JPH0313707Y2 - - Google Patents

Info

Publication number
JPH0313707Y2
JPH0313707Y2 JP1983193630U JP19363083U JPH0313707Y2 JP H0313707 Y2 JPH0313707 Y2 JP H0313707Y2 JP 1983193630 U JP1983193630 U JP 1983193630U JP 19363083 U JP19363083 U JP 19363083U JP H0313707 Y2 JPH0313707 Y2 JP H0313707Y2
Authority
JP
Japan
Prior art keywords
infrared
bodies
opposing
vibrating
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983193630U
Other languages
Japanese (ja)
Other versions
JPS60100635U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983193630U priority Critical patent/JPS60100635U/en
Publication of JPS60100635U publication Critical patent/JPS60100635U/en
Application granted granted Critical
Publication of JPH0313707Y2 publication Critical patent/JPH0313707Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は例えば被検知部の温度を赤外線にて検
知するための赤外線センサに関する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to an infrared sensor for detecting the temperature of a detected part using infrared rays, for example.

(ロ) 従来技術 第1図a及びbにおいて、近時の赤外線センサ
1では、例えば焦電型の赤外線検出体が内蔵され
ている。斯る赤外線検出体は入射赤外線の変化量
に基づいて電荷を発生する特性を有し、又上記赤
外線検出体の検出精度は入射赤外線量の変化が周
期的である程向上し、従つて上記赤外線検出体に
入射する赤外線を周期的に変化せしめる必要があ
り、このために赤外線センサ1の前方には同期モ
ータ2によつて周期的に回転駆動される金属チヨ
ツパ3が配置されている。而して、斯るチヨツパ
3の回動にて、上記赤外線検出体に被検知部から
の赤外線とチヨツパ3からの赤外線が交互に周期
的に入射すると、赤外線検出体は入射赤外線量が
周期的に変化して電荷を発生する。斯る電荷は被
検知部の温度測定用として利用される。
(b) Prior Art In FIGS. 1a and 1b, a recent infrared sensor 1 has a built-in infrared detector, for example, of a pyroelectric type. Such an infrared detector has a characteristic of generating electric charge based on the amount of change in the amount of incident infrared rays, and the detection accuracy of the infrared detector improves as the amount of incident infrared rays changes more periodically. It is necessary to periodically change the infrared rays incident on the object to be detected, and for this purpose, a metal chopper 3 that is driven to rotate periodically by a synchronous motor 2 is arranged in front of the infrared sensor 1. Therefore, when the infrared rays from the detected part and the infrared rays from the chopper 3 are alternately and periodically incident on the infrared detecting body by such rotation of the chopper 3, the amount of incident infrared rays becomes periodically incident on the infrared detecting body. and generates an electric charge. Such charges are used to measure the temperature of the detected part.

しかし乍ら、上記構成においては、上記モータ
2及びチヨツパ3はかなり大きな形状を有し、ス
ペース上の問題などがある。
However, in the above configuration, the motor 2 and the chopper 3 have a considerably large shape, and there are problems in terms of space.

そこで、第2図及び第3図に示す如き赤外線セ
ンサ4が考え出されている。斯る赤外線センサ4
は、外形寸法としての長さ、幅、高さが夫々約
60、20、15mmである小型の直方体形状をなし、そ
して新規なチヨツパ機構が内蔵されており、よつ
て上述の如きモータ2及びチヨツパ3が不要とな
り、スペース上の問題が解決されている。
Therefore, an infrared sensor 4 as shown in FIGS. 2 and 3 has been devised. Such an infrared sensor 4
The length, width, and height of the external dimensions are approximately
It has a small rectangular parallelepiped shape with dimensions of 60, 20, and 15 mm, and has a built-in novel chopper mechanism, thus eliminating the need for the motor 2 and chopper 3 as described above, and solving the space problem.

以下、その赤外線センサ4の具体的構造を説明
する。
The specific structure of the infrared sensor 4 will be explained below.

金属性のヘツダ5及び赤外線透過部6を有する
キヤツプ7からなるセンサケース8の内部には、
シールド体9に囲まれ入射赤外線変化量に基づい
て電荷を発生する焦電型の赤外線検出体10と、
該検出体に入射する赤外線を変化せしめるチヨツ
パ機構とが設けられている。該チヨツパ機構は、
一対の圧電振動体11,12及び該振動体の各々
の自由端部に固定された一対の対向体13,14
からなつている。斯る対向体13,14には各々
赤外線を通過せしめる複数の同形状、同寸法のス
リツト15,15…が形成されている。
Inside a sensor case 8 consisting of a metal header 5 and a cap 7 having an infrared transmitting section 6,
a pyroelectric infrared detector 10 that is surrounded by a shield body 9 and generates an electric charge based on the amount of change in incident infrared rays;
A chopper mechanism is provided to change the infrared rays incident on the detection object. The tippa mechanism is
A pair of piezoelectric vibrating bodies 11, 12 and a pair of opposing bodies 13, 14 fixed to the free ends of each of the vibrating bodies
It is made up of A plurality of slits 15, 15, . . . of the same shape and size are formed in the opposing bodies 13, 14, respectively, to allow infrared rays to pass therethrough.

而して、上記振動体11,12は互いに逆方向
(A又はB方向)に周期的に振動し、これにより
上記対向体13,14は相対的位置関係が周期的
に変化し、上記対向体13,14の各々のスリツ
ト15,15…が重合し合つて開放する状態と
各々のスリツト15,15…が重畳し合わず閉塞
する状態とが周期的に繰返される。すると、上記
重畳する状態においては被検知部からの赤外線が
ケース8の赤外線透過部6及び両対向体13,1
4のスリツト15,15…を経て上記赤外線検出
体10に入射し、一方上記重量しない状態におい
ては対向体13,14からの赤外線のみが上記赤
外線検出体10に入射し、よつて赤外線検出体1
0は入射赤外線量が周期的に変化し例えば被検知
部の温度測定用としての電荷を発生する。
The vibrating bodies 11 and 12 periodically vibrate in directions opposite to each other (direction A or B), and as a result, the relative positional relationship of the opposing bodies 13 and 14 changes periodically. A state in which the slits 15, 15, . . . of each of the slits 13, 14 are overlapped and opened, and a state in which the slits 15, 15, . . . are not overlapped and closed, are periodically repeated. Then, in the superimposed state, the infrared rays from the detected part are transmitted to the infrared transmitting part 6 of the case 8 and both opposing bodies 13 and 1.
4 and enters the infrared detector 10 through the slits 15, 15, .
0, the amount of incident infrared rays changes periodically and generates a charge for measuring the temperature of the detected part, for example.

さて、上記赤外線センサ4において、上記対向
体13,14は、上記振動体11,12の振動方
向(A、B方向)に非垂直な上記振動体11,1
2の非垂直面、即ち上面11′,12′に接着剤に
て接着固定されているのである。
Now, in the infrared sensor 4, the opposing bodies 13, 14 are non-perpendicular to the vibration direction (A, B direction) of the vibrating bodies 11, 12.
2, that is, the upper surfaces 11' and 12', with an adhesive.

しかるに、斯る振動体11,12の上面11′,
12′は幅狭にして接着剤を充分な量だけ塗布で
きず、よつて、上記センサ4にあつては、上記対
向体13,14を確実に接着固定し得るに充分な
接着強度を得られなかつた。
However, the upper surfaces 11' of the vibrating bodies 11 and 12,
12' is made narrow so that a sufficient amount of adhesive cannot be applied, and therefore, in the case of the sensor 4, sufficient adhesive strength cannot be obtained to reliably adhesively fix the opposing bodies 13 and 14. Nakatsuta.

(ハ) 考案の目的 本考案はの目的は、対向体を充分な接着強化の
もとに振動体に確実に接着固定できる赤外線セン
サを得ることにある。
(c) Purpose of the invention The purpose of the present invention is to obtain an infrared sensor that can securely bond and fix the opposing body to the vibrating body with sufficient adhesive strength.

(ニ) 本考案の構成 本考案の構成は、上記目的を達成すべく、入射
赤外線変化量に応じて電荷を発生する赤外線検出
体と、複数の赤外線通過部及び赤外線非通過部を
有し上記赤外線検出体の赤外線入射域に位置する
一対の対向体と、該一対の対向体の赤外線通過部
の開閉度を周期的に変位せしめるべく少なくとも
一方の上記対向体を振動せしめる振動体とを備え
た赤外線センサにおいて、上記振動体は切欠部分
を有する中央電極と、該中央電極の両側面に各々
配置された圧電体と、該圧電体の各々の外側面に
配置された表面電極とから構成されると共に上記
中央電極の切欠部分と上記圧電体とで囲まれた凹
部が振動方向に非垂直な非垂直面に形成され、且
つ上記対向体が上記非垂直面に、上記凹部に溜め
られた接着剤にて接着固定されたことを特徴とす
る。
(d) Structure of the present invention In order to achieve the above object, the structure of the present invention includes an infrared detector that generates an electric charge according to the amount of change in incident infrared rays, and a plurality of infrared passing parts and infrared non-passing parts. A pair of opposing bodies located in the infrared incident area of the infrared detector, and a vibrating body that vibrates at least one of the opposing bodies to periodically change the opening/closing degree of the infrared passing portion of the pair of opposing bodies. In the infrared sensor, the vibrating body is composed of a central electrode having a notch, piezoelectric bodies placed on both sides of the central electrode, and surface electrodes placed on each outer side of the piezoelectric body. In addition, a recess surrounded by the notch of the central electrode and the piezoelectric body is formed on a non-vertical surface that is not perpendicular to the vibration direction, and the opposing body is formed on the non-vertical surface, and an adhesive collected in the recess is formed on the non-vertical surface. It is characterized by being fixed with adhesive.

(ホ) 実施例 第4図乃至第14図は本考案実施例の赤外線セ
ンサ16を示す。該センサの外形寸法は長さ、
幅、高さが夫々24,16,15mmであり、センサ16
の小型化が充分図られている。
(e) Embodiment FIGS. 4 to 14 show an infrared sensor 16 according to an embodiment of the present invention. The external dimensions of the sensor are length,
The width and height are 24, 16, and 15 mm, respectively, and the sensor 16
has been sufficiently miniaturized.

まず、センサケース17は金属製のキヤツプ1
8及びヘツダ19からなる。上記キヤツプ18に
は、赤外線透過性のシリコン板20にて閉塞さ
れ、被検知物の放射する外部赤外線を上記ケース
17内に導くための直径3.5mmの外部赤外線入射
口21が形成されている。又、上記ヘツダ19に
は、第1〜第5端子22a〜22eが絶縁物を介
して植設されていると共に第6端子22fが直接
植設されている。更に、ダミーとして第7、第8
端子22g,22hが植設されている。
First, the sensor case 17 is made of metal cap 1.
8 and a header 19. The cap 18 is closed with an infrared-transmissive silicon plate 20 and is formed with an external infrared ray entrance opening 21 having a diameter of 3.5 mm for guiding external infrared rays emitted by the object to be detected into the case 17. Further, the first to fifth terminals 22a to 22e are implanted in the header 19 via an insulator, and the sixth terminal 22f is directly implanted. Furthermore, the seventh and eighth dummy
Terminals 22g and 22h are implanted.

而して、上記ケース17内にて上記ヘツダ19
上にはアルミナ主基板23がエポキシ系の絶縁性
接着剤24にて接着配置されている。この場合、
上記主基板23は第1〜第8端子孔25a〜25
hを有しており、これら端子孔25a〜25hに
夫々上記第1〜第8端子22a〜22hが嵌入し
ている。更に、上記主基板23上面には第1〜第
7電極26a〜26gが銀パラジウムをスクリー
ン印刷して焼結することによりパターン形成され
ている。これら第1〜第6電極26a〜26fに
は夫々上記第1〜第6端子22a〜22fが半田
接続されている。上記第6電極26fには更に上
記第7、第8端子22g、22hも半田接続され
ている。
Therefore, the header 19 is installed inside the case 17.
An alumina main substrate 23 is bonded thereon with an epoxy-based insulating adhesive 24. in this case,
The main board 23 has the first to eighth terminal holes 25a to 25.
h, and the first to eighth terminals 22a to 22h are fitted into these terminal holes 25a to 25h, respectively. Further, first to seventh electrodes 26a to 26g are patterned on the upper surface of the main substrate 23 by screen printing and sintering silver palladium. The first to sixth terminals 22a to 22f are soldered to these first to sixth electrodes 26a to 26f, respectively. The seventh and eighth terminals 22g and 22h are further soldered connected to the sixth electrode 26f.

そして、上記ケース17内にて上記主基板23
上には赤外線検出部27及びチヨツパ機構部28
等がハイブリツド的に構成されており、コンパク
ト化が図られている。
Then, the main board 23 is placed inside the case 17.
On the top, there is an infrared detection section 27 and a chopper mechanism section 28.
etc. are configured in a hybrid manner, making it more compact.

まず、上記赤外線検出部27について説明する
に、表、裏面電極29,30を有し、入射赤外線
変化量に基づいて電荷を発生するタンタル酸リチ
ウムLiTaO3単結晶からなる約1.5mm角の焦電型赤
外線検出体31が設けられ、該検出体は燐青銅か
らなる金属製支持台32上に銀ベースト等の導電
性接着剤33にて接着固定されている。そして、
上記支持台32は同じく銀ベースト等の導電性接
着剤34にて上記第6電極26fの幅広部26
f′に固定され、これにより上記裏面電極30に接
着剤33,34、支持台32及び第6電極26f
を介して上記第6端子22fに電気的に連なつて
おり、一方上記表面電極29は上記第7電極26
gに電気的に連なつている。
First, the infrared detecting section 27 will be described. It has front and back electrodes 29 and 30, and is made of a pyroelectric lithium tantalate LiTaO 3 single crystal of approximately 1.5 mm square that generates electric charge based on the amount of change in incident infrared rays. A type infrared detector 31 is provided, and the detector is adhesively fixed onto a metal support 32 made of phosphor bronze with a conductive adhesive 33 such as silver base. and,
The support base 32 is also attached to the wide portion 26 of the sixth electrode 26f using a conductive adhesive 34 such as silver base.
f', thereby attaching the adhesives 33, 34 to the back electrode 30, the support base 32, and the sixth electrode 26f.
The surface electrode 29 is electrically connected to the sixth terminal 22f via the seventh electrode 26.
It is electrically connected to g.

又、前記赤外線検出体31と共に抵抗用チツプ
35及びFET36が設けられている。斯る抵抗
用チツプ35は特に第11図に示す如く構成され
ており、アルミナ片37が用いられ、該片の片面
両端に銀パラジウムをスクリーン印刷して焼結す
ることにより一対の抵抗電極38a,38bが形
成され、該電極間に跨るように1010〜1011Ω
の抵抗層39がスクリーン印刷形成されている。
そして、上記抵抗用チツプ35は両抵抗電極38
a,38bをクリーム半田にて上記第6、第7電
極26f,26gに接着することにより上記主基
板23上に固定されている。更に、上記FET3
6はソースS、ドレインD、ゲートGを各々同様
のクリーム半田にて上記第1、第2、第7電極2
6a,26b,26gに接着することにより上記
基板23上に固定されている。
Further, along with the infrared detector 31, a resistor chip 35 and an FET 36 are provided. Such a resistor chip 35 is particularly constructed as shown in FIG. 11, in which an alumina piece 37 is used, and by screen printing silver palladium on both ends of one side of the piece and sintering it, a pair of resistor electrodes 38a, 38b is formed, and a resistance of 10 10 to 10 11 Ω is formed across the electrodes.
A resistive layer 39 is formed by screen printing.
The resistance chip 35 has both resistance electrodes 38
a and 38b are fixed on the main substrate 23 by adhering them to the sixth and seventh electrodes 26f and 26g using cream solder. Furthermore, the above FET3
6, connect the source S, drain D, and gate G to the first, second, and seventh electrodes 2 using the same cream solder.
It is fixed on the substrate 23 by adhering to 6a, 26b, and 26g.

そして、上記赤外線検出体31、抵抗用チツプ
35及びFET36は燐青銅、ブリキからなり内
面に黒色艷消し塗料が塗布された金属製シールド
体40にて覆われている。該シールド体は、三角
屋根形状をなし、下片40a,40a及び爪40
b,40bを有している。而して、上記シールド
体40は、下片40a,40aが上記主基板23
の長辺23a,23aに係合し且つ爪40b,4
0bが上記主基板23に形成された切欠部23b
及び係合孔23cに係合した状態で、上記第6電
極26fに半田付けされ、これにより、上記シー
ルド体40は上記主基板23上に固定されてい
る。そして、上記シールド体40の上面における
上記赤外線検出体31直上部には直径約1.8mmの
赤外線通過孔41が形成されている。
The infrared detector 31, resistor chip 35, and FET 36 are covered with a metal shield 40 made of phosphor bronze or tin and whose inner surface is coated with black fade paint. The shield body has a triangular roof shape and includes lower pieces 40a, 40a and claws 40.
b, 40b. Thus, the lower pieces 40a, 40a of the shield body 40 are connected to the main board 23.
The claws 40b, 4 engage with the long sides 23a, 23a of the
0b is a notch 23b formed in the main board 23
The shield body 40 is soldered to the sixth electrode 26f while being engaged with the engagement hole 23c, thereby fixing the shield body 40 on the main board 23. An infrared passing hole 41 with a diameter of about 1.8 mm is formed on the upper surface of the shield body 40, just above the infrared detecting body 31.

次に、上記チヨツパ機構部28について説明す
るに、アルミナ固定板42が設けられている。該
固定板は、下部両端の係合片43a,43bが上
記主基板23の角に形成された切欠部44a,4
4bに係合するようにして上記主基板23に垂直
にエポキシ系の絶縁性接着剤45にて接着固定さ
れている。又、上記固定板42の上部には例えば
長さ4mm、幅0.5mmの一対の切込み46a,46
bが互いに5mmの間隔をおいて形成され、そして
上記固定板42の片面には、上記主基板23と同
様に銀パラジウムをスクリーン印刷して焼結する
ことにより2つの電極47a,47bがパターン
形成されている。この電極47bは上記切込み4
6a,46bを囲むパターンを有しており、又電
極47aは上記切込み46a,46bの間に位置
するパターンを有しており、これら両電極47
a,47bは各々上記主基板23上の第3、第4
電極26c,26dに半田接続されている。
Next, to explain the chopper mechanism section 28, an alumina fixing plate 42 is provided. The fixing plate has notches 44a, 4 formed at the corners of the main board 23, with engaging pieces 43a, 43b at both ends of the lower part.
4b, and is vertically adhesively fixed to the main substrate 23 with an epoxy-based insulating adhesive 45. In addition, a pair of notches 46a, 46 with a length of 4 mm and a width of 0.5 mm are provided on the upper part of the fixing plate 42, for example.
b are formed at an interval of 5 mm from each other, and two electrodes 47a and 47b are patterned on one side of the fixed plate 42 by screen printing and sintering silver palladium in the same manner as the main substrate 23. has been done. This electrode 47b has the above-mentioned notch 4
The electrode 47a has a pattern surrounding the notches 6a and 46b, and the electrode 47a has a pattern located between the notches 46a and 46b.
a and 47b are the third and fourth parts on the main board 23, respectively.
It is soldered connected to electrodes 26c and 26d.

而して、上記両切込み46a,46bには、長
さ、高さ、厚みが夫々例えば18,4,0.5mmの一
対の振動体48,49が上記固定板42に垂直に
なるように配置され、斯る振動体48,49はエ
ポキシ系の絶縁性接着剤にて固定されている。上
記振動体48,49においては、特に第6図及び
第10図に詳細に示す如く、燐青銅などからなる
中央電極50a,50bが存し、該中央電極の
各々の両側には圧電体51a,51b及び52
a,52bが設けられ、これら圧電体51a,5
1b及び52a,52bの外側表面には銀などか
らなる表面電極53a,53b及び54a,54
bが形成されている。上記圧電体51a,51b
及び52a,52bは上記振動体48,49毎に
同一方向に且つ振動体48,49間で逆方向とな
るように分極(第6図分極方向P)されている。
そして、上記表面電極53a,53b及び54
a,54bはいずれも上記固定板42の電極47
bにクリーム半田接続され、又上記中央電極50
a,50bは振動体48,49の端部から延設し
た枝片55a,55bを有している。該枝片は上
記固定板42の電極47a側へ折曲され斯る電極
47aにクリーム半田接続されている。
A pair of vibrating bodies 48, 49 having lengths, heights, and thicknesses of, for example, 18, 4, and 0.5 mm, respectively, are arranged in the notches 46a, 46b so as to be perpendicular to the fixing plate 42. The vibrating bodies 48 and 49 are fixed with an epoxy-based insulating adhesive. In the vibrating bodies 48 and 49, as shown in detail in FIGS. 6 and 10, there are central electrodes 50a and 50b made of phosphor bronze, etc., and piezoelectric bodies 51a and 50b are provided on both sides of each central electrode. 51b and 52
a, 52b are provided, and these piezoelectric bodies 51a, 5
Surface electrodes 53a, 53b and 54a, 54 made of silver or the like are provided on the outer surfaces of 1b, 52a, 52b.
b is formed. The piezoelectric bodies 51a, 51b
and 52a, 52b are polarized in the same direction for each of the vibrating bodies 48, 49 and in opposite directions between the vibrating bodies 48, 49 (polarization direction P in FIG. 6).
Then, the surface electrodes 53a, 53b and 54
a and 54b are both electrodes 47 of the fixed plate 42.
b with cream solder, and the central electrode 50
a, 50b have branch pieces 55a, 55b extending from the ends of the vibrating bodies 48, 49. The branch piece is bent toward the electrode 47a side of the fixing plate 42 and connected to the electrode 47a with cream solder.

而して、上記振動体48,49の自由端側にお
いて、振動体48,49の振動方向に非垂直な振
動体48,49の非垂直面、即ち上面48′,4
9′には、上記外部赤外線入射口21に約1.1mmの
間隔を有し近接して臨む一対の対向体56,57
が互いに平行状態になるようにスミキツト
SG210M(住友化学(株)の商品名)等のアクリル系
絶縁性接着剤56′,57′により接着固定されて
いる。この場合、上記対向体56,57は幅wが
約2mmの接着片56a,57aを有しており、一
方上記上面48′,49′の接着部分においては、
上記中央電極50a,50bが切欠され凹み58
a,58bが形成されている。斯る凹み58a,
58bにおいて、長さlは上記幅wの10〜200%
の0.2〜4mmが適当であり更に詳しくは2.7mmが好
ましい。又、深さdは0.05〜1mmが適当であり更
に詳しくは0.17mmが好ましい。そして、上記凹み
58a,58bには上記接着剤56′,57′が溜
り、上記対向体56,57と振動体48,49と
の間に多量の接着剤56′,57′が介在する状態
となつており、よつて上記対向体56,57の接
着固定強度は充分なものとなつている。
Thus, on the free end sides of the vibrating bodies 48, 49, non-perpendicular surfaces of the vibrating bodies 48, 49 that are non-perpendicular to the vibration direction of the vibrating bodies 48, 49, that is, upper surfaces 48', 4
9', a pair of opposing bodies 56, 57 which face the external infrared ray entrance 21 closely with an interval of about 1.1 mm.
Sumikittu so that they are parallel to each other.
They are adhesively fixed using an acrylic insulating adhesive 56', 57' such as SG210M (trade name of Sumitomo Chemical Co., Ltd.). In this case, the opposing bodies 56, 57 have adhesive pieces 56a, 57a with a width w of about 2 mm, while the adhesive parts of the upper surfaces 48', 49' have:
The center electrodes 50a, 50b are cut out and have a recess 58
a, 58b are formed. Such a recess 58a,
In 58b, the length l is 10 to 200% of the width w.
0.2 to 4 mm is appropriate, and more specifically, 2.7 mm is preferable. Further, the depth d is suitably 0.05 to 1 mm, more preferably 0.17 mm. Then, the adhesives 56', 57' accumulate in the recesses 58a, 58b, and a large amount of adhesives 56', 57' are present between the opposing bodies 56, 57 and the vibrating bodies 48, 49. Therefore, the adhesion and fixing strength of the opposing bodies 56 and 57 is sufficient.

次に、上記両対向体56,57はアルミニウム
などの赤外線非透過材料からなり、第12図a,
bに詳細に示す如く、扇形線状に延設された複数
のスリツトとしての赤外線通過部59,60が形
成され、該通過部の各々の間には夫々赤外線非通
過部61,62が位置している。これらの通過部
59,60及び非通過部61,62は共に同一寸
法、形状を有している。
Next, the opposing bodies 56 and 57 are made of an infrared opaque material such as aluminum, and are shown in FIG.
As shown in detail in FIG. 1B, infrared passing portions 59 and 60 are formed as a plurality of slits extending in a fan-shaped line, and infrared non-passing portions 61 and 62 are located between each of the passing portions. ing. Both of these passing portions 59, 60 and non-passing portions 61, 62 have the same size and shape.

上記ケース17内における上記主基板23上に
は、上記赤外線検出体27及びチヨツパ機構部2
8と共に更に上記対向体56,57の温度に等し
い上記ケース17内の温度を測定するための測温
ダイオード65が組込まれている。斯るダイオー
ド65は直立状態にしてアノード及びカソードが
夫々上記主基板23上の第5、第6電極26e,
26fに半田接続されている。
On the main board 23 in the case 17, the infrared detector 27 and the chopper mechanism section 2 are provided.
In addition to 8, a temperature measuring diode 65 for measuring the temperature inside the case 17, which is equal to the temperature of the opposing bodies 56 and 57, is incorporated. The diode 65 is placed in an upright state, and its anode and cathode are connected to the fifth and sixth electrodes 26e and 26e on the main substrate 23, respectively.
It is soldered connected to 26f.

次に、上記センサ16の具体的動作について説
明する。
Next, the specific operation of the sensor 16 will be explained.

上記振動体48,49は上記第3及び第4端子
22c,22dに印加される電圧に基づいて振動
する。即ち、上記第4端子22dには直流定電圧
約+5ボルトが印加され、一方上記第3端子22
cには約+35及び−25ボルトの電圧が交互に周期
的(周波数3〜5Hz)に印加される。すると、斯
る第3、第4端子22c,22dに上記固定板4
2上の電極47a,47bを介して連なつている
上記振動体48,49の中央電極50a,50b
及び表面電極53a,53b及び54a,54b
に関し、中央電極50a,50bの方が表面電極
53a,53b及び54a,54bに較べて30ボ
ルトだけ高くなる状態(以下H状態という)と30
ボルトだけ低くなる状態(以下L状態という)と
が、第14図に示す如く周波数3〜5Hzにて交互
に繰返される。而して、上記H状態の場合、上記
振動体48,49の圧電体51a,52aが縮む
と共に圧電体51b,52bが伸び、両振動体4
8,49は夫々S、S′方向(第6図)に撓む。一
方、上記L状態の場合、両振動体48,49は上
述とは逆に夫々S′S方向に撓む。これにより、上
記振動体48,49は互いに逆方向に周期的に振
動する。
The vibrating bodies 48 and 49 vibrate based on the voltages applied to the third and fourth terminals 22c and 22d. That is, a DC constant voltage of about +5 volts is applied to the fourth terminal 22d, while the third terminal 22d
Voltages of approximately +35 and -25 volts are applied alternately and periodically (frequency 3 to 5 Hz) to c. Then, the fixing plate 4 is attached to the third and fourth terminals 22c and 22d.
Center electrodes 50a, 50b of the vibrating bodies 48, 49 connected via electrodes 47a, 47b on 2
and surface electrodes 53a, 53b and 54a, 54b
Regarding the state where the center electrodes 50a, 50b are 30 volts higher than the surface electrodes 53a, 53b and 54a, 54b (hereinafter referred to as the H state) and 30
The state in which the voltage is lowered by only the volt (hereinafter referred to as the L state) is alternately repeated at a frequency of 3 to 5 Hz as shown in FIG. In the case of the H state, the piezoelectric bodies 51a and 52a of the vibrating bodies 48 and 49 contract, and the piezoelectric bodies 51b and 52b expand, so that both vibrating bodies 4
8 and 49 are bent in the S and S' directions (Fig. 6), respectively. On the other hand, in the case of the L state, both vibrators 48 and 49 are bent in the S'S direction, contrary to the above. As a result, the vibrating bodies 48 and 49 periodically vibrate in opposite directions.

そして、斯る振動に基づいて、上記対向体5
6,57は相対的位置関係が変位し、両対向体5
6,57の赤外線通過部59,60がほぼ重畳し
合つて開放する状態(上記H状態に対応する)
と、殆ど重畳し合わず閉塞する状態(上記L状態
に対応する)とが周期的に繰返される。この場
合、上記対向体56,57は上記赤外線検出体3
1の赤外線入射域に位置しており、これにより赤
外線検出体31は、外部赤外線入射口21を通過
してセンサケース17内に入つてくる被検知物か
らの赤外線と対向体56,57からの赤外線とに
基づいて、入射赤外線量が周期的に変化し、よつ
て被検知物の温度に応じた電荷、更に詳しくは被
検知物と対向体56,57との温度差に対応した
信号を出力する。
Based on such vibration, the opposing body 5
6 and 57 are displaced in relative position, and both opposing bodies 5
A state in which the infrared passing portions 59 and 60 of 6 and 57 are almost overlapped and open (corresponding to the above H state)
, and a state in which they are occluded with almost no overlap (corresponding to the L state) are periodically repeated. In this case, the opposing bodies 56 and 57 are the infrared detectors 3
As a result, the infrared detector 31 detects the infrared rays from the object passing through the external infrared entrance 21 and entering the sensor case 17 and the infrared rays from the opposing bodies 56 and 57. The amount of incident infrared rays changes periodically based on the infrared rays, and therefore a signal corresponding to the electric charge corresponding to the temperature of the object to be detected, more specifically, the temperature difference between the object to be detected and the opposing bodies 56 and 57 is output. do.

斯る信号には、その後センサ16外にて上記測
温ダイオード65からの対向体56,57の温度
に応じた信号が加算され、これにより被検知物に
対する正確な温度信号が得られる。
A signal corresponding to the temperature of the opposing bodies 56, 57 from the temperature measuring diode 65 is then added to this signal outside the sensor 16, thereby obtaining an accurate temperature signal for the object to be detected.

(ヘ) 考案の効果 本考案によれば、入射赤外線変化量に応じて電
荷を発生する赤外線検出体と、複数の赤外線通過
部及び赤外線通過部を有し上記赤外線検出体の赤
外線入射域に位置する一対の対向体と、該一対の
対向体の赤外線通過部の開閉度を周期的に変位せ
しめるべく少なくとも一方の上記対向体を振動せ
しめる振動体とを備えた赤外線センサにおいて、
上記振動体にて振動せしめられる上記対向体は、
上記振動体の振動方向に非垂直な上記振動体の非
垂直面に、該非垂直面に形成された凹部に溜めら
れた接着剤にて接着固定したから、上記対向体の
接着強度は充分大きくでき、従つて上記接着固定
は確実に行なうことができる。
(f) Effects of the invention According to the invention, an infrared detection body that generates electric charges according to the amount of change in incident infrared radiation, and a plurality of infrared transmission parts and an infrared transmission part located in the infrared incidence area of the infrared detection body. an infrared sensor comprising a pair of opposing bodies, and a vibrating body that vibrates at least one of the opposing bodies to periodically change the opening/closing degree of the infrared passing portion of the pair of opposing bodies,
The opposing body vibrated by the vibrating body is
Since the vibrating body is adhesively fixed to the non-vertical surface of the vibrating body that is not perpendicular to the vibration direction of the vibrating body using the adhesive stored in the recess formed in the non-vertical surface, the adhesive strength of the opposing body can be sufficiently increased. Therefore, the adhesive fixation described above can be performed reliably.

また、上記振動体は切欠部分を有する中央電極
と、該中央電極の両側面に各々配置された圧電体
と、該圧電体の各々の外側面に配置された表面電
極とから構成されている。そして、上記中央電極
の切欠部分と上記圧電体とで囲まれた凹部が上記
振動体の非垂直面に形成されている。このように
凹部は中央電極が切欠されて形成されるので、振
動体の非垂珍面に容易に形成することができる。
Further, the vibrating body is composed of a central electrode having a notch, piezoelectric bodies placed on both sides of the central electrode, and surface electrodes placed on each outer side of the piezoelectric body. A concave portion surrounded by the notch portion of the central electrode and the piezoelectric body is formed on a non-vertical surface of the vibrating body. Since the recess is thus formed by cutting out the center electrode, it can be easily formed on the non-recessed surface of the vibrating body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは夫々従来の赤外線検出機構の
側面図及び平面図、第2図及び第3図は夫々改良
された従来の赤外線センサの断面図及び要部平面
図、第4図乃至第12図は本考案実施例赤外線セ
ンサの構造を示し、第4図は分解斜視図、第5図
は側面から見た断面図、第6図は第5図における
−線断面図、第7図は第5図における−
線断面図、第8図は第5図における−線断面
図、第9図は主基板の平面図、第10図は要部斜
視図、第11図は抵抗用チツプの下面図、第12
図a,bは夫々対向体の平面図、第13図は上記
実施例の赤外線センサの回路図、第14図は第1
3図における要部信号波形図である。 17……センサケース、18……キヤツプ、1
9……ヘツダ、21……外部赤外線入射口、31
……赤外線検出体、40……シールド体、42…
…固定板、48,49……振動体、56,57…
…対向体、58a,58b……凹部、59,60
……赤外線通過部、61,62……赤外線非通過
部。
FIGS. 1a and 1b are a side view and a plan view of a conventional infrared detection mechanism, FIGS. 2 and 3 are a sectional view and a plan view of essential parts of an improved conventional infrared sensor, respectively, and FIGS. 12 shows the structure of an infrared sensor according to an embodiment of the present invention, FIG. 4 is an exploded perspective view, FIG. 5 is a cross-sectional view seen from the side, FIG. 6 is a cross-sectional view along the - line in FIG. 5, and FIG. In Figure 5 -
8 is a sectional view taken along the - line in FIG. 5, FIG. 9 is a plan view of the main board, FIG. 10 is a perspective view of main parts, FIG.
Figures a and b are plan views of the opposing bodies, Figure 13 is a circuit diagram of the infrared sensor of the above embodiment, and Figure 14 is the first infrared sensor.
FIG. 4 is a diagram of main part signal waveforms in FIG. 3; 17...Sensor case, 18...Cap, 1
9... Header, 21... External infrared incidence port, 31
...Infrared detection body, 40...Shield body, 42...
... Fixed plate, 48, 49... Vibrating body, 56, 57...
... Opposing body, 58a, 58b... Recess, 59, 60
... Infrared passing section, 61, 62... Infrared non-passing section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入射赤外線変化量に応じて電荷を発生する赤外
線検出体と、複数の赤外線通過部及び赤外線非通
過部を有し上記赤外線検出体の入射領域に位置す
る一対の対向体と、該一対の対向体の赤外線通過
部の開閉度を周期的に変位せしめるべく少なくと
も一方の上記対向体を振動せしめる振動体とを備
えた赤外線センサにおいて、上記振動体は切欠部
分を有する中央電極と、該中央電極の両側面に
各々配置された圧電体と、該圧電体の各々の外側
面に配置された表面電極とから構成されると共に
上記中央電極の切欠部分と上記圧電体とで囲まれ
た凹部が振動方向に非垂直な非垂直面に形成さ
れ、且つ上記対向体が上記非垂直面に、上記凹部
に溜められた接着剤にて接着固定されたことを特
徴とする赤外線センサ。
an infrared detector that generates a charge according to the amount of change in incident infrared rays; a pair of opposing bodies having a plurality of infrared passing parts and infrared non-passing parts and located in an incident area of the infrared detecting body; and the pair of opposing bodies. an infrared sensor comprising a vibrating body that vibrates at least one of the opposing bodies in order to periodically change the opening/closing degree of an infrared passing section, the vibrating body having a central electrode having a notch portion, and a vibrating body that vibrates at least one of the opposing bodies in order to periodically change the degree of opening/closing of an infrared passing section; It is composed of piezoelectric bodies arranged on each surface, and surface electrodes arranged on the outer surface of each piezoelectric body, and a recessed part surrounded by the cutout part of the center electrode and the piezoelectric body is arranged in the vibration direction. An infrared sensor formed on a non-vertical surface, and characterized in that the opposing body is adhesively fixed to the non-vertical surface with an adhesive stored in the recess.
JP1983193630U 1983-12-15 1983-12-15 infrared sensor Granted JPS60100635U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983193630U JPS60100635U (en) 1983-12-15 1983-12-15 infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983193630U JPS60100635U (en) 1983-12-15 1983-12-15 infrared sensor

Publications (2)

Publication Number Publication Date
JPS60100635U JPS60100635U (en) 1985-07-09
JPH0313707Y2 true JPH0313707Y2 (en) 1991-03-28

Family

ID=30416415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983193630U Granted JPS60100635U (en) 1983-12-15 1983-12-15 infrared sensor

Country Status (1)

Country Link
JP (1) JPS60100635U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183095A (en) * 2012-03-02 2013-09-12 Nec Corp Sensor package and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129226A (en) * 1982-01-27 1983-08-02 Sanyo Electric Co Ltd Infrared detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922500Y2 (en) * 1976-06-18 1984-07-05 富士通株式会社 infrared detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129226A (en) * 1982-01-27 1983-08-02 Sanyo Electric Co Ltd Infrared detector

Also Published As

Publication number Publication date
JPS60100635U (en) 1985-07-09

Similar Documents

Publication Publication Date Title
EP0131996B1 (en) Infra-red radiation detector
US4485305A (en) Infrared detector with vibrating chopper
JPH0238893B2 (en)
JPH0313707Y2 (en)
JPH0234592Y2 (en)
JPH0311715Y2 (en)
JPS622246B2 (en)
JPH0238894B2 (en)
JPH0262810B2 (en)
JPH0240172B2 (en)
JPH0414290B2 (en)
JPH0230740Y2 (en)
JPH0156367B2 (en)
JPH0334668Y2 (en)
JPH053957Y2 (en)
JPH0216858B2 (en)
JPH0127069Y2 (en)
JPH051793Y2 (en)
JPS5937431A (en) Infrared detector
JPH0448513Y2 (en)
JPH037890B2 (en)
JPH0730136Y2 (en) Oscillator
JPS6145455Y2 (en)
JPS6025557Y2 (en) Pyroelectric infrared detection element
JPH11251863A (en) Piezoelectric vibrator