JPH0262810B2 - - Google Patents

Info

Publication number
JPH0262810B2
JPH0262810B2 JP1243282A JP1243282A JPH0262810B2 JP H0262810 B2 JPH0262810 B2 JP H0262810B2 JP 1243282 A JP1243282 A JP 1243282A JP 1243282 A JP1243282 A JP 1243282A JP H0262810 B2 JPH0262810 B2 JP H0262810B2
Authority
JP
Japan
Prior art keywords
infrared
detector
opposing
transmitting
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1243282A
Other languages
Japanese (ja)
Other versions
JPS58129226A (en
Inventor
Yukinori Kuwano
Shoichi Nakano
Toshiaki Yokoo
Kenichi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57012432A priority Critical patent/JPS58129226A/en
Priority to US06/407,582 priority patent/US4485305A/en
Priority to GB08223932A priority patent/GB2105033B/en
Publication of JPS58129226A publication Critical patent/JPS58129226A/en
Publication of JPH0262810B2 publication Critical patent/JPH0262810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Description

【発明の詳細な説明】 本発明は赤外線検出器に関する。[Detailed description of the invention] The present invention relates to an infrared detector.

近時の赤外線検出器では、その赤外線検出部に
例えば焦電型の赤外線検出体が内蔵されている。
In recent infrared detectors, for example, a pyroelectric infrared detector is built into the infrared detector.

斯る赤外線検出体は入射赤外線の変化量に基づ
いて電荷を発生する特性を有し、又上記赤外線検
出体の検出精度は入射赤外線量の変化が周期的で
ある程向上し、従つて上記赤外線検出体に入射す
る赤外線を周期的に断続する必要があり、このた
めに第1図a及びbに示す如く赤外線検出器1の
前方にはモータ2によつて周期的に回転駆動され
る金属板チヨツパ3が配置されている。
Such an infrared detector has a characteristic of generating electric charge based on the amount of change in the amount of incident infrared rays, and the detection accuracy of the infrared detector improves as the amount of incident infrared rays changes more periodically. It is necessary to periodically interrupt the infrared rays incident on the detection object, and for this purpose, as shown in FIG. Chiyotsupa 3 is placed.

しかし乍ら、斯るチヨツパ3は形状が大きくス
ペース上の問題があり、且つ上記モータ2は回転
むらを生じて必ずしもチヨツパ3を周期的に回転
駆動しないため検出精度の低下を招いてしまう。
However, such a chopper 3 has a large shape and there is a space problem, and the motor 2 has uneven rotation and does not necessarily rotate the chopper 3 periodically, resulting in a decrease in detection accuracy.

本発明は斯る点に鑑みてなされたもので、以下
本発明実施例を図面に基づいて詳述する。
The present invention has been made in view of these points, and embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は赤外線検出器4を示し、5はタンタル
酸リチウム(LiTaO3)単結晶から成り入射赤外
線変化量に応じて電荷を発生する焦電型の赤外線
検出体、6及び7は夫々該赤外線検出体の表、裏
面にニクロム蒸着膜にて形成された表、裏面電
極、8は銅、燐青銅などからなる金属性支持台
で、該支持台上には、上記裏面電極7を支持台8
上面に対向するようにして、上記赤外線検出体5
が銀ペーストなどの導電性接着剤9にて固着され
ている。
FIG. 2 shows an infrared detector 4, in which 5 is a pyroelectric infrared detector made of lithium tantalate (LiTaO 3 ) single crystal and generates a charge according to the amount of change in incident infrared rays, and 6 and 7 are infrared ray detectors, respectively. Front and back electrodes are formed on the front and back surfaces of the detection object using nichrome vapor deposited films, and reference numeral 8 is a metal support made of copper, phosphor bronze, etc. On the support, the back electrode 7 is mounted on a support 8.
The infrared detecting body 5 is arranged so as to face the upper surface.
is fixed with a conductive adhesive 9 such as silver paste.

10は上記赤外線検出体5が高抵抗であるが故
に斯る高抵抗を低抵抗に変換するためのインピー
ダンス変換回路11が配置されたアルミナ基板、
12は金属性のキヤツプ13及びヘツダ14から
なる収納体で、該収納体内の上記ヘツダ14上に
は上記支持台8及び基板10が固定されている。
15は上記ヘツダ14に直接的に植設されたアー
ス端子で、該端子は上記支持台8及び接着剤9を
介して上記裏面電極7に電気的に接続されてい
る。16及び17は夫々上記ヘツダ14に絶縁材
18,19を介して植設された第1,第2リード
端子、20は上記表面電極6とインピーダンス変
換回路11とを結線するリード線、21,22は
上記インピーダンス変換回路11と第1,第2リ
ード端子16,17とを結線するリード線であ
る。
10 is an alumina substrate on which an impedance conversion circuit 11 is arranged to convert the high resistance of the infrared detector 5 to a low resistance because the infrared detector 5 has a high resistance;
Reference numeral 12 denotes a storage body consisting of a metal cap 13 and a header 14, and the support stand 8 and the substrate 10 are fixed on the header 14 inside the storage body.
Reference numeral 15 denotes a ground terminal directly implanted in the header 14, and the terminal is electrically connected to the back electrode 7 via the support base 8 and adhesive 9. 16 and 17 are first and second lead terminals implanted in the header 14 via insulating materials 18 and 19, respectively; 20 is a lead wire connecting the surface electrode 6 and the impedance conversion circuit 11; 21 and 22; is a lead wire connecting the impedance conversion circuit 11 and the first and second lead terminals 16 and 17.

23は上記赤外線検出体5に表面電極6側から
赤外線を入射せしめるべく上記キヤツプ13に穿
設された開口、24は該開口を閉塞する第1赤外
線透過体で、該透過体は波長2〜15μmの赤外線
に対する透過率が高い厚さ数100μmのシリコン
又はゲルマニウム板からなつている。25は上記
開口23に対向すべく上記第1赤外線透過体24
の下面に固定された平面状の第1対向体で、該第
1対向体において、26,26…はアルミニウ
ム、金、銀などの赤外線非透過材料からなり紙面
に平行な方向にて第3図aに示す如く線状に延設
された複数の第1赤外線非透過部、27,27…
は斯る第1赤外線非透過部26,26…の各々の
間に位置する第1赤外線透過部である。そして、
上記第1赤外線非透過部26,26…の幅Wは
1μm〜2μm、厚さDは0.1〜100μmで、上記第1
赤外線透過部27,27…の幅tは上記幅Wと同
一寸法である。28は上記収納体12内において
上記第1赤外線透過体24に近接対向すべく配置
された第2赤外線透過体で、該透過体は上記第1
赤外線透過体24と同様に波長2〜15μmの赤外
線に対する透過率が高い厚さ数100μmのシリコ
ン又はゲルマニウム板からなつている。29は上
記開口23に対向すべく更に詳しくは、上記第1
対向体25に平行にして近接対向すべく上記第2
赤外線透過体28の上面に固定された平面状の第
2対向体で、該第2対向体において、30,30
…は上記第1赤外線非透過部26,26…と同一
材料からなり紙面に平行な方向にて第3図bに示
す如く線状に延設された複数の第2赤外線非透過
部、31,31…は斯る第2赤外線非透過部3
0,30…の各々の間に位置する第2赤外線透過
部である。そして、上記赤外線非透過部30,3
0…の幅W′、厚さD′及び上記第2赤外線透過部
31,31…の幅t′は夫々上記第1赤外線非透過
部26,26…の幅W、厚さD及び第1赤外線透
過部27,27…の幅tと同一寸法である。
23 is an opening formed in the cap 13 to allow infrared rays to enter the infrared detector 5 from the surface electrode 6 side; 24 is a first infrared transmitting member that closes the opening; the transmitting member has a wavelength of 2 to 15 μm; It is made of a silicon or germanium plate several 100 μm thick that has high transmittance to infrared rays. 25 is the first infrared transmitting body 24 facing the opening 23;
3. In the first opposing body, 26, 26, . As shown in a, a plurality of first infrared opaque portions 27, 27, . . . extend linearly as shown in FIG.
is a first infrared transmitting portion located between each of the first infrared non-transmitting portions 26, 26, . and,
The width W of the first infrared non-transmissive portions 26, 26... is
1 μm to 2 μm, the thickness D is 0.1 to 100 μm, and the first
The width t of the infrared transmitting portions 27, 27, . . . is the same as the width W described above. Reference numeral 28 denotes a second infrared transmitting body disposed in the storage body 12 so as to be close to and opposite to the first infrared transmitting body 24, and the transmitting body is
Like the infrared transmitting body 24, it is made of a silicon or germanium plate with a thickness of several 100 μm and has a high transmittance for infrared light having a wavelength of 2 to 15 μm. In more detail, 29 is the first opening 29 facing the opening 23.
The second
A planar second opposing body fixed to the upper surface of the infrared transmitting body 28, in which 30, 30
... are a plurality of second infrared non-transparent parts 31, made of the same material as the first infrared non-transparent parts 26, 26, and extending linearly in a direction parallel to the plane of the paper as shown in FIG. 3b. 31... is such a second infrared non-transmissive part 3
The second infrared transmitting portion is located between 0, 30, and so on. The infrared non-transmissive portions 30, 3
The width W' and the thickness D' of 0... and the width t' of the second infrared transmitting parts 31, 31... are the width W, the thickness D and the first infrared rays of the first infrared non-transmitting parts 26, 26, respectively. It has the same dimension as the width t of the transparent parts 27, 27....

32は2枚の圧電板を張り合わせて形成された
圧電振動体、即ちバイモルフで、該バイモルフは
直方体形状を有しその長さl、幅w、厚みaは
夫々約30mm、5mm、0.5mmであり、水晶、ロツシ
エル塩、酒石酸エチレン、ジアミン、酒石酸カ
リ、第一リン酸カリ、第一リン酸アンモン、硫酸
リチウム、チタン酸バリウム、硫酸グリシンなど
の単結晶や、チタン酸バリウム系磁器、ジルコン
酸・チタン酸鉛系磁器、ニオブ酸系磁器などの磁
器材料からなつている。そして、上記バイモルフ
32は赤外線入射方向に垂直な方向、即ち横方向
に長くなるようにして左端32′が上記ヘツダ1
4に設けられた絶縁台33に固定され、右端3
2″に上記第2赤外線透過体28が装着されてい
る。34及び35は上記ヘツダ14に絶縁材3
6,37を介して植設された第3,第4リード端
子、38及び39は第4図にも示す如く上記バイ
モルフ32の左端32′の両面に形成された第1,
第2振動電極で、該第1,第2振動電極は夫々上
記第3,第4リード端子34,35に接続されて
いる。
32 is a piezoelectric vibrating body formed by pasting two piezoelectric plates together, that is, a bimorph, and the bimorph has a rectangular parallelepiped shape, and its length l, width w, and thickness a are approximately 30 mm, 5 mm, and 0.5 mm, respectively. , single crystals such as crystal, Rothsiel salt, ethylene tartrate, diamine, potassium tartrate, potassium monophosphate, ammonium monophosphate, lithium sulfate, barium titanate, glycine sulfate, barium titanate porcelain, zirconate, etc. It is made of porcelain materials such as lead titanate-based porcelain and niobate-based porcelain. The bimorph 32 is elongated in the direction perpendicular to the infrared incident direction, that is, in the lateral direction, so that the left end 32' is attached to the header 1.
It is fixed to the insulating stand 33 provided at the right end 3.
The second infrared transmitting body 28 is attached to the header 14.
The third and fourth lead terminals 38 and 39, which are implanted through the terminals 6 and 37, are connected to the first and fourth lead terminals formed on both sides of the left end 32' of the bimorph 32, as shown in FIG.
The first and second vibrating electrodes of the second vibrating electrode are connected to the third and fourth lead terminals 34 and 35, respectively.

而して、上記第1,第2振動電極38,39間
に第3,第4リード端子34,35を介して所定
の交流信号を印加すると、上記バイモルフ32は
交流信号の周波数に応じて撓んで第2赤外線透過
体28を紙面に垂直なA方向に周期的に振動せし
める。この場合、バイモルフ32は長さlが上述
の如き長い寸法を有していることによりバイモル
フ32の右端32″は大きく振動し、従つて上記
第2対向体29は第5図に詳細に示す如く第2赤
外線非透過部30,30…が上記第1対向体25
の第1赤外線透過部27,27…に重なる部分
(破線I)及び第1赤外線非透過部26,26…
に重なる部分(実線J)に周期的に位置するよう
に大きく振動する。そして、この様な状態におい
て、上記第2対向体29は第1対向体25に対し
て常に平行状態を保持している。
When a predetermined AC signal is applied between the first and second vibrating electrodes 38 and 39 via the third and fourth lead terminals 34 and 35, the bimorph 32 flexes in accordance with the frequency of the AC signal. The second infrared transmitting body 28 is then periodically vibrated in the direction A perpendicular to the plane of the paper. In this case, since the bimorph 32 has the long length l as described above, the right end 32'' of the bimorph 32 vibrates greatly, and the second opposing body 29 vibrates as shown in detail in FIG. The second infrared non-transmissive portions 30, 30... are the first opposing body 25
The portion (broken line I) that overlaps with the first infrared transmitting portions 27, 27... and the first infrared non-transmitting portions 26, 26...
It vibrates greatly so as to be periodically located in the overlapped part (solid line J). In this state, the second opposing body 29 always maintains a parallel state with respect to the first opposing body 25.

ここに、上記バイモルフ32が第2図に破線で
示す如く赤外線入射方向に長くなるように配置さ
れていると、赤外線検出器自体が必然的に赤外線
入射方向に大きくなり、従つて斯る赤外線検出器
の取付スペースの赤外線入射方向寸法が小さい場
合赤外線検出器の取付けが困難である。そして、
このような場合、第2対向体29は第6図に示す
如く第1対向体25に対して平行でない位置に振
動してしまう。
Here, if the bimorph 32 is arranged so as to be elongated in the infrared incident direction as shown by the broken line in FIG. If the dimension of the installation space of the detector in the infrared incident direction is small, it is difficult to install the infrared detector. and,
In such a case, the second opposing body 29 vibrates to a position that is not parallel to the first opposing body 25, as shown in FIG.

しかるに、上記赤外線検出器4では、上記バイ
モルフ32は第2対向体29を第1対向体25に
対して平行状態に保ちながら振動せしめるべく横
方向に長く更にA方向に振動するように配置され
ており、従つて赤外線入射方向の寸法を小さくで
きる。
However, in the infrared detector 4, the bimorph 32 is arranged to be long in the lateral direction and to vibrate in the A direction so as to vibrate the second opposing body 29 while keeping it parallel to the first opposing body 25. Therefore, the dimensions in the infrared incident direction can be reduced.

尚、上記振動がなされると、上記赤外線検出体
5には赤外線検出器4外部の被検出体からの赤外
線が周期的に入射し、即ち赤外線検出体5に入射
する赤外線が周期的に変化し、従つて上記赤外線
検出体5は斯る変化量に応じた電荷を発生する。
この電荷は被検出体の温度と室温との温度差に基
づいている。
Note that when the above-mentioned vibration is performed, infrared rays from an object to be detected outside the infrared detector 4 are periodically incident on the infrared detecting body 5, that is, the infrared rays that are incident on the infrared detecting body 5 are periodically changed. Therefore, the infrared detector 5 generates a charge corresponding to the amount of change.
This charge is based on the temperature difference between the temperature of the object to be detected and the room temperature.

第7図は本発明他の実施例赤外線検出器4′を
示す。同図において、上記実施例と同一部分には
同一符号を記してその説明を省略する。
FIG. 7 shows an infrared detector 4' according to another embodiment of the present invention. In the figure, the same parts as those in the above embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted.

40はアルミニウムなどからなり上記赤外線検
出体5及びインピーダンス変換回路11の部分を
覆う高さeが約5mmのシールド体、41は該シー
ルド体の検出体5上方に位置する部分に穿設され
た開口で、該開口には上記第1対向体25が取着
されている。そして、上記シールド体40はバイ
モルフ32の振動によつて赤外線検出体5及びイ
ンピーダンス変換回路11にノイズが誘導される
のを防いでいる。更に、バイモルフ32の右端3
2″には上記第2対向体29が直接取着されてい
る。而して、42はテフロンなどの樹脂からなる
支持台で、該支持台には上記第2対向体29の遊
端29′を摺動自在に支持する溝43が刻設され
ている。
40 is a shield body made of aluminum or the like and has a height e of approximately 5 mm and covers the infrared detector 5 and the impedance conversion circuit 11; 41 is an opening formed in a portion of the shield body located above the detector 5; The first opposing body 25 is attached to the opening. The shield body 40 prevents noise from being induced into the infrared detector 5 and the impedance conversion circuit 11 due to the vibration of the bimorph 32. Furthermore, the right end 3 of the bimorph 32
2'' is directly attached to the second opposing body 29. Reference numeral 42 is a support made of resin such as Teflon, and the free end 29' of the second opposing body 29 is attached to the support. A groove 43 is formed to slidably support the.

第8図は上記赤外線検出器4,4′を含む回路
を示し、赤外線検出器4又は4′内のインピーダ
ンス変換回路11は1010〜1011Ωの高入力抵抗4
4、FET(電界効果トランジスタ)45及び約
10KΩの出力抵抗46にて形成されている。
FIG. 8 shows a circuit including the infrared detectors 4, 4', and the impedance conversion circuit 11 in the infrared detectors 4 or 4' has a high input resistance 4 of 10 10 to 10 11 Ω.
4. FET (field effect transistor) 45 and approx.
It is formed by an output resistor 46 of 10KΩ.

そして、上記赤外線検出器4又は4′は第1リ
ード端子16にて直流電圧が供給され、第2リー
ド端子17から被検出体の温度と室温との温度差
に応じた交流信号が出力される。47は室温測定
を行なうダイオード、48は無安定マルチバイブ
レータからなり周期的パルスを発振する発振器、
49は上記パルスに基づいて上記バイモルフ32
を振動せしめる(撓ませる)ための交流信号を出
力する駆動回路、50,51,52は直流増幅
器、53はフイルタ増幅器、54は同期検波器
で、上記赤外線検出器4又は4′からの交流信号
と上記発振器48からのパルスとの同期をとり、
被検出体の温度が室温より高い場合はその温度差
に応じた正の直流信号を出力し、被検出体の温度
が室温より低い場合はその温度差に応じた負の直
流信号を出力する。55は上記同期検波器54の
出力とダイオード47の出力とを合成(加算)す
る合成回路で、該回路は被検出体の温度に応じた
信号を出力する。56は斯る温度を所望回路へ出
力するための出力端子である。
The infrared detector 4 or 4' is supplied with a DC voltage through a first lead terminal 16, and an AC signal corresponding to the temperature difference between the temperature of the object to be detected and the room temperature is output from a second lead terminal 17. . 47 is a diode for measuring room temperature; 48 is an oscillator consisting of an astable multivibrator that oscillates periodic pulses;
49 is the bimorph 32 based on the pulse.
50, 51, 52 are DC amplifiers, 53 is a filter amplifier, 54 is a synchronous detector, which outputs an AC signal to vibrate (deflect) the AC signal from the infrared detector 4 or 4'. is synchronized with the pulse from the oscillator 48,
When the temperature of the object to be detected is higher than room temperature, a positive DC signal corresponding to the temperature difference is output, and when the temperature of the object to be detected is lower than room temperature, a negative DC signal is output according to the temperature difference. Reference numeral 55 denotes a combining circuit that combines (adds) the output of the synchronous detector 54 and the output of the diode 47, and this circuit outputs a signal corresponding to the temperature of the object to be detected. 56 is an output terminal for outputting the temperature to a desired circuit.

以上の説明から明らかな如く、本発明によれ
ば、入射赤外線変化量に応じて電荷を発生する赤
外線検出体、該検出体を収納する収納体、被検出
体からの赤外線を上記検出体へ入射せしめるべく
上記収納体に穿設された開口、赤外線透過部及び
赤外線非透過部を共に有し互いに平行にして上記
開口に対向すべく配置された平面状の一対の対向
体、長手方向に対して垂直に自由に振動可能な自
由開放端の先端部に一方の前記対向体を装着し且
つ上記平行状態を保持しながら一方の対向体をそ
の赤外線非透過部が上記他方の対向体の赤外線透
過部及び赤外線非透過部に周期的に交互に重畳す
るように振動せしめる圧電振動体を備え、該圧電
振動体は上記一方の対向体を上記平行状態を保持
しながら振動せしめるべく配置したから、赤外線
検出体に入射する赤外線を変化せしめるためのチ
ヨツパ及びモータ等が不要となり、よつて赤外線
検出器自体を小型化できると共に、赤外線検出体
に入射する赤外線はむらなく周期的に変化するた
め高精度の下に赤外線検出を行なうことができ
る。更に、赤外線検出器の赤外線入射方向の寸法
を小さくでき、従つて赤外線検出器を赤外線入射
方向の寸法が小さいスペースに取付ける場合、赤
外線検出器を容易に取着することができる。ま
た、特開昭56−160628号(GO1J5/62)に記載
の従来技術においては圧電振動子の伸び方向(縦
方向)の振動を用いているが、伸び方向の振幅量
は数100Vの印加でもせいぜい10μm程度である。
一方、本発明においてはバイモルフ振動体の横方
向の振幅量を利用しているので、数10Vの印加で
も数10μmの大きな振幅、即ち、前者に比較して
約10倍の振幅量を得ることができ、極めて効率が
よい。また、この従来例においては2個の発振器
を要し、しかも両発振器の発振周波数の差の周波
数で赤外線をチヨツピングするので、その周波数
を精度良く制御する必要があるが、本願発明では
そのような高精度の発振器を要せず、しかも1個
で事足りる。
As is clear from the above description, according to the present invention, there is provided an infrared detector that generates a charge according to the amount of change in incident infrared rays, a storage body that stores the detector, and an infrared ray from an object to be detected that is incident on the detector. a pair of planar opposing bodies having both an infrared transmitting part and an infrared non-transmitting part and disposed parallel to each other to face the opening, with respect to the longitudinal direction; One of the opposing bodies is attached to the tip of the free open end that can freely vibrate vertically, and while maintaining the parallel state, the infrared non-transmitting part of one of the opposing bodies is replaced by the infrared transmitting part of the other opposing body. and a piezoelectric vibrating body that vibrates in a manner that periodically overlaps the infrared opaque portion, and the piezoelectric vibrating body is arranged to vibrate the one opposing body while maintaining the parallel state, so that infrared ray detection is possible. This eliminates the need for a tipper or motor to change the infrared rays incident on the body, making it possible to downsize the infrared detector itself.The infrared rays incident on the infrared detection body change evenly and periodically, making it possible to achieve high accuracy. Infrared detection can be performed. Furthermore, the size of the infrared detector in the infrared incident direction can be reduced, and therefore, when the infrared detector is installed in a space with small dimensions in the infrared incident direction, the infrared detector can be easily installed. Furthermore, in the conventional technology described in JP-A No. 56-160628 (GO1J5/62), vibration in the elongation direction (vertical direction) of a piezoelectric vibrator is used, but the amplitude in the elongation direction is small even when an application of several 100 V is applied. It is about 10 μm at most.
On the other hand, since the present invention utilizes the amplitude in the lateral direction of the bimorph vibrating body, it is possible to obtain a large amplitude of several tens of μm even when applying several tens of V, that is, an amplitude approximately ten times as large as that of the former. possible and extremely efficient. In addition, in this conventional example, two oscillators are required, and since the infrared rays are stepped at a frequency that is the difference between the oscillation frequencies of both oscillators, it is necessary to precisely control the frequency. A high-precision oscillator is not required; one is sufficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは夫々従来の赤外線検出機構の
側面図及び平面図、第2図は本発明実施例赤外線
検出器の断面図、第3図a及びbは夫々同要部平
面図、第4図は第2図において矢印方向から見
た図、第5図は第2図における−線断面図、
第6図は第5図に対応する比較のための赤外線検
出器の断面図、第7図は本発明他の実施例赤外線
検出器の断面図、第8図は第2図及び第7図の赤
外線検出器を含む回路図である。 5…赤外線検出体、12…収納体、23…開
口、25…第1対向体、26,26…第1赤外線
非透過部、27,27…第1赤外線透過部、29
…第2対向体、30,30…第2赤外線非透過
部、31,31…第2赤外線透過部、32…バイ
モルフ。
1A and 1B are a side view and a plan view of a conventional infrared detection mechanism, FIG. 2 is a sectional view of an infrared detector according to an embodiment of the present invention, and FIGS. Figure 4 is a view seen from the arrow direction in Figure 2, Figure 5 is a sectional view taken along the - line in Figure 2,
FIG. 6 is a sectional view of an infrared detector for comparison corresponding to FIG. 5, FIG. 7 is a sectional view of an infrared detector according to another embodiment of the present invention, and FIG. FIG. 2 is a circuit diagram including an infrared detector. 5... Infrared detecting body, 12... Storage body, 23... Opening, 25... First opposing body, 26, 26... First infrared non-transmitting part, 27, 27... First infrared transmitting part, 29
...Second opposing body, 30, 30... Second infrared non-transmissive part, 31, 31... Second infrared transmissive part, 32... Bimorph.

Claims (1)

【特許請求の範囲】 1 入射赤外線変化量に応じて電荷を発生する赤
外線検出体5と、 該検出体5を収納する収納体12と、 被検出体からの赤外線を前記検出体5へ入射せ
しめるべく前記収納体12に穿設された開口23
と、 赤外線透過部27,31及び赤外線非透過部2
6,30を共に有し互いに平行にして前記開口2
3に対向すべく配置された平面状の一対の対向体
25,29と、 長手方向に対して垂直に自由に振動可能な自由
開放端の先端部に一方の前記対向体29を装着し
且つ前記平行状態を保持しながら前記一方の対向
体29をその赤外線非透過部30が他方の対向体
25の赤外線透過部27及び赤外線非透過部26
に周期的に交互に重畳するように振動せしめるバ
イモルフ振動体32と、 を備えることを特徴とする赤外線検出器。
[Scope of Claims] 1. An infrared detector 5 that generates an electric charge in accordance with the amount of change in incident infrared rays; A storage body 12 that houses the detector 5; and an infrared detector 5 that allows infrared rays from a detected body to enter the detector 5. An opening 23 formed in the storage body 12 as shown in FIG.
and infrared transmitting parts 27, 31 and infrared non-transmitting part 2
6 and 30, parallel to each other, and the opening 2
A pair of planar opposing bodies 25 and 29 are arranged to face each other, and one of the opposing bodies 29 is attached to the tip of a free open end that can freely vibrate perpendicularly to the longitudinal direction, and While maintaining the parallel state, the infrared non-transmissive portion 30 of the one opposing body 29 is connected to the infrared transparent portion 27 and the infrared non-transparent portion 26 of the other opposing body 25.
An infrared detector comprising: a bimorph vibrating body 32 that vibrates so as to be periodically and alternately superimposed on each other;
JP57012432A 1981-08-20 1982-01-27 Infrared detector Granted JPS58129226A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57012432A JPS58129226A (en) 1982-01-27 1982-01-27 Infrared detector
US06/407,582 US4485305A (en) 1981-08-20 1982-08-12 Infrared detector with vibrating chopper
GB08223932A GB2105033B (en) 1981-08-20 1982-08-19 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012432A JPS58129226A (en) 1982-01-27 1982-01-27 Infrared detector

Publications (2)

Publication Number Publication Date
JPS58129226A JPS58129226A (en) 1983-08-02
JPH0262810B2 true JPH0262810B2 (en) 1990-12-26

Family

ID=11805122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012432A Granted JPS58129226A (en) 1981-08-20 1982-01-27 Infrared detector

Country Status (1)

Country Link
JP (1) JPS58129226A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100636U (en) * 1983-12-15 1985-07-09 三洋電機株式会社 infrared sensor
JPS60100635U (en) * 1983-12-15 1985-07-09 三洋電機株式会社 infrared sensor
JPS60128317A (en) * 1983-12-15 1985-07-09 Sanyo Electric Co Ltd Infrared sensor
US5001657A (en) * 1986-06-24 1991-03-19 Minolta Camera Kabushiki Kaisha Radiation thermometer
JP2522509Y2 (en) * 1988-02-12 1997-01-16 オムロン株式会社 Infrared detector
KR100377806B1 (en) * 1999-11-02 2003-03-29 학교법인주성학원 Module of pyroelectric type infrared sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554418A (en) * 1978-10-17 1980-04-21 Matsushita Electric Ind Co Ltd Pyroelectric type temperature sensor
JPS5619417A (en) * 1979-07-27 1981-02-24 Toshiba Corp Pyroelectric detector
JPS56160628A (en) * 1980-05-14 1981-12-10 Sanyo Electric Co Ltd Infrared detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554418A (en) * 1978-10-17 1980-04-21 Matsushita Electric Ind Co Ltd Pyroelectric type temperature sensor
JPS5619417A (en) * 1979-07-27 1981-02-24 Toshiba Corp Pyroelectric detector
JPS56160628A (en) * 1980-05-14 1981-12-10 Sanyo Electric Co Ltd Infrared detector

Also Published As

Publication number Publication date
JPS58129226A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
US20030214588A1 (en) Camera and image pick-up device unit
US6880399B1 (en) Angular velocity sensor
JPH0262810B2 (en)
JPH0238893B2 (en)
JPS622246B2 (en)
JPH0477256B2 (en)
JPH0216858B2 (en)
JPH0156367B2 (en)
JPS5937431A (en) Infrared detector
JPH0230740Y2 (en)
JPH037890B2 (en)
JPH0334668Y2 (en)
JPH0127069Y2 (en)
JPH0313707Y2 (en)
JP2000283764A (en) Angular velocity detector
JPH0142726Y2 (en)
JPH0238894B2 (en)
JPS5912811Y2 (en) Thickness sliding piezoelectric vibrator
JPS5973742A (en) Infrared ray detecting device
JPH0234592Y2 (en)
JPH0553372B2 (en)
JPH0248046B2 (en)
JPH0414290B2 (en)
JPS59224528A (en) Infrared detector
JPH0425485B2 (en)