temperature diode (44), and this circuit adds the DC signal from the synchronous detector (51) to the room temperature diode (44). Outputs a signal according to body temperature. (53) is an output terminal for outputting the temperature signal to a desired circuit.

ここに、上記バイモルフ(33)の振動状態は室温が2
5℃の、場合のものであり、室温が例えば30”C4m
 上昇している場合にはバイモルフ(33)の振動状態
か上述に較へて著しく変化する。即ち、上記室温上昇に
より、上記バイモルフ(33)はパルスfの非発生時に
おいてもB方向に寸法mたけ撓み、第31mdに示す如
く第2赤外線非透過部(31)、(31)、・・が斜線
領域J に位1写しく第1赤外線透過部(29)、(2
9)、 に完全に重畳しな・、なり、被検出体からの赤
外線が赤外線検出体(5)にかなり入射してしまう。そ
して、パルスfか発生しノー場合には第2赤外線非透過
部〈31)、(31)   はJj点領域■°に位置し
て第1赤外線非透+a部<28)、 428)、・に完
全に重畳しなくなり、被検出体からの赤外線が赤外線検
出体(5)に充分に人!1.+ 1.ない状態となる。
Here, the vibrational state of the bimorph (33) is such that the room temperature is 2.
5℃, and the room temperature is, for example, 30"C4m
If it is rising, the vibrational state of the bimorph (33) changes significantly compared to the above. That is, due to the rise in room temperature, the bimorph (33) is deflected by a dimension m in the B direction even when the pulse f is not generated, and the second infrared non-transmissive parts (31), (31),... The first infrared transmitting portion (29), (2) is located in the shaded area J.
9) The infrared rays from the object to be detected are not completely superimposed on the infrared rays detecting object (5). Then, if the pulse f is generated and no, the second infrared non-transmissive part <31), (31) is located in the Jj point area ■° and becomes the first infrared non-transparent part +a<28), 428), . They no longer overlap completely, and the infrared rays from the object to be detected reach the infrared detecting object (5). 1. +1. There will be no.

すると、赤外線検出体(5)の入用赤外線変化量が著し
く減少し、赤外線検出器〈4)の出力としては第6図a
の交流信号e の如く小Jくなって所望振幅を有する交
liE信号eか得られなくなり、従って赤外線検出器(
4)の検出器Iffが著しく低下する。
As a result, the amount of change in the required infrared rays of the infrared detector (5) is significantly reduced, and the output of the infrared detector (4) is as shown in Figure 6a.
As the AC signal e becomes small, it is no longer possible to obtain an AC signal e with the desired amplitude.
4) The detector Iff is significantly reduced.

(ハ)実施例 本発明は断る点に鑑みてなされたものて、以下本発明実
施例を図面に基つい(詳述する。尚、従来例と同一部分
には同一・符号を記シー〔ぞの説明を! 省略する。
(C) Embodiments The present invention has been made in view of the above points, and the embodiments of the present invention will be described in detail below based on the drawings.The same parts as those of the conventional example are designated by the same symbols. Explanation! Omitted.

第7図において、(54)は上記へンタ(14)に絶縁
材(55)を介して植設された第4リード端子、(56
)はバイモルフ(33)の温度を検知して斯る検知温度
に基づいた直流型)Lを出力すべく、収納体(12)内
のバイモルフ(33)近傍に配置された温度検知器とし
ての/へイモルフ用ダイオードで、該ダイオードのアノ
ードは上記第4リード端子(54)に接続され且つカソ
ードはヘッダ(14)に接続(接地)されている。
In FIG. 7, (54) is the fourth lead terminal (56) implanted in the above-mentioned terminal (14) via an insulating material (55).
) is a temperature detector placed near the bimorph (33) in the housing (12) to detect the temperature of the bimorph (33) and output a direct current ()L based on the detected temperature. The diode for Heimorph has an anode connected to the fourth lead terminal (54) and a cathode connected (grounded) to the header (14).

第8図は斯る赤外線検出器(4゛)を含む回路を示し、
(57)は差動増幅器で、該増幅器の一入力端子には上
記ハ(モルフ用ダイオード(56)のアノードか第4リ
ード端子(54)を介して接続され、十入力端子には可
変抵抗器(58)が接続されている。
Figure 8 shows a circuit including such an infrared detector (4゛),
(57) is a differential amplifier, one input terminal of the amplifier is connected via the anode of the morph diode (56) or the fourth lead terminal (54), and the input terminal is connected to a variable resistor. (58) is connected.

斯るIi(変抵抗器(58)においては、上記差動増幅
器(57)の十入力端子に人力する直流電圧がハイ亡ル
フ温#25°Cの時に一入力端子に入力する直流電圧と
等しくなるように予め所望の抵抗値が設定されている。
In such a resistor (58), the DC voltage input to the input terminal of the differential amplifier (57) is equal to the DC voltage input to the input terminal when the high temperature is #25°C. A desired resistance value is set in advance so that

(59〉は上記差動増幅器(57)の出力を反転するイ
ンI\−夕である。該インバータの出力としてはバイモ
ルフ(33)の温度が25℃の時にはOVてあり、一方
例えは25℃より高い30℃の時にはその上昇温度5°
Cに基ついた正の直711E M、■BSか第9図Cの
如く出力される。(60)は上記駆動回路(46)を構
成する加算器で、該加算器では」二足発振器(45)か
らのパルスrの上記インバータ(59)からの直流電圧
BSが第9図dの如く加算され、その加算出力は上記第
1振動電極(37)へ印加される。
(59> is an inverter that inverts the output of the differential amplifier (57).The output of the inverter is OV when the temperature of the bimorph (33) is 25°C; When the temperature is higher than 30℃, the temperature increase is 5℃.
A positive straight line 711EM based on C, ■BS is output as shown in FIG. 9C. (60) is an adder constituting the drive circuit (46), and in this adder, the DC voltage BS from the inverter (59) of the pulse r from the bipedal oscillator (45) is as shown in FIG. 9d. The summed output is applied to the first vibrating electrode (37).

この場合、上記バイモルフ(33)は上記直lAL電圧
BSにて直流バイアスされた状態となり、この状態ヲ基
準にし゛rパルスrに基ついてA、B方向に周期的に振
動する。ここに、上記バイモルフ(33)は上記直流バ
イアス状態ではA方向に寸法m(第3図d)たけ撓み、
結果的に上昇温度5°CによるB方向へのバイモルフ(
33)の撓みがなくなる。したがって、バイモルフ(3
3)は第3図Cに示す如く第2赤外線非透過部(31)
、 (31)、 が打点領域1及び斜線領域Jに周期的
に位置して、赤外線検出体(5)に入射する赤外線が完
全に遮断きれ、赤外線検出器(4)からは第9図aの如
き交流信号e(第6図aの交1fIL信号eと同し)が
出力される。
In this case, the bimorph (33) is in a DC biased state with the direct AL voltage BS, and based on this state, it vibrates periodically in the A and B directions based on the r pulse r. Here, the bimorph (33) is deflected by a dimension m (Fig. 3 d) in the A direction in the DC bias state,
As a result, bimorph (
33) bending is eliminated. Therefore, bimorph (3
3) is the second infrared opaque part (31) as shown in Figure 3C.
, (31), are periodically located in the dot area 1 and the shaded area J, and the infrared rays incident on the infrared detector (5) are completely blocked, and the infrared rays as shown in Fig. 9a are detected from the infrared detector (4). An alternating current signal e (same as the alternating current signal e in FIG. 6a) is output.

尚、上記実施例では、室温用ダイオード(44)とバイ
モルフ用ダイオード(56〉とが各々別個に設けられて
いるが、バイモルフ用ダイオード(56)の検知温度は
収納体(12)内の温度でありこの温度は室温(第2対
向体<30)の温度)と等しいために、室温用クイオー
ド(44)を省いてバイモルフ用ダイオード(56)に
室温用ダイオード(44)の役目を兼用させることがで
きる。この場合、バイモルフ用ダイオード(56)はバ
イモルフ(33)と第2対向体(30)との温度をより
確実に検知すべく、第7図の破線に示すようにハ゛イモ
ルフ(33)と第2対向体(30)との間に配置すると
よい。そして、バイモルフ用ダイオード(56)のアノ
ードは差動増幅器(57)の−入力端子の他に直流増幅
器(49)にも接続される。
In the above embodiment, the room temperature diode (44) and the bimorph diode (56>) are provided separately, but the detected temperature of the bimorph diode (56) is based on the temperature inside the storage body (12). Since this temperature is equal to the room temperature (temperature of the second opposing body <30), it is possible to omit the room temperature quiode (44) and have the bimorph diode (56) double as the room temperature diode (44). can. In this case, in order to more reliably detect the temperature between the bimorph (33) and the second opposing body (30), the bimorph diode (56) is connected to the bimorph (33) and the second opposing body as shown by the broken line in FIG. It is preferable to arrange it between the body (30) and the body (30). The anode of the bimorph diode (56) is connected not only to the negative input terminal of the differential amplifier (57) but also to the DC amplifier (49).

(ニ)発明の効果 以上の説明から明らかな如く、本発明によれば、入射赤
外線変化量に応して電荷を発生ずる赤外線検出体、該検
出体への赤外線入射域に配置され赤外線透過部及び赤外
線非透過部を共に有する一対・の対向体、交7肛信号の
印加にて振動]2、」−記一方の対向体の赤外線透過部
及υ赤外線非透過部と上記他方の対向体の・赤外線41
透過部及び赤外線透過部が夫々重畳する状態と、[記一
対の対向体の赤外線透過部とうし及O’ 4/i<外線
非透過部とろしか重畳−4る状態とを交互に繰″J)A
刊シめるための振動子、該振動子の温度を検知し、斯る
検知温度に基つき上記振動子を直流バイアス4″るため
のiM流倍信号出力4−る温度検知器を備えたから、赤
外線検出器を小型化でき、史に赤外線検出体へ入射−4
る赤外線を室温(振動子の温度)に影響され4′に確実
に断続できて所望とする振幅の交流信号を出力でき、従
って赤外線検出器の検出精度を著しく向」二できる。
(D) Effects of the Invention As is clear from the above description, the present invention includes an infrared detector that generates a charge in accordance with the amount of change in incident infrared radiation, and an infrared transmitting section that is disposed in the infrared incident region of the detector. A pair of opposing bodies, both having an infrared transmissive part and an infrared non-transmissive part, vibrate upon application of an alternating signal]2.・Infrared 41
A state in which the transmitting part and the infrared transmitting part overlap each other and a state in which the infrared transmitting part and the non-external ray transmitting part of the pair of opposing bodies are superimposed are alternately repeated. )A
It is equipped with a temperature sensor which detects the temperature of the vibrator and outputs an iM current multiplier signal 4'' to apply a DC bias of 4'' to the vibrator based on the detected temperature. , the infrared detector can be miniaturized, and the incidence on the infrared detection object is -4
The infrared rays generated by the infrared rays can be reliably intermittent at 4' depending on the room temperature (temperature of the vibrator), and an alternating current signal with a desired amplitude can be output, thereby significantly improving the detection accuracy of the infrared detector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは夫マ従来の赤外線検出機構の側面図及び
平面図、第2図は改良されj−従来の赤外線検出器の断
面図、第3図a、b、c、dは人々同要部平面図、第4
図は第2図において矢印■方向から見た図、第5図は第
2図の赤外線検出器を含む回路図、第6図a、bは第5
図における要部信号波形図、第7図は本発明実施例赤外
線検出器の断面図、第8図は第7図の赤外線検出器を含
む回路図、第9図a、b、c、dは第8図における要部
信号波形図である。 (5)・・赤外線検出体、(12)・・・収納体、(2
3)・・・開口、(27)・・・第1対向体、(28)
、(28)、・・第1赤外線非透過部、(29)、(2
9)、・・・第1赤外線透過部、(30)・第2対向体
、 (31)、り31)、・第2赤外線非透過部、(32)
、(32)、・・・第2赤外線透過部、(33)・・バ
イモルフ、 (56)”・・バイモルフ用ダイオード。 ■    −m−〜 第4図 フD       3) 心6図
Figures 1a and b are side and plan views of a conventional infrared detection mechanism, Figure 2 is a sectional view of an improved conventional infrared detector, and Figures 3a, b, c, and d are views of people. Plan of the main part, No. 4
The figure is a diagram seen from the arrow ■ direction in Figure 2, Figure 5 is a circuit diagram including the infrared detector in Figure 2, and Figures 6 a and b are the 5
7 is a sectional view of an infrared detector according to an embodiment of the present invention, FIG. 8 is a circuit diagram including the infrared detector of FIG. 7, and FIG. 9 a, b, c, and d are 9 is a diagram of main signal waveforms in FIG. 8; FIG. (5)... Infrared detector, (12)... Storage body, (2
3)...Opening, (27)...First opposing body, (28)
, (28), . . . first infrared non-transmissive part, (29), (2
9),...First infrared transmitting portion, (30)・Second opposing body, (31), ri31),・Second infrared non-transmitting portion, (32)
, (32),...Second infrared transmitting section, (33)...Bimorph, (56)"...Diode for bimorph. ■ -m-~ Figure 4 FD 3) Core 6 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)入射赤外線変化量に応して電荷を発生する赤外線
検出体、該検出体への赤外線入射域に配置され赤外線透
過部及び赤外線非透過部を共に有する一対の対向体、交
流信号の印加にて振動し、上記一方の対向体の赤外線透
過部及び赤外線非透過部と上記他方の対向体の赤外線非
透過部及び赤外線透過部が夫々重畳する状態と、上記一
対の体向体の赤外線透過部とうし及び赤外線非透過部ど
うしが重畳する状態とを交互に繰返せしめるための振動
子、該振動子の温度を検知し、斯る検知温度に基つき上
記振動子を直流バイアスするための直lA(、信号を出
力する温度検知器を備えたことを特徴とする赤外線検出
器。
(1) An infrared detector that generates a charge according to the amount of change in incident infrared rays, a pair of opposing bodies that are placed in the infrared incident area of the detector and have both an infrared transmitting part and an infrared non-transmissive part, and application of an alternating current signal. , and the infrared transmitting portion and the infrared non-transmitting portion of the one opposing body overlap with the infrared non-transmitting portion and the infrared transmitting portion of the other opposing body, respectively, and the infrared transmitting of the pair of opposing bodies. A vibrator for alternately repeating a state in which the parts and non-infrared transmitting parts are superimposed on each other, and a vibrator for detecting the temperature of the vibrator and applying a DC bias to the vibrator based on the detected temperature. An infrared detector characterized by being equipped with a temperature detector that outputs a signal.
JP57158396A 1982-09-10 1982-09-10 Infrared-ray detector Granted JPS5946826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158396A JPS5946826A (en) 1982-09-10 1982-09-10 Infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158396A JPS5946826A (en) 1982-09-10 1982-09-10 Infrared-ray detector

Publications (2)

Publication Number Publication Date
JPS5946826A true JPS5946826A (en) 1984-03-16
JPH0156367B2 JPH0156367B2 (en) 1989-11-29

Family

ID=15670819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158396A Granted JPS5946826A (en) 1982-09-10 1982-09-10 Infrared-ray detector

Country Status (1)

Country Link
JP (1) JPS5946826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147377U (en) * 1989-05-18 1990-12-14
US5378021A (en) * 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus
KR100377806B1 (en) * 1999-11-02 2003-03-29 학교법인주성학원 Module of pyroelectric type infrared sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147377U (en) * 1989-05-18 1990-12-14
US5378021A (en) * 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus
KR100377806B1 (en) * 1999-11-02 2003-03-29 학교법인주성학원 Module of pyroelectric type infrared sensor

Also Published As

Publication number Publication date
JPH0156367B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
EP0131996A2 (en) Infra-red radiation detector
CN105917202B (en) Piezoelectric transducer
US4631406A (en) Infrared ray detector
JPS5946826A (en) Infrared-ray detector
JP2017058344A (en) Piezoelectric sensor structure
JPS622246B2 (en)
JPH06300800A (en) Potential sensor
JPH0262810B2 (en)
JPS5973742A (en) Infrared ray detecting device
JPS58129334A (en) Infrared detector
JPH037890B2 (en)
JPH0230740Y2 (en)
JPS5937431A (en) Infrared detector
JP2002095092A (en) Microphone
JPH0142726Y2 (en)
JPH0238894B2 (en)
JPH0577991B2 (en)
JP2009053138A (en) Saw sensor and saw sensor element
JPH0334668Y2 (en)
KR100310140B1 (en) Vibratory gyroscope
JPS62123324A (en) Pyroelectric type infrared detection element
JP2616654B2 (en) One-dimensional pyroelectric sensor array
JPH0313707Y2 (en)
JPH0251033A (en) Infrared detector
JPH0234592Y2 (en)