JPH037890B2 - - Google Patents

Info

Publication number
JPH037890B2
JPH037890B2 JP59074665A JP7466584A JPH037890B2 JP H037890 B2 JPH037890 B2 JP H037890B2 JP 59074665 A JP59074665 A JP 59074665A JP 7466584 A JP7466584 A JP 7466584A JP H037890 B2 JPH037890 B2 JP H037890B2
Authority
JP
Japan
Prior art keywords
infrared
passing
detector
signal
opposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59074665A
Other languages
Japanese (ja)
Other versions
JPS59230127A (en
Inventor
Kenichi Shibata
Shoichi Nakano
Toshiaki Yokoo
Yukinori Kuwano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59074665A priority Critical patent/JPS59230127A/en
Publication of JPS59230127A publication Critical patent/JPS59230127A/en
Publication of JPH037890B2 publication Critical patent/JPH037890B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、例えば被検出体の温度を被検出体の
放射する赤外線に基づいて検出するための赤外線
検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an infrared detection device for detecting, for example, the temperature of an object to be detected based on infrared rays emitted by the object.

(ロ) 従来技術 近時の例えば被検出体の温度を検出するための
赤外線検出装置では、その赤外線検出部に例えば
焦電型の赤外線検出体が内蔵されている。
(b) Prior Art In recent infrared detection devices for detecting the temperature of an object to be detected, for example, a pyroelectric infrared detector is built into the infrared detection section.

斯る赤外線検出体は入射赤外線の変化量に基づ
いた交流信号を発生する特性を有し、又上記赤外
線検出体の検出精度は入射赤外線量の変化が周期
的である程向上し、従つて上記赤外線検出体に入
射する赤外線を周期的に断続する必要があり、こ
のために第1図a及びbに示す如く赤外線検出器
1の前方にはモータ2によつて周期的に回転駆動
される金属板チヨツパ3が配置されている。斯る
構成は特公昭53−10467号公報にも示されている。
Such an infrared detector has the property of generating an alternating current signal based on the amount of change in incident infrared radiation, and the detection accuracy of the infrared detector improves as the amount of incident infrared rays changes more periodically. It is necessary to periodically interrupt the infrared rays incident on the infrared detector, and for this purpose, as shown in FIGS. A board chopper 3 is arranged. Such a configuration is also shown in Japanese Patent Publication No. 10467/1983.

しかし乍ら、斯るチヨツパ3は形状が大きくス
ペース上の問題があり、且つ上記モータ2は回転
むらを生じて必ずしもチヨツパ3を周期的に回転
駆動しないため検出精度の低下を招いてしまう。
However, such a chopper 3 has a large shape and there is a space problem, and the motor 2 has uneven rotation and does not necessarily rotate the chopper 3 periodically, resulting in a decrease in detection accuracy.

更に、上記赤外線検出器1の出力する交流信号
は、特公昭53−10467号公報に見られる如く、或
いは後述の説明から理解できると思うが、上記赤
外線検出器1に入射する赤外線の断続周期に同期
して同期検波する必要がある。即ち、そのために
上記モータ2の回転に基づいて同期パルスを発生
する同期パルス発生器を別途設ける必要がある。
Furthermore, as can be seen in Japanese Patent Publication No. 53-10467 or as will be understood from the explanation below, the AC signal output from the infrared detector 1 depends on the intermittent cycle of the infrared rays incident on the infrared detector 1. It is necessary to synchronize and perform synchronous detection. That is, for this purpose, it is necessary to separately provide a synchronous pulse generator that generates synchronous pulses based on the rotation of the motor 2.

ここに、この様な同期パルス発生器の設置にあ
たつては、赤外線検出装置の構成が複雑化すると
云う欠点がある。
However, when installing such a synchronous pulse generator, there is a drawback that the configuration of the infrared detection device becomes complicated.

(ハ) 発明の目的 本発明の目的は、赤外線検出装置の小型化、簡
素化を図り、且つ高精度の下での赤外線検出を可
能とすることにある。
(c) Object of the invention The object of the invention is to miniaturize and simplify an infrared detection device, and to enable infrared detection with high precision.

(ニ) 発明の構成 本発明の構成は、上記目的を達成すべく、入射
赤外線変化量に応じた交流信号を発生する赤外線
検出体、変位方向に対して直交する方向に交互に
延設された複数の線状の赤外線通過部及び赤外線
非通過部を有し、被検出体からの赤外線が上記検
出体に入射すべく通過する領域に位置する一対の
対向体、該一対の対向対の赤外線通過部どうし及
び赤外線非通過部どうしが略重畳する状態と、一
方の対向体の赤外線通過部及び赤外線非通過部と
他方の対向体の赤外線非通過部及び赤外線通過部
とが夫々略重畳する状態と、を周期的に繰返せし
めるべく振動する振動体、該振動体を振動せしめ
るための周期的なパルス状信号を発生するパルス
状信号発生器、該発生器の発生する上記パルス状
信号を入力し、該信号に基づいて上記赤外線検出
体からの交流信号の同期検波するための同期検波
器、を備えたことを特徴とする。
(iv) Structure of the Invention In order to achieve the above object, the structure of the present invention includes an infrared detector that generates an alternating current signal according to the amount of change in incident infrared rays, which is arranged alternately in a direction perpendicular to the direction of displacement. A pair of opposing bodies having a plurality of linear infrared passing parts and infrared non-passing parts and located in a region through which infrared rays from a detected object pass to be incident on the detected object; A state in which the parts and infrared non-passing parts substantially overlap each other, and a state in which the infrared passing part and infrared non-passing part of one opposing body substantially overlap with the infrared passing part and infrared passing part of the other opposing body, respectively. , a vibrating body that vibrates to periodically repeat , a pulse signal generator that generates a periodic pulse signal to vibrate the vibrating body, and a pulse signal generator that receives the pulse signal generated by the generator. , a synchronous detector for synchronously detecting the alternating current signal from the infrared detector based on the signal.

(ホ) 実施例 以下本発明実施例の赤外線検出装置を説明す
る。
(e) Embodiment An infrared detection device according to an embodiment of the present invention will be described below.

第2図は該装置の赤外線検出器4を示し、5は
タンタル酸リチウム(LiTaO3)単結晶から成り
入射赤外線変化量に応じた交流信号を発生する焦
電型の赤外線検出体、6及び7は夫々該赤外線検
出体の表、裏面にニクロム蒸着膜にて形成された
表、裏面電極、8は銅、燐青銅などからなる金属
性支持台で、該支持台上には、上記裏面電極7を
支持台8上面に対向するようにして、上記赤外線
検出体5が銀ペーストなどの導電性接着剤9にて
固着されている。
FIG. 2 shows the infrared detector 4 of the device, 5 is a pyroelectric infrared detector made of lithium tantalate (LiTaO 3 ) single crystal and generates an alternating current signal according to the amount of change in incident infrared rays, 6 and 7 8 is a metal support made of copper, phosphor bronze, etc., and the back electrode 7 is formed on the front and back surfaces of the infrared detector, respectively. The infrared detector 5 is fixed to the upper surface of the support base 8 with a conductive adhesive 9 such as silver paste.

10はアルミナ基板、11は該基板上に配置さ
れ、上記赤外線検出体5が高抵抗であるが故に斯
る高抵抗を低抵抗に変換するためのインピーダン
ス変換回路、12は金属性のキヤツプ13及びヘ
ツダ14からなる収納体で、該収納体内の上記ヘ
ツダ14上には上記検出体5が固定された支持台
8及び上記インピーダンス変換回路11が配置さ
れた基板10が固定されている。15は上記ヘツ
ダ14に直接植設されたアース端子で、該端子は
上記支持台8及び接着剤9を介して上記裏面電極
7に電気的に接続されている。16及び17は
夫々上記ヘツダ14に絶縁材18,19を介して
植設された第1、第2リード端子、20は上記表
面電極6とインピーダンス変換回路11とを結線
するリード線、21,22は上記インピーダンス
変換回路11と第1、第2リード端子16,17
とを結線するリード線である。
10 is an alumina substrate; 11 is an impedance conversion circuit disposed on the substrate; since the infrared detector 5 has a high resistance, an impedance conversion circuit is used to convert the high resistance into a low resistance; 12 is a metal cap 13; The storage body includes a header 14, and on the header 14 inside the storage body, a support base 8 on which the detection body 5 is fixed and a substrate 10 on which the impedance conversion circuit 11 is arranged are fixed. Reference numeral 15 denotes a ground terminal that is directly implanted in the header 14, and this terminal is electrically connected to the back electrode 7 via the support base 8 and adhesive 9. 16 and 17 are first and second lead terminals implanted in the header 14 via insulating materials 18 and 19, respectively; 20 are lead wires connecting the surface electrode 6 and the impedance conversion circuit 11; 21 and 22; is the impedance conversion circuit 11 and the first and second lead terminals 16 and 17.
This is the lead wire that connects the

23は上記赤外線検出体5に表面電極6側から
赤外線を入射せしめるべく上記キヤツプ13に穿
設された開口で、該開口は直径8mmの円形、8mm
平方の正方形又は長方形を有している。24は上
記開口23と同形状を有し斯る開口23を閉塞す
る第1赤外線透過体で、該透過体は成長2〜5μ
mの赤外線に対する透過率が高い厚さ数100μm
のシリコン又はゲルマニウム板からなつている。
尚、上記第1赤外線透過体24と赤外線検出体5
との間隔Tは500μm〜3cmとなつている。25
はアルミニウム、金、銀などの赤外線非通過材料
からなり、上記第1赤外線透過体24の下面にて
紙面に垂直方向に延設された線状の複数の第1赤
外線非通過体で、該非通過体の幅Wは1μm〜2
mm、厚さDは0.1〜100μmとなつている。更に上
記第1赤外線非通過体25は互いに所定寸法tを
有して離間しており、その寸法tは上記幅Wの寸
法と同一である。そして、斯る寸法tに対応する
部分は複数の第1赤外線通過部となつている。
Reference numeral 23 denotes an opening formed in the cap 13 to allow infrared rays to enter the infrared detector 5 from the surface electrode 6 side, and the opening is circular with a diameter of 8 mm.
It has a square or rectangular shape. 24 is a first infrared transmitting body which has the same shape as the opening 23 and closes the opening 23, and the transmitting body has a growth rate of 2 to 5 μm.
Thickness of several 100 μm with high transmittance to infrared rays
It is made of silicon or germanium plate.
Note that the first infrared transmitting body 24 and the infrared detecting body 5
The distance T is 500 μm to 3 cm. 25
are a plurality of linear first infrared ray transmissive bodies made of a material that does not pass infrared rays such as aluminum, gold, silver, etc., and extend in a direction perpendicular to the plane of the paper on the lower surface of the first infrared transmissive body 24; Body width W is 1μm~2
mm, and the thickness D is 0.1 to 100 μm. Further, the first infrared ray blocking bodies 25 are spaced apart from each other by a predetermined dimension t, and the dimension t is the same as the width W. The portions corresponding to the dimension t serve as a plurality of first infrared passing portions.

26は上記収納体12内において間隔d(=
0.1μm〜1cm)を有して上記第1赤外線透過体2
4に近接対向する第2赤外線透過体で、該透過体
は上記第1赤外線透過体24と同様に上記開口2
3と同形状を有し且つ波長2〜15μmの赤外線に
対する透過率が高い厚さ数100μmのシリコン又
はゲルマニウム板からなつている。27は上記第
2赤外線透過体26の上面にて上記第1赤外線透
過体25と同一方向(紙面に垂直な方向)に延設
された線状の複数の第2赤外線非通過体で、該非
通過体は上記第1赤外線非通過体25と同様にア
ルミニウム、金、銀などの赤外線非通過材料から
なり、第2赤外線非通過体27の幅W′は1μm〜
2mm、厚さD′は0.1〜100μmとなつている。更に、
上記第2赤外線非通過体27は互いに所定寸法
t′を有して離間しており、その寸法t′は上記幅
W′の寸法と同一である。そして、斯る寸法t′に対
応する部分は複数の第2赤外線通過部となつてい
る。
26 is a distance d (=
0.1 μm to 1 cm) and the first infrared transmitting body 2
4, the second infrared transmitting body is located close to and opposite to the opening 2, which is similar to the first infrared transmitting body 24.
It has the same shape as No. 3 and is made of a silicon or germanium plate several 100 μm thick that has high transmittance to infrared rays with a wavelength of 2 to 15 μm. Reference numeral 27 denotes a plurality of linear second infrared non-transmitting bodies extending in the same direction as the first infrared transmitting body 25 (perpendicular to the plane of the paper) on the upper surface of the second infrared transmitting body 26. The body is made of an infrared ray blocking material such as aluminum, gold, silver, etc., like the first infrared ray blocking body 25, and the width W' of the second infrared ray blocking body 27 is 1 μm to 1 μm.
2 mm, and the thickness D' is 0.1 to 100 μm. Furthermore,
The second infrared non-passing body 27 has a predetermined size with respect to each other.
t′, and the dimension t′ is the above width.
It is the same as the dimension of W′. The portions corresponding to the dimension t' serve as a plurality of second infrared passing portions.

28は2枚の圧電板を張り合わせて形成された
振動体、即ちバイモルフで、該バイモルフは下端
にて上記ヘツダ14に設けられた絶縁台29に固
定され、上端には上記第2赤外線透過体26が取
着されている。上記バイモルフ28の形状は直方
体であり、その高さhは1〜3mm、厚みaは50μ
m〜5mm、幅(紙面に垂直方向の寸法)は0.5〜
15mmである。そして、上記バイモルフ28は水
晶、ロツシエル塩、酒石酸エチレン、ジアミン、
酒石酸カリ、第一リン酸カリ、第一リン酸アンモ
ン、硫酸リチウム、チタン酸バリウム、硫酸グリ
シンなどの単結晶や、チタン酸バリウム系磁器、
ジルコン酸・チタン酸鉛系磁器、ニオブ酸系磁器
などの磁器材料からなつている。30及び31は
夫々更に上記ヘツダ14に絶縁材32,33を介
して植設された第3、第4リード端子で、該リー
ド端子は夫々上記バイモルフ28の両面に形成さ
れた電極パツド34,35に結線されている。
Reference numeral 28 denotes a vibrating body, ie, a bimorph, formed by pasting together two piezoelectric plates.The bimorph is fixed at its lower end to an insulating stand 29 provided on the header 14, and at its upper end is the second infrared transmitting body 26. is attached. The shape of the bimorph 28 is a rectangular parallelepiped, the height h is 1 to 3 mm, and the thickness a is 50 μm.
m~5mm, width (dimension perpendicular to the page) 0.5~
It is 15mm. The bimorph 28 includes crystal, Rothsiel salt, ethylene tartrate, diamine,
Single crystals such as potassium tartrate, potassium monophosphate, ammonium monophosphate, lithium sulfate, barium titanate, glycine sulfate, barium titanate porcelain,
It is made of porcelain materials such as zirconate/lead titanate porcelain and niobate porcelain. Reference numerals 30 and 31 denote third and fourth lead terminals which are respectively implanted in the header 14 via insulating materials 32 and 33, and these lead terminals are connected to electrode pads 34 and 35 formed on both sides of the bimorph 28, respectively. is connected to.

而して、斯る電極パツド34,35間に第3、
第4リード端子30,31を介して所定振幅、所
定周波数の交流駆動信号を印加すると、上記バイ
モルフ28は斯る交流駆動信号の周波数に応じて
撓み第2赤外線透過体26を矢印A方向に周期的
に振動せしめ、これにより上記第1、第2赤外線
非通過体25,27どうし及び第1、第2赤外線
通過部どうしが重畳する状態(第2図の状態)
と、第1赤外線通過部及び第1赤外線非通過体2
5と第2赤外線非通過体27及び第2赤外線通過
部とが夫々重畳する状態と、が周期的に繰返され
る。
Therefore, between the electrode pads 34 and 35, a third
When an AC drive signal with a predetermined amplitude and a predetermined frequency is applied via the fourth lead terminals 30 and 31, the bimorph 28 is bent in accordance with the frequency of the AC drive signal, and the second infrared transmitting body 26 is periodically moved in the direction of arrow A. vibrate, thereby causing the first and second infrared ray non-passing bodies 25 and 27 to overlap each other and the first and second infrared passing parts to overlap each other (the state shown in FIG. 2).
and a first infrared passing section and a first infrared non-passing body 2
5, the state in which the second infrared ray non-passing body 27 and the second infrared ray passing section overlap are periodically repeated.

この時、上記赤外線検出体5には赤外線検出器
4外部の被検出体からの赤外線が周期的に入射
し、即ち赤外線検出体5に入射する赤外線が周期
的に変化し、従つて上記赤外線検出体5は斯る変
化量に応じた交流信号を発生する。更に詳しく
は、斯る検出体5が出力する交流信号としては、
被検出体の温度と室温との温度差に基づいた振幅
を有し且つ上記バイモルフ28に印加される交流
駆動信号と同一の周波数を有するものとなつてい
る。
At this time, the infrared rays from the object to be detected outside the infrared detector 4 are periodically incident on the infrared detector 5, that is, the infrared rays that are incident on the infrared detector 5 are periodically changed. The body 5 generates an alternating current signal according to the amount of change. More specifically, the alternating current signal outputted by the detection body 5 is as follows:
It has an amplitude based on the temperature difference between the temperature of the object to be detected and the room temperature, and has the same frequency as the AC drive signal applied to the bimorph 28.

第3図は他の赤外線検出器4sを示し、該検出
器では、第2赤外線透過体26sが上記収納体1
2外において第1赤外線透過体24に近接対向し
ている。尚、同図において、第1図と同一物には
同一番号を記すと共に第1図と同様のものには同
一番号に添字sが記されている。
FIG. 3 shows another infrared detector 4s, in which the second infrared transmitting body 26s is connected to the housing 1.
2 and closely facing the first infrared transmitting body 24. In this figure, the same parts as those in FIG. 1 are given the same numbers, and the same parts as in FIG. 1 are given the same numbers with a suffix s.

第4図は上記赤外線検出器4又は4sを含む赤
外線検出装置の回路を示し、赤外線検出器4又は
4s内のインピーダンス変換回路11は1010
1011Ωの高入力抵抗36、FET(電界効果トラン
ジスタ)37及び約10kΩの出力抵抗38にて形
成されている。
FIG. 4 shows a circuit of an infrared detection device including the infrared detector 4 or 4s, and the impedance conversion circuit 11 in the infrared detector 4 or 4s has an impedance of 10 10 to
It is formed by a high input resistor 36 of 10 11 Ω, an FET (field effect transistor) 37, and an output resistor 38 of about 10 kΩ.

そして、上記赤外線検出器4又は4sは第1リ
ード端子16にて直流電圧が供給され、第2リー
ド端子17から被検出体の温度と室温との温度差
に応じた振幅を有し且つ上記バイモルフ28に印
加される駆動信号と同一の周波数を有する交流信
号が出力される。39は室温測定を行なうダイオ
ード、40は無安定マルチバイブレータからなり
周期的パルスを発振するパルス発振器、41は上
記パルスに基づいて上記バイモルフ28又は28
sを振動せしめる(撓ませる)ための上記交流信
号(上記パルスと同一周波数)を出力する駆動回
路、42,43,44は直流増幅器、45はフイ
ルタ増幅器、46は同期検波器、47は合成回
路、48は出力端子である。
The infrared detector 4 or 4s is supplied with a DC voltage through a first lead terminal 16, and has an amplitude corresponding to the temperature difference between the temperature of the object to be detected and the room temperature from a second lead terminal 17, and has an amplitude corresponding to the temperature difference between the temperature of the object to be detected and the room temperature. An AC signal having the same frequency as the drive signal applied to 28 is output. 39 is a diode for measuring room temperature; 40 is a pulse oscillator made of an astable multivibrator and oscillates periodic pulses; 41 is a pulse oscillator that generates periodic pulses based on the pulses;
42, 43, 44 are DC amplifiers, 45 is a filter amplifier, 46 is a synchronous detector, and 47 is a synthesis circuit. , 48 are output terminals.

而して、これら直流増幅器42,43,44、
フイルタ増幅器45、同期検波器46、合成回路
47の動作は特公昭53−10467号公報に見られる
回路の動作と同様であるが、特に上記同期検波器
46及び合成回路47の動作を詳述するに、上記
同期検波器46は、上記発振器40からのパルス
を入力し、該パルスに基づいて上記フイルタ増幅
器45を通つた検出体5からの交流信号を同期検
波すべく動作する。即ち、この場合、上記同期検
波器46においては、発振器40からのパルスは
上記検出体5からの交流信号の正側又は負側の半
サイクルに一致するようになつており、更に詳し
くは、被検出体の温度の方が室温より高い場合に
は上記パルスは検出体5からの交流信号の正側半
サイクルに一致し、室温の方が被検出体の温度よ
り高い場合には上記パルスは検出体5からの交流
信号の負側半サイクルと一致するようになつてい
る。而して、上記同期検波器46は、前者の場合
には上記交流信号の振幅値に応じた正の直流信号
(該信号は被検出体の温度と室温との差を表わし
且つ被検出体の温度の方が高いことを表わしてい
る)を出力し、後者の場合には上記交流信号の振
幅値に応じた負の直流信号(該信号は同様の温度
差を表わし且つ被検出体の温度の方が低いことを
表わしている)を出力する。
Therefore, these DC amplifiers 42, 43, 44,
The operations of the filter amplifier 45, synchronous detector 46, and combining circuit 47 are similar to those of the circuit shown in Japanese Patent Publication No. 53-10467, but the operations of the synchronous detector 46 and combining circuit 47 will be described in detail. The synchronous detector 46 inputs the pulses from the oscillator 40 and operates to synchronously detect the AC signal from the detection object 5 that has passed through the filter amplifier 45 based on the pulses. That is, in this case, in the synchronous detector 46, the pulse from the oscillator 40 coincides with the positive or negative half cycle of the AC signal from the detection object 5. When the temperature of the object to be detected is higher than the room temperature, the above pulse corresponds to the positive half cycle of the AC signal from the object to be detected 5, and when the room temperature is higher than the temperature of the object to be detected, the above pulse is detected. It is designed to coincide with the negative half cycle of the AC signal from the body 5. In the former case, the synchronous detector 46 detects a positive DC signal corresponding to the amplitude value of the AC signal (the signal represents the difference between the temperature of the object to be detected and the room temperature and the amplitude value of the object to be detected). In the latter case, it outputs a negative DC signal corresponding to the amplitude value of the AC signal (the signal represents the same temperature difference and is lower than the temperature of the detected object). ) is output.

次に、上記合成回路47は上記ダイオード39
からの直流信号(該信号は室温を表わしている)
に基づいて上記同期検波器46の出力を室温補正
すべく動作する。即ち、被検出体の温度の方が室
温より高い場合は、被検出体の温度と室温との差
に応じた同期検波器46からの正の直流信号に、
室温に応じたダイオード39からの直流信号が加
えられ、これにより上記合成回路47から被検出
体の実際の温度に応じた直流信号が出力される。
又、被検出体の温度の方が室温より低い場合は、
被検出体の温度と室温との差に応じた同期検波器
46からの負の直流信号に、同様にダイオード3
9からの直流信号が加えられ、換言すれば、室温
を表わす直流信号から上記温度差を表わす直流信
号が減じられ、これにより上記合成回路47から
被検出体の実際の温度に応じた直流信号が出力さ
れる。そして、斯る合成回路47から出力される
実際の温度に応じた直流信号は出力端子48より
所望回路へ導出される。
Next, the combining circuit 47 connects the diode 39
DC signal from (the signal represents room temperature)
Based on this, the output of the synchronous detector 46 is operated to correct the room temperature. That is, when the temperature of the object to be detected is higher than the room temperature, a positive DC signal from the synchronous detector 46 corresponding to the difference between the temperature of the object to be detected and the room temperature,
A DC signal from the diode 39 corresponding to the room temperature is added, and thereby the synthesis circuit 47 outputs a DC signal corresponding to the actual temperature of the object to be detected.
Also, if the temperature of the object to be detected is lower than room temperature,
Similarly, the diode 3 is connected to the negative DC signal from the synchronous detector 46 according to the difference between the temperature of the detected object and the room temperature.
In other words, the DC signal representing the temperature difference is subtracted from the DC signal representing the room temperature, so that the combining circuit 47 generates a DC signal corresponding to the actual temperature of the object to be detected. Output. Then, a DC signal corresponding to the actual temperature outputted from the combining circuit 47 is led out from an output terminal 48 to a desired circuit.

尚、上記各検出器4,4sを若干変更し、第5
図及び第6図に示す如き赤外線検出器49,50
としても良い。即ち、第5図における赤外線検出
器49では、第1赤外線非通過体25,25…を
一体に設けた枠体51がスペーサ52,52を介
して第1赤外線透過体24に設けられている。第
6図における赤外線検出器50では、第2赤外線
透過体26が収納体12に設けられた別の固定台
(図示しない)に固定されていると共に、バイモ
ルフ28には上記枠体51が取着されている。
In addition, each of the above-mentioned detectors 4 and 4s was slightly changed, and the fifth
Infrared detectors 49, 50 as shown in FIGS.
It's good as well. That is, in the infrared detector 49 in FIG. 5, a frame 51 integrally provided with first infrared non-passing bodies 25, 25, . . . is provided on the first infrared transmitting body 24 via spacers 52, 52. In the infrared detector 50 in FIG. 6, the second infrared transmitting body 26 is fixed to another fixing base (not shown) provided in the housing 12, and the frame 51 is attached to the bimorph 28. has been done.

(ヘ) 発明の効果 本発明赤外線検出装置によれば、入射赤外線変
化量に応じた交流信号を発生する赤外線検出体、
変位方向に対して直交する方向に交互に延設され
た複数の線状の赤外線通過部及び赤外線非通過部
を有し、被検出体からの赤外線が上記検出体に入
射すべく通過する領域に位置する一対の対向体、
該一対の対向体の赤外線通過部どうし及び赤外線
非通過部どうしが略重畳する状態と、一方の対向
体の赤外線通過部及び赤外線非通過部と他方の対
向体の赤外線非通過部及び赤外線通過部とが夫々
略重畳する状態と、を周期的に繰返せしめるべく
振動する振動体、該振動体を振動せしめるための
周期的なパルス状信号を発生するパルス状信号発
生器、該発生器の発生する上記パルス状信号を入
力し、該信号に基づいて上記赤外線検出体からの
交流信号を同期検波するための同期検波器、を備
えたから、赤外線検出体に入射する赤外線を変化
せしめるためのチヨツパ及びモータ等が不要とな
り、よつて赤外線検出装置自体を小型化できると
共に、赤外線検出体に入射する赤外線はむらなく
周期的に変化するため高精度の下に赤外線検出を
行なうことができる。また、複数の線状の赤外線
通過部及び赤外線非通過部は、変位方向に対し
て、直交する方向に交互に延設されているので、
一対の対向体の赤外線透過部どうしが重畳する面
積が非常に大きく、赤外線検出体に入射させる赤
外線量が非常に多くなり、赤外線検出体からの検
出出力が大きくなり検出精度が向上する。また、
赤外線通過部及び赤外線非通過部を交互に複数個
設けることにより、赤外線通過部及び赤外線非通
過部の変位方向の幅を小さくしても、両対向体の
赤外線通過部どうしの重畳面積が小さくなること
がないので、この変位方向の幅を小さくすること
によつて、対向体の変位量を小さくすることがで
きる。これにより、振動体の印加電圧を小さくす
ることができ、且つ振動体の形状を小さくするこ
とが可能となる。更に、上記振動体を振動せしめ
るための周期的なパルス状信号を兼用して上記赤
外線検出体からの交流信号の同期検波を行なうこ
とができ、よつて従来の如きモータの回転に基づ
いて同期パルスを発生するための同期パルス発生
器を別途専用に設ける必要がなく、これにより赤
外線検出装置の簡素化をも図ることができる。
(F) Effects of the Invention According to the infrared detection device of the present invention, an infrared detection body that generates an alternating current signal according to the amount of change in incident infrared radiation;
It has a plurality of linear infrared passing portions and infrared non-passing portions extending alternately in a direction perpendicular to the displacement direction, and is located in an area through which infrared rays from the detected object pass in order to be incident on the detected object. a pair of opposing bodies located;
A state in which the infrared passing parts and the infrared non-passing parts of the pair of opposing bodies substantially overlap each other, and the infrared passing part and the infrared passing part of one opposing body and the infrared passing part and the infrared passing part of the other opposing body. A vibrating body that vibrates to periodically repeat a state in which the two substantially overlap each other, a pulse signal generator that generates a periodic pulse signal for vibrating the vibrating body, and generation of the generator. A synchronous detector is provided for inputting the pulsed signal and synchronously detecting an alternating current signal from the infrared detector based on the signal, a chopper for changing the infrared rays incident on the infrared detector, Since a motor or the like is not required, the infrared detection device itself can be made smaller, and since the infrared rays incident on the infrared detection body change evenly and periodically, infrared detection can be performed with high precision. In addition, since the plurality of linear infrared passing parts and infrared non-passing parts are alternately extended in a direction orthogonal to the displacement direction,
The overlapping area of the infrared transmitting parts of the pair of opposing bodies is very large, and the amount of infrared rays incident on the infrared detecting body becomes very large, which increases the detection output from the infrared detecting body and improves detection accuracy. Also,
By alternately providing a plurality of infrared passing parts and infrared non-passing parts, even if the widths of the infrared passing parts and infrared non-passing parts are reduced in the displacement direction, the overlapping area of the infrared passing parts of both opposing bodies can be reduced. Therefore, by reducing the width in the displacement direction, the amount of displacement of the opposing body can be reduced. Thereby, the voltage applied to the vibrating body can be reduced, and the shape of the vibrating body can be made small. Furthermore, it is possible to perform synchronous detection of the alternating current signal from the infrared detector by also using a periodic pulse signal for vibrating the vibrating body. There is no need to separately provide a dedicated synchronous pulse generator for generating the synchronous pulse, thereby simplifying the infrared detection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは夫々従来の赤外線検出機構の
側面図及び平面図、第2図は本発明実施例赤外線
検出装置の赤外線検出器の断面図、第3図は同装
置の他の赤外線検出器の断面図、第4図は第2図
及び第3図の同装置の回路図、第5図及び第6図
は夫々同装置の更に他の赤外線検出器の断面図で
ある。 5……赤外線検出体、12……収納体、23…
…開口、24……第1赤外線通過体、25,25
s……第1赤外線非通過体、26,26s……第
2赤外線透過体、27,27s……第2赤外線非
通過体、28及び28s……バイモルフ、40…
…パルス発振器、46……同期検波器。
Figures 1a and b are a side view and a plan view, respectively, of a conventional infrared detection mechanism, Figure 2 is a sectional view of an infrared detector of an infrared detector according to an embodiment of the present invention, and Figure 3 is another infrared detector of the same device. 4 is a circuit diagram of the same device shown in FIGS. 2 and 3, and FIGS. 5 and 6 are sectional views of other infrared detectors of the same device, respectively. 5... Infrared detector, 12... Storage body, 23...
...Opening, 24...First infrared passing body, 25, 25
s...First infrared non-passing body, 26,26s...Second infrared transmitting body, 27,27s...Second infrared passing body, 28 and 28s...Bimorph, 40...
...Pulse oscillator, 46...Synchronous detector.

Claims (1)

【特許請求の範囲】[Claims] 1 入射赤外線変化量に応じた交流信号を発生す
る赤外線検出体、変位方向に対して直交する方向
に交互に延設された複数の線状の赤外線通過部及
び赤外線非通過部を有し、被検出体からの赤外線
が上記検出体に入射すべく通過する領域に位置す
る一対の対向体、該一対の対向体の赤外線通過部
どうし及び赤外線非通過部どうしが略重畳する状
態と、一方の対向体の赤外線通過部及び赤外線非
通過部と他方の対向体の赤外線非通過部及び赤外
線通過部とが夫々略重畳する状態と、を周期的に
繰返せしめるべく振動する振動体、該振動体を振
動せしめるための周期的なパルス状信号を発生す
るパルス状信号発生器、該発生器の発生する上記
パルス状信号を入力し、該信号に基づいて上記赤
外線検出体からの交流信号を同期検波するための
同期検波器、を備えたことを特徴とする赤外線検
出装置。
1 An infrared detector that generates an alternating current signal according to the amount of change in incident infrared rays, a plurality of linear infrared passing parts and infrared non-passing parts extending alternately in a direction perpendicular to the direction of displacement, and a A pair of opposing bodies located in a region through which infrared rays from a detection body pass in order to enter the detection body, a state in which the infrared passing portions and infrared non-passing portions of the pair of opposing bodies substantially overlap each other, and one opposing body A vibrating body that vibrates to periodically repeat a state in which an infrared passing part and an infrared passing part of a body and an infrared passing part and an infrared passing part of another opposing body substantially overlap, respectively. A pulse signal generator that generates a periodic pulse signal for vibration, inputting the pulse signal generated by the generator, and synchronously detecting the alternating current signal from the infrared detector based on the signal. An infrared detection device characterized by comprising a synchronous detector for.
JP59074665A 1984-04-12 1984-04-12 Infrared-ray detecting device Granted JPS59230127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59074665A JPS59230127A (en) 1984-04-12 1984-04-12 Infrared-ray detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59074665A JPS59230127A (en) 1984-04-12 1984-04-12 Infrared-ray detecting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56130959A Division JPS5832131A (en) 1981-08-20 1981-08-20 Infrared ray detector

Publications (2)

Publication Number Publication Date
JPS59230127A JPS59230127A (en) 1984-12-24
JPH037890B2 true JPH037890B2 (en) 1991-02-04

Family

ID=13553752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59074665A Granted JPS59230127A (en) 1984-04-12 1984-04-12 Infrared-ray detecting device

Country Status (1)

Country Link
JP (1) JPS59230127A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524676A (en) * 1978-08-09 1980-02-21 Sanyo Electric Co Ltd Infrared thermometer
JPS5566723A (en) * 1978-11-14 1980-05-20 Nec Corp Fork-type optical chopper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524676A (en) * 1978-08-09 1980-02-21 Sanyo Electric Co Ltd Infrared thermometer
JPS5566723A (en) * 1978-11-14 1980-05-20 Nec Corp Fork-type optical chopper

Also Published As

Publication number Publication date
JPS59230127A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
JPH0238893B2 (en)
JPS622246B2 (en)
JPH0477256B2 (en)
JPH0262810B2 (en)
JPH037890B2 (en)
JPH06300800A (en) Potential sensor
JPH0216858B2 (en)
JPH0156367B2 (en)
JPH0477859B2 (en)
JPS5937431A (en) Infrared detector
JPH0230740Y2 (en)
JPH0142726Y2 (en)
JPS5973742A (en) Infrared ray detecting device
JPH0313707Y2 (en)
JPH0238894B2 (en)
JPH0127069Y2 (en)
JPH0334668Y2 (en)
JPH0234592Y2 (en)
JPH0553372B2 (en)
JPH0577991B2 (en)
JP2000283764A (en) Angular velocity detector
JPS59180599U (en) piezoelectric sound device
JPH0414290B2 (en)
JPH05835Y2 (en)
JPH0240172B2 (en)