JPH0240172B2 - - Google Patents

Info

Publication number
JPH0240172B2
JPH0240172B2 JP58237582A JP23758283A JPH0240172B2 JP H0240172 B2 JPH0240172 B2 JP H0240172B2 JP 58237582 A JP58237582 A JP 58237582A JP 23758283 A JP23758283 A JP 23758283A JP H0240172 B2 JPH0240172 B2 JP H0240172B2
Authority
JP
Japan
Prior art keywords
infrared
electrode
signal
bodies
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58237582A
Other languages
Japanese (ja)
Other versions
JPS60128315A (en
Inventor
Kosuke Takeuchi
Toshiaki Yokoo
Kenichi Shibata
Yukinori Kuwano
Masami Ikeda
Yasuhiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58237582A priority Critical patent/JPS60128315A/en
Publication of JPS60128315A publication Critical patent/JPS60128315A/en
Publication of JPH0240172B2 publication Critical patent/JPH0240172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は例えば被検知物の温度を赤外線にて検
知するための赤外線センサに関する。 (ロ) 従来技術 第1図a及びbにおいて、近時の赤外線センサ
1では、例えば焦電型の赤外線検出体が内蔵され
ている。斯る赤外線検出体は入射赤外線の変化量
に基づいて電荷を発生する特性を有し、又上記赤
外線検出体の検出精度は入射赤外線量の変化が周
期的である程向上し、従つて上記赤外線検出体に
入射する赤外線を周期的に変化せしめる必要があ
り、このために赤外線センサ1の前方には同期モ
ータ2によつて周期的に回転駆動される金属チヨ
ツパ3が配置されている。而して、斯るチヨツパ
3の回動にて、上記赤外線検出体に被検知物から
の赤外線とチヨツパ3からの赤外線が交互に周期
的に入射すると、赤外線検出体は入射赤外線量が
周期的に変化して電荷を発生する。斯る電荷は被
検知物の温度測定用として利用される。 しかし乍ら、上記構成においては、上記モータ
2及びチヨツパ3はかなり大きな形状を有し、ス
ペース上の問題などがある。 そこで、第2図及び第3図に示す如き赤外線セ
ンサ4が考え出されている。斯る赤外線センサ4
は、外形寸法としての長さ、幅、高さが夫々約
60、20、15mmである小型の直方体形状をなし、そ
して新規なチヨツパ機構が内蔵されており、よつ
て上述の如きモータ2及びチヨツパ3が不要とな
り、スペース上の問題が解決されている。 以下、その赤外線センサ4の具体的構造を説明
する。 金属製のヘツダ5及び赤外線透過部6を有する
キヤツプ7からなるセンサケース8の内部には、
シールド体9に囲まれ入射赤外線変化量に基づい
て電荷を発生する焦電型の赤外線検出体10と、
該検出体に入射する赤外線を変化せしめるチヨツ
パ機構とが設けられている。該チヨツパ機構は、
一対の電圧振動体11,12及び該振動体の各々
の自由端部に固定された一対の対向体13,14
からなつている。斯る対向体13,14には各々
赤外線を通過せしめる複数の同形状、同寸法のス
リツト15,15…が形成されている。 而して、上記振動体11,12は互いに逆方向
(A又はB方向)に周期的に振動し、これにより
上記対向体13,14は相対的位置関係が周期的
に変化し、上記対向体13,14の各々のスリツ
ト15,15…が重畳し合つて開放する状態と
各々のスリツト15,15…が重畳し合わず閉塞
する状態とが周期的に繰返される。すると、上記
重畳する状態においては被検知物からの赤外線が
ケース8の赤外線透過部6及び両対向体13,1
4のスリツト15,15…を経て上記赤外線検出
体10に入射し、一方上記重畳しない状態におい
ては対向体13,14からの赤外線のみが上記赤
外線検出体10に入射し、よつて赤外線検出体1
0は入射赤外線量が周期的に変化し例えば被検知
物の温度測定用としての電荷を発生する。 さて、上記センサ4にあつては、更に上面に複
数の電極がパターン形成された絶縁基板ISが配置
され、該基板上に上記赤外線検出体10及び圧電
振動体11,12などがセンサ4をなるべくコン
パクト化すべくハイブリツド的に配置されてい
る。そして、上記赤外線検出体10からの電荷信
号は被検知物の温度測定用として上記基板IS上の
所定電極を通してセンサ4外部へ導出されるので
ある。而して、上記圧電振動体11,12は、上
記基板IS上の他の所定電極及び導電リード線l1
l1…を介して交流的駆動信号が印加されることに
より、上述の如くA又はB方向に周期的に振動す
るのである。 ここに、上記基板IS上の他の所定電極及び導電
リード線l1,l1…を伝わる駆動信号電圧は交流的
であるので、その交流成分に基づいたノイズが上
記他の所定電極及び導電リード線l1,l1…から発
生し、そして斯るノイズは上記シールド体9内に
も侵入し上記赤外線検出体10の出力する信号に
乗り、よつてセンサ4のSN比の低下を招くとい
う欠点がある。 (ハ) 発明の日的 本発明の目的は、振動体に印加される交流的駆
動信号に基づいたノイズに影響されず、SN比の
低下を招かない、信頼性の高い赤外線センサを得
ることにある。 (ニ) 発明の構成 本発明赤外線センサは、上記目的を達成すべ
く、センサケースと、該ケース内に配置され複数
の電極がパターン形成された絶縁基板と、入射赤
外線変化量に応じた信号を発生し、該信号が上記
基板上の所定電極に導かれる赤外線検出体と、複
数の赤外線通過部及び赤外線非通過部を有し、上
記赤外線検出体の赤外線入射域に位置する一対の
対向体と、該一対の対向体の赤外線通過部の開閉
度を周期的に変位せしめるべく振動する振動体
と、上記基板の他の所定電極と上記振動体とを導
通せしめ、上記他の所定電極に印加される上記振
動体の交流的駆動信号を上記振動体へ導くための
導通部と、からなり、上記基板上にて上記赤外線
検出体からの信号が導かれる上記所定電極と上記
駆動信号が印加される上記他の所定電極との間に
接地電極を介在せしめると共に、該接地電極に接
続された接地体を上記接地電極上の空間に配置し
たことを特徴とする。 (ホ) 実施例 第4図乃至第11図は本発明実施例の赤外線セ
ンサ16を示す。該センサの外形寸法は長さ、
幅、高さが夫々24、16、15mmであり、センサ16
の小型化が充分図られている。 まず、センサケース17は金属製のキヤツプ1
8及びヘツダ19からなる。上記キヤツプ18に
は、赤外線透過性のシリコン板20にて閉塞さ
れ、被検知物の放射する外部赤外線を上記ケース
17内に導くための直径3.5mmの外部赤外線入射
口21が形成されている。又、上記ヘツダ19に
は、第1〜第5端子22a〜22eが絶縁物を介
して植設されていると共に接地用第3端子22f
が直接植設されている。更に、ダミーとして第
7、第8端子22g,22hが植設されている。 而して、上記ケース17内にて上記ヘツダ19
上にはアルミナ絶縁主基板23がエポキシ系の絶
縁性接着剤24にて接着配置されている。この場
合、上記主基板23は第1〜第8端子孔25a〜
25hを有しており、これら端子孔25a〜25
hに夫々上記第1〜第8端子22a〜22hが嵌
入している。更に、上記主基板23上面には第1
〜第7電極26a〜26gが銀パラジウムをスク
リーン印刷して焼結することによりパターン形成
されている。これら第1〜第6電極26a〜26
fには夫々上記第1〜第6端子22a〜22fが
半田接続されている。上記第6電極26fには更
に上記第7、第8端子22g,22hも半田接続
されている。 そして、上記ケース17内にて上記主基板23
上には赤外線検出体27及びチヨツパ機構部28
等がハイブリツド的に構成されており、コンパク
ト化が図られている。 まず、上記赤外線検出部27について説明する
に、表、裏面電極29,30を有し、入射赤外線
変化量に基づいて電荷を発生するタンタル酸リチ
ウム(LiTaO3)単結晶からなる約1.5mm角の焦電
型赤外線検出体31が設けられ、該検出体は燐青
銅からなる金属製支持台32上に銀ペースト等の
導電性接着剤33にて接着固定されている。そし
て、上記支持台32は同じく銀ペースト等の導電
性接着剤34にて上記第6電極26fの幅広部2
6f′に固定され、これにより上記裏面電極30は
接着剤33,34、支持台32及び第6電極26
fを介して上記第6端子22fに電気的に連なつ
ており、一方上記表面電極29は上記第7電極2
6gに電気的に連なつている。 又、上記赤外線検出体31と共に抵抗用チツプ
35及びFET36が設けられている。斯る抵抗
用チツプ35は特に第10図に示す如く構成され
ており、アルミナ片37が用いられ、該片の片面
両端に銀パラジウムをスクリーン印刷して焼結す
ることにより一対の抵抗電極38a,38bが形
成され、該電極間に跨るように1010〜1011Ωの抵
抗層39がスクリーン印刷形成されている。そし
て、上記抵抗用チツプ35は両抵抗電極38a,
38bをクリーム半田にて上記第6、第7電極2
6f,26gに接着することにより上記主基板2
3上に固定されている。更に、上記FET36は
ソースS、ドレインD、ゲートGを各々同様のク
リーム半田にて上記第1、第2、第7電極26
a,26b,26gに接着することにより上記主
基板23上に固定されている。 そして、上記赤外線検出体31、抵抗用チツプ
35及びFET36は燐青銅、ブリキからなり内
面に黒色艶消し塗料が塗布された金属製シールド
体40にて覆われている。該シールド体は、三角
屋根形状をなし、長さl1、下幅w1、上幅w2、高
さhの各寸法は夫々例えば10、11、2、9mmとな
つており、更に下片40a,40a及び爪40
b,40bを有している。而して、上記シールド
体40は、下片40a,40aが上記主基板23
の長辺23a,23aに係合し且つ爪40b,4
0bが上記主基板23に形成された切欠部23b
及び係合孔23cに係合した状態で、上記第6電
極26fに半田付けされ、これにより、上記シー
ルド体40は上記主基板23上に固定されてい
る。そして、上記シールド体40の上面における
上記赤外線検出体31直上部には直径約1.8mmの
赤外線通過孔41が形成されている。 次に、上記チヨツパ機構部28について説明す
るに、アルミナ絶縁固定板42が設けられてい
る。該固定板は、下部両端の係合片43a,43
bが上記主基板23の角に形成された切欠部44
a,44bに係合するようにして上記主基板23
に垂直にエポキシ系の絶縁性接着剤45にて接着
固定されている。又、上記固定板42の上部には
例えば長さ4mm、幅0.5mmの一対の切込み46a,
46bが互いに5mmの間隔をおいて形成され、そ
して上記固定板42の片面には、上記主基板23
と同様に銀パラジウムをスクリーン印刷して焼結
することにより2つの電極47a,47bがパタ
ーン形成されている。この電極47bは上記切込
み46a,46bを囲むパターンを有しており、
又電極47aは上記切込み46a,46bの間に
位置するパターンを有しており、これら両電極4
7a,47bは各々上記主基板23上の第3、第
4電極26c,26dに半田接続されている。 而して、上記両切込み46a,46bには、長
さ、高さ、厚みが夫々例えば18、4、0.5mmの一
対の振動体48,49が上記固定板42に垂直に
なるように配置され、斯る振動体48,49はエ
ポキシ系の絶縁性接着剤にて固定されている。上
記振動体48,49においては、特に第6図に詳
細に示す如く、燐青銅などからなる中央電極50
a,50bが存し、該中央電極の各々の両側には
圧電体51a,51b及び52a,52bが設け
られ、これら圧電体51a,51b及び52a,
52bの外側表面には銀などからなる表面電極5
3a,53b及び54a,54bが形成されてい
る。上記圧電体51a,51b及び52a,52
bは上記振動体48,49毎に同一方向に且つ振
動体48,49間で逆方向となるように分極(第
6図分極方向P)されている。そして、上記表面
電極53a,53b及び54a,54bはいずれ
も上記固定板42の電極47bにクリーム半田接
続され、又上記中央電極50a,50bは振動体
48,49の端部から延設した枝片55a,55
bを有している。該枝片は上記固定板42の電極
47a側へ折曲され斯る電極47aにクリーム半
田接続されている。 而して、上記振動体48,49の自由端側に
は、上記外部赤外線入射口21に約1.1mmの間隔
を有し近接して臨む一対の対向体56,57が互
いに平行状態になるようにスミキツトSG210M
(住友化学(株)の商品名)等のアクリル系絶縁
性接着剤により接着固定されている。この場合上
記中央電極50a,50bの接着部分には例えば
長さ2.7mm、深さ0.17mmの凹み58a,58bが
形成され、この部分に上記アクリル系絶縁性接着
剤が溜り、上記対向体56,57と振動体48,
49との間に多くの接着剤56′,57′が介在し
ており、よつて上記対向体56,57の接着固定
強度は充分なものとなつている。 次に、上記両対向体56,57はアルミニウム
などの赤外線非透過材料からなり、第11図a,
bに詳細に示す如く、扇形線状に延設された複数
のスリツトとしての赤外線通過部59,60が形
成され、該通過部の各々の間には夫々赤外線非通
過部61,62が位置している。これら通過部5
9,60及び非通過部61,62は共に同一寸
法、形状を有している。 上記ケース17内における上記主基板23上に
は、上記赤外線検出部27及びチヨツパ機構部2
8と共に更に上記対向体56,57の温度に等し
い上記センサケース17内の温度を測定するため
の測温ダイオード65が組込まれている。斯るダ
イオード65は直立状態にしてアノード及びカソ
ードが夫々上記主基板23上の第5、第6電極2
6e,26fに半田接続されている。 次に、上記センサ16の具体的動作について説
明する。 上記振動体48,49は上記第3及び第4端子
22c,22dに印加される電圧に基づいて振動
する。即ち、上記第4端子22dには直流定電圧
約+5ボルトが印加され、一方上記第3端子22
cには約+35及び−25ボルトの電圧が交互に周期
的(周波数3〜5Hz)に印加される。すると、斯
る第3、第4端子22c,22dに上記固定板4
2上の電極47a,47bを介して連なつている
上記振動体48,49の中央電極50a,50b
及び表面電極53a,53b及び54a,54b
に関し、中央電極50a,50bの方が表面電極
53a,53b及び54a,54bに較べて30ボ
ルトだけ高くなる状態(以下H状態という)を30
ボルトだけ低くなる状態(以下L状態という)と
が、第13図aに示す如く周波数3〜5Hzにて交
互に繰返される。而して、上記H状態の場合、上
記振動体48,49の圧電体51a,52bが縮
むと共に圧電体51b,52bが伸び、両振動体
48,49は夫々S,S′方向(第6図)に撓む。
一方、上記L状態の場合、両振動体48,49は
上述とは逆に夫々S′,S方向に撓む。これによ
り、上記振動体48,49は互いに逆方向に周期
的に振動する。 そして、斯る振動に基づいて、上記対向体5
6,57は相対的位置関係が変位し、両対向体5
6,57の赤外線通過部59,60がほぼ重畳し
合つて開放する状態(上記H状態に対応する)
と、殆ど重畳し合わず閉塞する状態(上記L状態
に対応する)とが周期的に繰返される。この場
合、上記対向体56,57は上記赤外線検出体3
1の赤外線入射域に位置しており、これにより赤
外線検出体31は、赤外線入射口21を通過して
センサケース17内に入つてくる被検知物からの
赤外線と対向体56,57からの赤外線とに基づ
いて、入射赤外線量が周期的に変化し、よつて被
検知物の温度に応じた電荷、更に詳しくは被検知
物と対向体56,57との温度差に対応した信号
を出力する。 第12図は斯るセンサ16を含む回路を示す。
上記第4端子22dには定電圧回路66より上記
定電圧約+5ボルトが印加され、上記第3端子2
2cには発振器67からの出力が増幅回路68を
介して増幅され上記電圧約+35及び−25ボルトが
交互に周期的に印加される。これにより、上記振
動体48,49は上述の如く振動し、斯る振動時
には上記第1電極26aを介して上記第1端子2
2aから被検知物と対向体56,57との温度差
に対応した信号を出力する。斯る信号は実際は第
13図bの如き交流eをなし、その振幅が上記温
度差に応じたものとなつている。そして、上記第
1端子22aからの信号はフイルタ増幅器69を
介して同期検波器70に入力される。尚、上記フ
イルタ増幅器69の入力側には約10KΩの抵抗7
1が接続されている。斯る抵抗71は上記センサ
16の抵抗39及びFET36と共にインピーダ
ンス変換回路72を構成している。 而して、上記検波器70は、上記交流信号eと
上記発振器67の出力との同期をとり、被検知物
の温度が対向体56,57の温度より高い場合は
その温度差に応じた正の直流信号を検波出力し、
被検知物の温度が対向体56,57の温度より低
い場合はその温度差に応じた負の直流信号を検波
出力する。即ち、上記交流信号eとしては、被検
知物の温度が対向体56,57の温度より高いと
正側半サイクルe+が上記H状態と一致し、被検
知物の温度が対向体56,57の温度より低いと
負側半サイクルe−が上記H状態と一致する。そ
して上記検波器70からは、前者の一致がとれる
と被検知物と対向体56,57との温度差に応じ
た正の直流信号が出力され、後者の一致がとれる
と斯る温度差に応じた負の直流信号が出力され
る。 而して、上記検波器70からの出力は直流増幅
器73を介して合成回路74に入力される。該合
成回路には更に上記測温ダイオード65からの出
力、即ち対向体56,57の温度に応じた信号が
直流増幅器75を介して入力される。そして、上
記合成回路75はこれら2つの入力を加算し、実
際の被検知物の温度に応じた信号を出力する。斯
る出力は直流増幅器76を介して所望回路へ出力
するための出力端子77に導かれる。 さて、上記振動体48,49を周期的に駆動せ
しめるための上記交流的駆動信号(+35ボルト及
び−25ボルト)は上記第3端子22cから主基板
23の第3電極26c及び導通部としての固定板
42の電極47aを通して上記振動体48,49
の中央電極50a,50bに伝達される。ここ
に、上記第3電極26c及び電極47aへの交流
的駆動信号の印加状態においては、その交流成分
に基づいたノイズがこれら電極26c,47aか
ら発生する状態となつている。しかるに、この場
合、上記赤外線検出体31の出力に基づいた信
号、即ち被検知物と対向体56,57との温度差
に応じた信号が導かれる上記第1電極26aと、
上記交流的駆動信号が導かれる上記第3電極26
cと、の間には第6端子22fを介して接地され
た上記第6電極26fの横断部26f″が介在して
おり、更に上記横断部26f″に接続された接地体
としての上記測温ダイオード65のカソードリー
ド線65′が上記横断部26f″上の空間に位置し
ている。而して、斯る構成であると、上記シール
ド体40の存在と相俟つて上記第1電極26a等
は上記第3電極26c及び電極47aとの静電的
結合が著しく弱められたものとなつており、これ
により上記ノイズが上記第1電極26a等に伝わ
るのが顕著に防止され、センサ16のSN比の向
上が図られている。 尚、上記振動体48,49の中央電極50a,
50bからも勿論、交流的駆動信号が印加される
ことによりノイズが発生する。しかるに、この場
合、上記中央電極50a,50bは夫々表面電極
53a,53b及び54a,54bに挾まれた状
態にあり、斯る構成にあつては上記中央電極50
a,50bからのノイズは表面電極53a,53
b及び54a,54bにて顕著にシールドされ、
よつて斯るノイズがセンサ16のSN比の低下を
招くようなことは殆どない。 ここに、上記赤外線センサ16と従来の赤外線
センサ4とを総合的に数値比較すると、下表の通
りとなる。
(a) Industrial Application Field The present invention relates to an infrared sensor for detecting the temperature of an object to be detected using infrared rays, for example. (b) Prior Art In FIGS. 1a and 1b, a recent infrared sensor 1 has a built-in infrared detector, for example, of a pyroelectric type. Such an infrared detector has a characteristic of generating electric charge based on the amount of change in the amount of incident infrared rays, and the detection accuracy of the infrared detector improves as the amount of incident infrared rays changes more periodically. It is necessary to periodically change the infrared rays incident on the object to be detected, and for this purpose, a metal chopper 3 that is driven to rotate periodically by a synchronous motor 2 is arranged in front of the infrared sensor 1. Therefore, when the infrared rays from the object to be detected and the infrared rays from the chopper 3 are alternately and periodically incident on the infrared detecting body due to the rotation of the chopper 3, the amount of incident infrared rays is periodically incident on the infrared detecting body. and generates an electric charge. Such charges are used to measure the temperature of the object to be detected. However, in the above configuration, the motor 2 and the chopper 3 have a considerably large shape, and there are problems in terms of space. Therefore, an infrared sensor 4 as shown in FIGS. 2 and 3 has been devised. Such an infrared sensor 4
The length, width, and height of the external dimensions are approximately
It has a small rectangular parallelepiped shape with dimensions of 60, 20, and 15 mm, and has a built-in novel chopper mechanism, thus eliminating the need for the motor 2 and chopper 3 as described above, and solving the space problem. The specific structure of the infrared sensor 4 will be explained below. Inside a sensor case 8 consisting of a metal header 5 and a cap 7 having an infrared transmitting section 6,
a pyroelectric infrared detector 10 that is surrounded by a shield body 9 and generates an electric charge based on the amount of change in incident infrared rays;
A chopper mechanism is provided to change the infrared rays incident on the detection object. The tippa mechanism is
A pair of voltage vibrating bodies 11, 12 and a pair of opposing bodies 13, 14 fixed to the free ends of each of the vibrating bodies
It is made up of A plurality of slits 15, 15, . . . of the same shape and size are formed in the opposing bodies 13, 14, respectively, to allow infrared rays to pass therethrough. The vibrating bodies 11 and 12 periodically vibrate in directions opposite to each other (direction A or B), and as a result, the relative positional relationship of the opposing bodies 13 and 14 changes periodically. A state in which the slits 15, 15, . . . of each of the slits 13, 14 are overlapped and open, and a state in which the slits 15, 15, . . . are not overlapped and are closed, are periodically repeated. Then, in the superimposed state, the infrared rays from the object to be detected are transmitted to the infrared transmitting part 6 of the case 8 and both opposing bodies 13 and 1.
On the other hand, in the non-overlapping state, only the infrared rays from the opposing bodies 13 and 14 enter the infrared detector 10 through the slits 15, 15, . . .
0, the amount of incident infrared rays changes periodically and generates a charge for measuring the temperature of the object to be detected, for example. Now, in the case of the sensor 4, an insulating substrate IS having a plurality of electrodes patterned on its upper surface is further arranged, and the infrared detector 10, piezoelectric vibrators 11, 12, etc. are arranged on the substrate to make the sensor 4 as much as possible. It is arranged in a hybrid manner to make it compact. The charge signal from the infrared detector 10 is led out to the outside of the sensor 4 through a predetermined electrode on the substrate IS for measuring the temperature of the object to be detected. Thus, the piezoelectric vibrators 11 and 12 are connected to other predetermined electrodes on the substrate IS and conductive lead wires l 1 ,
By applying an alternating current drive signal through l 1 . . . , it vibrates periodically in the A or B direction as described above. Here, since the drive signal voltage transmitted through the other predetermined electrodes and conductive lead wires l 1 , l 1 . The noise is generated from the lines l 1 , l 1 . . . and enters the shield body 9 and rides on the signal output from the infrared detector 10, resulting in a decrease in the SN ratio of the sensor 4. There is. (c) Description of the invention An object of the present invention is to obtain a highly reliable infrared sensor that is not affected by noise based on an AC drive signal applied to a vibrating body and does not cause a decrease in the S/N ratio. be. (d) Structure of the Invention In order to achieve the above object, the infrared sensor of the present invention includes a sensor case, an insulating substrate arranged in the case and patterned with a plurality of electrodes, and a signal that outputs a signal according to the amount of change in incident infrared rays. an infrared detector whose signal is generated and guided to a predetermined electrode on the substrate; and a pair of opposing bodies having a plurality of infrared passing parts and infrared non-passing parts and located in an infrared incidence area of the infrared detector. , a vibrating body that vibrates to periodically change the opening/closing degree of the infrared passing portions of the pair of opposing bodies and another predetermined electrode of the substrate and the vibrating body are electrically connected, and an electric current is applied to the other predetermined electrode. a conductive part for guiding an AC driving signal of the vibrating body to the vibrating body, and the driving signal is applied to the predetermined electrode on the substrate to which the signal from the infrared detecting body is guided. A ground electrode is interposed between the above-described other predetermined electrode, and a ground body connected to the ground electrode is disposed in a space above the ground electrode. (E) Embodiment FIGS. 4 to 11 show an infrared sensor 16 according to an embodiment of the present invention. The external dimensions of the sensor are length,
The width and height are 24, 16, and 15 mm, respectively, and the sensor 16
has been sufficiently miniaturized. First, the sensor case 17 is made of metal cap 1.
8 and a header 19. The cap 18 is closed with an infrared-transmissive silicon plate 20 and is formed with an external infrared ray entrance opening 21 having a diameter of 3.5 mm for guiding external infrared rays emitted by the object to be detected into the case 17. In addition, first to fifth terminals 22a to 22e are implanted in the header 19 via an insulator, and a third grounding terminal 22f is connected to the header 19.
are directly planted. Furthermore, seventh and eighth terminals 22g and 22h are implanted as dummies. Therefore, the header 19 is installed inside the case 17.
An alumina insulating main substrate 23 is bonded thereon with an epoxy-based insulating adhesive 24. In this case, the main board 23 has the first to eighth terminal holes 25a to
25h, and these terminal holes 25a to 25
The first to eighth terminals 22a to 22h are fitted into the terminals h, respectively. Further, on the upper surface of the main substrate 23, a first
- The seventh electrodes 26a to 26g are patterned by screen printing and sintering silver palladium. These first to sixth electrodes 26a to 26
The first to sixth terminals 22a to 22f are soldered to f, respectively. The seventh and eighth terminals 22g and 22h are further soldered connected to the sixth electrode 26f. Then, the main board 23 is placed inside the case 17.
On the top, there is an infrared detector 27 and a chopper mechanism part 28.
etc. are configured in a hybrid manner, making it more compact. First, to explain the infrared detection section 27, it has front and back electrodes 29, 30, and is made of lithium tantalate (LiTaO 3 ) single crystal, which generates electric charge based on the amount of change in incident infrared rays. A pyroelectric infrared detector 31 is provided, and the detector is adhesively fixed onto a metal support 32 made of phosphor bronze with a conductive adhesive 33 such as silver paste. The support base 32 is also attached to the wide part 2 of the sixth electrode 26f using a conductive adhesive 34 such as silver paste.
6f', and thereby the back electrode 30 is fixed to the adhesive 33, 34, the support base 32, and the sixth electrode 26.
f, and is electrically connected to the sixth terminal 22f, while the surface electrode 29 is connected to the seventh electrode 22f.
It is electrically connected to 6g. In addition to the infrared detector 31, a resistor chip 35 and a FET 36 are also provided. Such a resistor chip 35 is particularly constructed as shown in FIG. 10, in which an alumina piece 37 is used, and by screen printing silver palladium on both ends of one side of the piece and sintering it, a pair of resistor electrodes 38a, 38b is formed, and a resistance layer 39 of 10 10 to 10 11 Ω is formed by screen printing so as to span between the electrodes. The resistance chip 35 has both resistance electrodes 38a,
38b with cream solder to the sixth and seventh electrodes 2.
By adhering to 6f and 26g, the main board 2
It is fixed on 3. Furthermore, the source S, drain D, and gate G of the FET 36 are connected to the first, second, and seventh electrodes 26 using the same cream solder.
It is fixed on the main board 23 by adhering to the parts a, 26b, and 26g. The infrared detector 31, resistor chip 35, and FET 36 are covered with a metal shield 40 made of phosphor bronze or tin and whose inner surface is coated with black matte paint. The shield body has a triangular roof shape, and the length l 1 , lower width w 1 , upper width w 2 , and height h are, for example, 10, 11, 2, and 9 mm, respectively. 40a, 40a and claw 40
b, 40b. Thus, the lower pieces 40a, 40a of the shield body 40 are connected to the main board 23.
The claws 40b, 4 engage with the long sides 23a, 23a of the
0b is a notch 23b formed in the main board 23
The shield body 40 is soldered to the sixth electrode 26f while being engaged with the engagement hole 23c, thereby fixing the shield body 40 on the main board 23. An infrared passing hole 41 with a diameter of about 1.8 mm is formed on the upper surface of the shield body 40, just above the infrared detecting body 31. Next, to explain the chopper mechanism section 28, an alumina insulating fixing plate 42 is provided. The fixing plate has engaging pieces 43a, 43 at both ends of the lower part.
b is a notch 44 formed at a corner of the main board 23;
a, 44b so as to engage with the main board 23.
It is adhesively fixed perpendicularly to the epoxy-based insulating adhesive 45. Further, on the upper part of the fixing plate 42, there are a pair of notches 46a, for example, 4 mm in length and 0.5 mm in width.
46b are formed at an interval of 5 mm from each other, and the main board 23 is formed on one side of the fixing plate 42.
Similarly, two electrodes 47a and 47b are patterned by screen printing and sintering silver palladium. This electrode 47b has a pattern surrounding the cuts 46a and 46b,
Further, the electrode 47a has a pattern located between the notches 46a and 46b, and both electrodes 4
7a and 47b are soldered to third and fourth electrodes 26c and 26d on the main board 23, respectively. A pair of vibrating bodies 48, 49 having lengths, heights, and thicknesses of, for example, 18, 4, and 0.5 mm, respectively, are arranged in the notches 46a, 46b so as to be perpendicular to the fixing plate 42. The vibrating bodies 48 and 49 are fixed with an epoxy-based insulating adhesive. In the vibrating bodies 48 and 49, as shown in detail in FIG. 6, a central electrode 50 made of phosphor bronze, etc.
a, 50b, and piezoelectric bodies 51a, 51b and 52a, 52b are provided on each side of the central electrode, and these piezoelectric bodies 51a, 51b and 52a,
A surface electrode 5 made of silver or the like is provided on the outer surface of 52b.
3a, 53b and 54a, 54b are formed. The piezoelectric bodies 51a, 51b and 52a, 52
b is polarized in the same direction for each of the vibrating bodies 48 and 49 and in opposite directions between the vibrating bodies 48 and 49 (polarization direction P in FIG. 6). The surface electrodes 53a, 53b and 54a, 54b are all connected to the electrode 47b of the fixing plate 42 with cream solder, and the center electrodes 50a, 50b are branch pieces extending from the ends of the vibrating bodies 48, 49. 55a, 55
It has b. The branch piece is bent toward the electrode 47a side of the fixing plate 42 and connected to the electrode 47a with cream solder. A pair of opposing bodies 56, 57 are provided on the free end sides of the vibrating bodies 48, 49, facing the external infrared ray entrance 21 closely with an interval of about 1.1 mm, so that they are parallel to each other. Sumikit SG210M
(trade name of Sumitomo Chemical Co., Ltd.) and other acrylic insulating adhesives. In this case, recesses 58a and 58b having a length of 2.7 mm and a depth of 0.17 mm, for example, are formed in the bonded portions of the center electrodes 50a and 50b, and the acrylic insulating adhesive accumulates in these portions, and the opposing body 56, 57 and the vibrating body 48,
A large amount of adhesive 56', 57' is interposed between the opposing bodies 56, 57, and the adhesive fixing strength of the opposed bodies 56, 57 is therefore sufficient. Next, the opposing bodies 56 and 57 are made of an infrared opaque material such as aluminum, and are shown in FIG.
As shown in detail in FIG. 1B, infrared passing portions 59 and 60 are formed as a plurality of fan-shaped linearly extending slits, and infrared non-passing portions 61 and 62 are located between each of the passing portions. ing. These passage parts 5
9, 60 and non-passing portions 61, 62 both have the same size and shape. On the main board 23 in the case 17, the infrared detection section 27 and the chopper mechanism section 2 are provided.
In addition to 8, a temperature measuring diode 65 for measuring the temperature inside the sensor case 17, which is equal to the temperature of the opposing bodies 56 and 57, is incorporated. The diode 65 is placed in an upright state so that its anode and cathode are connected to the fifth and sixth electrodes 2 on the main substrate 23, respectively.
It is soldered connected to 6e and 26f. Next, the specific operation of the sensor 16 will be explained. The vibrating bodies 48 and 49 vibrate based on the voltages applied to the third and fourth terminals 22c and 22d. That is, a DC constant voltage of about +5 volts is applied to the fourth terminal 22d, while the third terminal 22d
Voltages of approximately +35 and -25 volts are applied alternately and periodically (frequency 3 to 5 Hz) to c. Then, the fixing plate 4 is attached to the third and fourth terminals 22c and 22d.
Center electrodes 50a, 50b of the vibrating bodies 48, 49 connected via electrodes 47a, 47b on 2
and surface electrodes 53a, 53b and 54a, 54b
Regarding the state in which the center electrodes 50a, 50b are 30 volts higher than the surface electrodes 53a, 53b and 54a, 54b (hereinafter referred to as the H state), 30
The state in which the voltage is lowered by the volt (hereinafter referred to as the L state) is alternately repeated at a frequency of 3 to 5 Hz as shown in FIG. 13a. In the case of the above-mentioned H state, the piezoelectric bodies 51a and 52b of the vibrating bodies 48 and 49 contract and the piezoelectric bodies 51b and 52b expand, and both the vibrating bodies 48 and 49 move in the S and S' directions (Fig. 6). ).
On the other hand, in the case of the L state, both vibrators 48 and 49 bend in the S' and S directions, respectively, contrary to the above. As a result, the vibrating bodies 48 and 49 periodically vibrate in opposite directions. Based on such vibration, the opposing body 5
6 and 57 are displaced in relative position, and both opposing bodies 5
A state in which the infrared passing portions 59 and 60 of 6 and 57 are almost overlapped and open (corresponding to the above H state)
, and a state in which they are occluded with almost no overlap (corresponding to the L state) are periodically repeated. In this case, the opposing bodies 56 and 57 are the infrared detectors 3
The infrared detector 31 is located in the infrared incident area of No. 1, so that the infrared detecting body 31 detects the infrared rays from the object to be detected that pass through the infrared incident port 21 and enters the sensor case 17, and the infrared rays from the opposing bodies 56 and 57. Based on this, the amount of incident infrared rays changes periodically, and thus a charge corresponding to the temperature of the object to be detected, more specifically, a signal corresponding to the temperature difference between the object to be detected and the opposing bodies 56 and 57 is output. . FIG. 12 shows a circuit including such a sensor 16.
The constant voltage of about +5 volts is applied to the fourth terminal 22d from the constant voltage circuit 66, and the third terminal 22d
2c, the output from the oscillator 67 is amplified via the amplifier circuit 68, and the above-mentioned voltages of about +35 and -25 volts are alternately and periodically applied. As a result, the vibrating bodies 48 and 49 vibrate as described above, and when vibrating, the vibrations are transmitted to the first terminal 2 via the first electrode 26a.
A signal corresponding to the temperature difference between the object to be detected and the opposing bodies 56 and 57 is output from 2a. Such a signal actually forms an alternating current e as shown in FIG. 13b, and its amplitude corresponds to the above-mentioned temperature difference. The signal from the first terminal 22a is input to the synchronous detector 70 via the filter amplifier 69. In addition, a resistor 7 of about 10KΩ is connected to the input side of the filter amplifier 69.
1 is connected. The resistor 71 constitutes an impedance conversion circuit 72 together with the resistor 39 of the sensor 16 and the FET 36. The detector 70 synchronizes the alternating current signal e with the output of the oscillator 67, and when the temperature of the object to be detected is higher than the temperature of the opposing bodies 56 and 57, the detector 70 generates a signal corresponding to the temperature difference. Detects and outputs the DC signal of
When the temperature of the object to be detected is lower than the temperature of the opposing bodies 56 and 57, a negative DC signal corresponding to the temperature difference is detected and output. That is, as for the AC signal e, when the temperature of the object to be detected is higher than the temperature of the opposing bodies 56, 57, the positive half cycle e+ coincides with the above H state, and the temperature of the object to be detected is higher than the temperature of the opposing bodies 56, 57. When the temperature is lower than that, the negative half cycle e- coincides with the above-mentioned H state. When the former matches, the detector 70 outputs a positive DC signal corresponding to the temperature difference between the object to be detected and the opposing bodies 56 and 57, and when the latter matches, it outputs a positive DC signal corresponding to the temperature difference. A negative DC signal is output. The output from the detector 70 is input to a combining circuit 74 via a DC amplifier 73. The output from the temperature measuring diode 65, that is, a signal corresponding to the temperature of the opposing bodies 56 and 57 is further input to the synthesis circuit via a DC amplifier 75. Then, the synthesis circuit 75 adds these two inputs and outputs a signal corresponding to the actual temperature of the object to be detected. This output is led via a DC amplifier 76 to an output terminal 77 for output to a desired circuit. Now, the AC drive signals (+35 volts and -25 volts) for periodically driving the vibrating bodies 48 and 49 are sent from the third terminal 22c to the third electrode 26c of the main board 23 and fixed as a conductive part. The vibrating bodies 48, 49 are passed through the electrode 47a of the plate 42.
is transmitted to the center electrodes 50a, 50b of the center electrodes 50a, 50b. Here, when the AC drive signal is applied to the third electrode 26c and the electrode 47a, noise based on the AC component is generated from the electrodes 26c and 47a. However, in this case, the first electrode 26a receives a signal based on the output of the infrared detector 31, that is, a signal corresponding to the temperature difference between the object to be detected and the opposing bodies 56 and 57;
The third electrode 26 to which the AC drive signal is guided
A cross section 26f'' of the sixth electrode 26f, which is grounded via the sixth terminal 22f, is interposed between the temperature measuring section 26f'' and the temperature measuring body connected to the cross section 26f''. The cathode lead wire 65' of the diode 65 is located in the space above the crossing section 26f''.With this configuration, together with the presence of the shield body 40, the first electrode 26a, etc. The electrostatic coupling with the third electrode 26c and the electrode 47a is significantly weakened, thereby significantly preventing the noise from being transmitted to the first electrode 26a, etc., and reducing the SN of the sensor 16. The center electrode 50a of the vibrating bodies 48, 49,
Of course, noise is also generated from 50b due to the application of an AC drive signal. However, in this case, the central electrodes 50a, 50b are sandwiched between the surface electrodes 53a, 53b and 54a, 54b, respectively;
Noise from the surface electrodes 53a, 53a, 50b
b and 54a, 54b are significantly shielded,
Therefore, such noise hardly causes a decrease in the SN ratio of the sensor 16. Here, a comprehensive numerical comparison of the infrared sensor 16 and the conventional infrared sensor 4 is as shown in the table below.

【表】【table】

【表】 (ヘ) 発明の効果 本発明赤外線センサは、センサケースと、該ケ
ース内に配置され複数の電極がパターン形成され
た絶縁基板と、入射赤外線変化量に応じた信号を
発生し、該信号が上記基板上の所定電極に導かれ
る赤外線検出体と、複数の赤外線通過部及び赤外
線非通過部を有し、上記赤外線検出体の赤外線入
射域に位置する一対の対向体と、該一対の対向体
の赤外線通過部の開閉度を周期的に変位せしめる
べく振動する振動体と、上記基板の他の所定電極
と上記振動体とを導通せしめ、上記他の所定電極
に印加される上記振動体の交流的駆動信号を上記
振動体へ導くための導通部と、からなり、上記基
板上にて上記赤外線検出体からの信号が導かれる
上記所定電極と上記駆動信号が印加される上記他
の所定電極との間に接地電極を介在せしめると共
に、該接地電極に接続された接地体を上記接地電
極上の空間に配置したから、振動体に印加される
交流的駆動信号に基づいたノイズの影響を受け
ず、よつてSN比が向上し、信頼性の高い赤外線
センサを得ることができる。
[Table] (F) Effects of the Invention The infrared sensor of the present invention includes a sensor case, an insulating substrate disposed inside the case and patterned with a plurality of electrodes, and a sensor that generates a signal according to the amount of change in incident infrared rays, and an infrared detector whose signal is guided to a predetermined electrode on the substrate; a pair of opposing bodies having a plurality of infrared passing parts and infrared non-passing parts and located in an infrared incidence area of the infrared detector; A vibrating body that vibrates to periodically change the opening/closing degree of the infrared passing portion of the opposing body, and the vibrating body that connects another predetermined electrode of the substrate with the vibrating body, and applies an electric current to the other predetermined electrode. a conductive part for guiding an AC drive signal to the vibrating body, the predetermined electrode on the substrate to which a signal from the infrared detector is guided, and the other predetermined electrode to which the drive signal is applied. Since a ground electrode is interposed between the ground electrode and the ground body connected to the ground electrode is placed in the space above the ground electrode, the influence of noise based on the AC drive signal applied to the vibrating body can be reduced. Therefore, the signal-to-noise ratio is improved, and a highly reliable infrared sensor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは夫々従来の赤外線検出機構の
側面図及び平面図、第2図及び第3図は夫々改良
された従来の赤外線センサの断面図及び要部平面
図、第4図乃至第11図は本発明実施例赤外線セ
ンサの構造を示し、第4図は分解斜視図、第5図
は側面から見た断面図、第6図は第5図における
−線断面図、第7図は第5図における−
線断面図、第8図は第5図における−線断面
図、第9図は主基板の平面図、第10図は抵抗用
チツプの下面図、第11図a,bは夫々対向体の
平面図、第12図は上記実施例の赤外線センサを
含む回路図、第13図a,bは第12図における
要部信号波形図である。 17…センサケース、23…主基板、26a〜
26g…第1〜第7電極、26f″…横断部、31
…赤外線検出体、42…固定板、47a,47b
…固定板の電極、48,49…振動体、56,5
7…対向体、59,60…赤外線通過部、61,
62…赤外線非通過部、65′…カソードリード
線。
FIGS. 1a and 1b are a side view and a plan view of a conventional infrared detection mechanism, FIGS. 2 and 3 are a sectional view and a plan view of essential parts of an improved conventional infrared sensor, respectively, and FIGS. 11 shows the structure of an infrared sensor according to an embodiment of the present invention, FIG. 4 is an exploded perspective view, FIG. 5 is a cross-sectional view seen from the side, FIG. 6 is a cross-sectional view taken along the - line in FIG. 5, and FIG. In Figure 5 -
8 is a sectional view taken along the - line in FIG. 5, FIG. 9 is a plan view of the main board, FIG. 10 is a bottom view of the resistor chip, and FIGS. 11a and 11b are plan views of the opposing body, respectively. 12 are circuit diagrams including the infrared sensor of the above embodiment, and FIGS. 13a and 13b are main signal waveform diagrams in FIG. 12. 17...Sensor case, 23...Main board, 26a~
26g...first to seventh electrodes, 26f''...crossing section, 31
...Infrared detector, 42...Fixing plate, 47a, 47b
... Electrode of fixed plate, 48, 49 ... Vibrating body, 56, 5
7... Opposing body, 59, 60... Infrared passing section, 61,
62... Infrared ray non-passing part, 65'... Cathode lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 センサケースと、該ケース内に配置され複数
の電極がパターン形成された絶縁基板と、入射赤
外線変化量に応じた信号を発生し、該信号が上記
基板上の所定電極に導かれる赤外線検出体と、複
数の赤外線通過部及び赤外線非通過部を有し、上
記赤外線検出体の赤外線入射域に位置する一対の
対向体と、該一対の対向体の赤外線通過部の開閉
度を周期的に変位せしめるべく振動する振動体
と、上記基板の他の所定電極と上記振動体とを導
通せしめ、上記他の所定電極に印加される上記振
動体の交流的駆動信号を上記振動体へ導くための
導通部と、からなり、上記基板上にて上記赤外線
検出体からの信号が導かれる上記所定電極と上記
駆動信号が印加される上記他の所定電極との間に
接地電極を介在せしめると共に、該接地電極に接
続された接地体を上記接地電極上の空間に配置し
たことを特徴とする赤外線センサ。
1. A sensor case, an insulating substrate placed inside the case and patterned with a plurality of electrodes, and an infrared detector that generates a signal according to the amount of change in incident infrared rays, and the signal is guided to a predetermined electrode on the substrate. and a pair of opposing bodies having a plurality of infrared passing parts and infrared non-passing parts and located in the infrared incident area of the infrared detecting body, and periodically changing the opening/closing degree of the infrared passing parts of the pair of opposing bodies. conduction between a vibrating body that vibrates to increase the vibration, another predetermined electrode of the substrate, and the vibrating body, and conducting an alternating current driving signal of the vibrating body applied to the other predetermined electrode to the vibrating body; a ground electrode is interposed between the predetermined electrode on the substrate to which the signal from the infrared detector is guided and the other predetermined electrode to which the drive signal is applied; An infrared sensor characterized in that a grounding body connected to an electrode is arranged in a space above the grounding electrode.
JP58237582A 1983-12-15 1983-12-15 Infrared ray sensor Granted JPS60128315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237582A JPS60128315A (en) 1983-12-15 1983-12-15 Infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237582A JPS60128315A (en) 1983-12-15 1983-12-15 Infrared ray sensor

Publications (2)

Publication Number Publication Date
JPS60128315A JPS60128315A (en) 1985-07-09
JPH0240172B2 true JPH0240172B2 (en) 1990-09-10

Family

ID=17017452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237582A Granted JPS60128315A (en) 1983-12-15 1983-12-15 Infrared ray sensor

Country Status (1)

Country Link
JP (1) JPS60128315A (en)

Also Published As

Publication number Publication date
JPS60128315A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
US5834650A (en) Vibration detecting sensor
US4556796A (en) Infrared radiation detector
JPH0238893B2 (en)
JPH0240172B2 (en)
JPH0313707Y2 (en)
JPH0238894B2 (en)
JPH0234592Y2 (en)
JPS622246B2 (en)
JPH0414290B2 (en)
JPH09178549A (en) Infrared detector
JPH0262810B2 (en)
JPH0156367B2 (en)
JPH051793Y2 (en)
JPH0334668Y2 (en)
JPH0230740Y2 (en)
JPH0448513Y2 (en)
JPH053957Y2 (en)
JPH0730136Y2 (en) Oscillator
JPH0216858B2 (en)
JPH0127069Y2 (en)
JPH037890B2 (en)
JPS6145455Y2 (en)
JPS5937431A (en) Infrared detector
JPH0142726Y2 (en)
JPH0553372B2 (en)