JPS5973742A - Infrared ray detecting device - Google Patents

Infrared ray detecting device

Info

Publication number
JPS5973742A
JPS5973742A JP18490582A JP18490582A JPS5973742A JP S5973742 A JPS5973742 A JP S5973742A JP 18490582 A JP18490582 A JP 18490582A JP 18490582 A JP18490582 A JP 18490582A JP S5973742 A JPS5973742 A JP S5973742A
Authority
JP
Japan
Prior art keywords
infrared
bimorph
infrared ray
temperature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18490582A
Other languages
Japanese (ja)
Inventor
Yukinori Kuwano
桑野 幸徳
Toshiaki Yokoo
横尾 敏昭
Kosuke Takeuchi
孝介 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18490582A priority Critical patent/JPS5973742A/en
Publication of JPS5973742A publication Critical patent/JPS5973742A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/38Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids
    • G01J5/44Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids using change of resonant frequency, e.g. of piezoelectric crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To maintain high accuracy in detecting infrared rays, by providing a temperature detector, which outputs a DC signal for biasing a vibrator in DC based on the detected temperature of the vibrator, providing a specified voltage applying means, which applies a specified voltage to the vibrator at a desired time, and ensuring the change in the amount of incident infrared rays to an infrared ray detecting body at a specified difference. CONSTITUTION:A numeral 58 is an oscillator comprising an astable multivibrator. A numeral 62 indicates a control part comprising a micro-computer and the like, which outputs a temperature display signal D based on a digital signal from a conveter 61 and pulses from said oscillator 58. A very large specified voltage -60V from a constant voltage applying circuit 59 is applied to a first vibrating elecrode at every 5 seconds. Then, a bimorph 30 is deflected to the direction B very largely as shown by the hysteresis characteristic every time. When -60V is applied, the bimorph 30 is deflected to the direction A along a line H with good reproducibility based on a desired bias voltage. Therefore, the deflecting amount of the bimorph 30 is sequentially corrected at every 5 seconds even though the bimorph is under the deflected state due to the decreasing trend of the bias voltage. That is, a second infrared ray transmitting part is corrected so that a first infrared ray transmitting part is completly overlapped with a first infrared ray stopping part. The decrease in the amount of infrared rays that is inputted to an infrared ray detecting body 2 is suppressed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は被検出体の温度などを測定すべく被検出体から
の赤外線を検出するための赤外線検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an infrared detection device for detecting infrared rays from an object to be detected in order to measure the temperature of the object.

(ロ)従来技術 近時、第1図に示す如き赤外線検出器(1)が提案され
ている。(2)はタンタル酸リチウム(LiTa03)
単結晶から成り入射赤外線変化量に応じて電荷を発生す
る焦電型の赤外線検出体、(3)及び(4〉は夫々該赤
外線検出体の表、裏面にニクロム蒸着膜に一〇形成され
た表、裏山i電極、(5)は銅、燐青銅なとからなる金
属性支持台で、該支持台1−には、」−足裏面電極(4
)を支持台(5)上面に対向するようにし−C1」二足
赤外線検出体(2〉が銀ペーストなとの導電性接着剤(
6)にて固着されている。
(b) Prior Art Recently, an infrared detector (1) as shown in FIG. 1 has been proposed. (2) is lithium tantalate (LiTa03)
A pyroelectric infrared detector that is made of a single crystal and generates a charge according to the amount of change in incident infrared rays; (3) and (4) are formed on a nichrome vapor-deposited film on the front and back surfaces of the infrared detector, respectively. The front and back i electrodes (5) are metal supports made of copper or phosphor bronze.
) so as to face the upper surface of the support stand (5) - C1' bipedal infrared detector (2) with conductive adhesive such as silver paste (
6) is fixed.

〈7)は上記赤外線検出体(2)が高抵抗であるが故に
、赤外線検出器(1)として低抵抗とするためのインビ
ータンス変換回路(8)が配置すれたアルミ−)、!に
板、(9)は金属製のキルノブ(10)及びヘッダ(1
1〉からなる収納体で、該収納体内の上記へ7ダ(11
)上には上記支持台(5)及び基板(7)が固定されて
いる。(12)は上記/\ンダ(11)に直接的に植設
されたアース端子で、該端子は上記支持台(5〉及び接
着剤(6)を介して上記裏面電極〈4)に電気的に接続
されている。(13)及び(14)は夫々上記ヘッダ(
11)に絶縁材(15)、(16)を介して植設された
第1、第2リード端子、(17)は上記表面電極(3)
とインピーダンス変換回路<8)とを結線するり一ド線
、(18)、(19)は」−記インピーダンス変換回路
(8)と第1、第2リード端子(13)、(14)とを
結線するり一ド線である。
<7) Since the infrared detector (2) has a high resistance, the infrared detector (1) is made of aluminum in which an impedance conversion circuit (8) is arranged to make the infrared detector (1) have a low resistance!). plate, (9) is a metal kill knob (10) and header (1
A storage body consisting of 1〉, with 7 da
) on which the support stand (5) and the substrate (7) are fixed. (12) is a ground terminal directly implanted in the /\anda (11), and this terminal is electrically connected to the back electrode (4) via the support base (5) and adhesive (6). It is connected to the. (13) and (14) are the above header (
11) first and second lead terminals implanted through insulating materials (15) and (16); (17) is the surface electrode (3);
The lead wires (18) and (19) connect the impedance conversion circuit (8) and the first and second lead terminals (13) and (14). The connection is a single lead wire.

(20〉は上記赤外線検出体(2)に表面電極(3)側
から赤外線を入射せしめるべく上記キャンプ(lO)に
穿設された開【コ、(21)は該開口を閉室する赤外線
透過体で、該透過体は波長2〜15μmの赤外線に対す
る透過率が高い厚さ数100μmのシリコン又はゲルマ
ニラ11板からなっている。
(20> is an opening formed in the camp (lO) to allow infrared rays to enter the infrared detector (2) from the surface electrode (3) side, and (21) is an infrared transmitting body that closes the opening. The transmitting body is made of 11 silicon or gel manila plates several 100 μm thick that have a high transmittance to infrared rays having a wavelength of 2 to 15 μm.

(22)はアルミニウムなどからなり上記赤外線検出体
(2)及びインピーダンス変換回路(8)の部分を覆う
シールド体、(23)は該シールド体の検出体(2〉上
方に位置4−る部分に穿設された開口である。
(22) is a shield body made of aluminum or the like and covers the infrared detector (2) and the impedance conversion circuit (8), and (23) is the part of the shield body located above the detector (2). It is a drilled opening.

(24〉は該開口に取着された平面状の第1対向体で、
該第1対向体には第2図aに示す如く、アルミ−ラム、
金、銀などの赤外線非透過材料からなり紙面に平行な方
向(第1図)にて扇形線状に延設。された複数の第1赤
外線非透過部(25〉、(25)、 、 。
(24> is a planar first opposing body attached to the opening,
As shown in FIG. 2a, the first opposing body includes an aluminum ram,
It is made of a material that does not transmit infrared rays, such as gold or silver, and extends in a fan-shaped line in a direction parallel to the paper (Figure 1). a plurality of first infrared non-transmissive parts (25>, (25), , ).

及び斯る第1赤外線非透過部(25)、(25)19.
の各々の間に位置する第1赤外線透過部(26)、(2
6)、が形成きれている。そしで、上記第1赤外線非透
過部(25)、(25)1.、の幅W1、W2は夫々1
00μm、120μmて、上記第1赤外線透過部(26
〉、(26)5.  の幅Wl、W2’は上記W1、W
2と同一寸法である。(27)は上記第1対向体(24
)に平行にして近接対向す−へく配置された平面状の第
2対向体で該第2対向体には第2図すに示す如く、上記
第1赤外線非透過部(25)、(25)1. と同一材
料からなり紙面に平行な方向(第1図)にて扇形線状に
延設された複数の第2赤外線非透過部(28)、(28
)、 。
and such first infrared opaque portion (25), (25)19.
The first infrared transmitting portion (26), located between each of (2)
6) is completely formed. Then, the first infrared opaque portion (25), (25)1. The widths W1 and W2 of , respectively, are 1
00 μm, 120 μm, and the first infrared transmitting portion (26
〉, (26)5. The widths Wl and W2' are the above W1 and W
It has the same dimensions as 2. (27) is the first opposing body (24
), and the second opposing body has the first infrared non-transmissive portions (25), (25) as shown in FIG. )1. A plurality of second infrared non-transmissive parts (28), (28
), .

及び断る第2赤外線非透過部(28)、(28>、 、
  の各々の間に位置する第2赤外線透過部(29)、
(29)11.が形成されている。そして、」−2第2
赤外線非透過部(28)、(28)、 の幅Wl 、W
2及びに記の第2赤外線透過部(29)、(29)、 
、の幅Wl’、W2’は夫々上記第1赤外線非透過部(
25)、(25)10.の幅Wl、W2及び第1赤外線
透過部(26)、 (26)、。
and a second infrared non-transmissive part (28), (28>, ,
a second infrared transmitting section (29) located between each of the
(29)11. is formed. And”-2 2nd
Widths Wl, W of the infrared opaque parts (28), (28),
2 and the second infrared transmitting portion (29), (29),
, the widths Wl' and W2' of the first infrared non-transmissive portion (
25), (25)10. widths Wl, W2 and the first infrared transmitting portions (26), (26),.

の幅Wl’、W2’と同一寸法である。The dimensions are the same as the widths Wl' and W2'.

(30〉は強誘電体からなる2枚の圧電板或いは金属板
と強誘電体からなる圧電板を張り合わせて形成された振
動f、即ちバイモルフで、該バイモルフは直す体形状を
有しその長さP、幅w1厚みa(第3図)は夫々的30
m+、5nwn、 Q、5m1iである。上記圧電板と
しては水晶、ロッシェル塩、チタン酸ハリウノ、などが
ある。そして、−F記バイモルフ〈30)は赤外線大尉
方向に垂直な方向、即ち横方向に長く々゛るようにして
左端(30’)が上記ヘッダ(11)に設けられた絶縁
台(31)に固定され、右端(30”)に)1記第2対
向体(27)が装着諮れている。(32)は上記ヘッダ
(11)に絶縁材(33)を介して植設σれた第3リー
ド端子、(34)、 (35)は第3図にも示す如く上
記バイモルフ(30)の左端(30’)の両面に形成さ
れた第1、第2振動電極で、該第1、第2振動電極は夫
々上記第3リード端−r(32’)及びヘッダ(11)
(アース端子(12>)に接続されている。〈36)は
テフロンなとの樹脂からなる支持台で、該支持台には1
−記第2対向体(27)の遊端(27’)を摺動自在に
支持1−る膚(37)か刻設され−〔いる。
(30〉 is a vibration f formed by laminating two piezoelectric plates made of ferroelectric material or a metal plate and a piezoelectric plate made of ferroelectric material, that is, a bimorph, and the bimorph has a straight body shape and its length P, width w1 thickness a (Fig. 3) are respectively 30
m+, 5nwn, Q, 5m1i. Examples of the piezoelectric plate include quartz crystal, Rochelle salt, halium titanate, and the like. The -F bimorph (30) is elongated in the direction perpendicular to the direction of the infrared radiation, that is, in the horizontal direction, and its left end (30') is attached to the insulating stand (31) provided on the header (11). The second opposing body (27) (1) is installed on the right end (30"). The three lead terminals (34) and (35) are first and second vibrating electrodes formed on both sides of the left end (30') of the bimorph (30), as shown in FIG. The two vibrating electrodes are connected to the third lead end -r (32') and the header (11), respectively.
(Connected to the ground terminal (12>). <36) is a support made of resin such as Teflon, and the support
A skin (37) is carved to slidably support the free end (27') of the second opposing body (27).

而して、上記第1振動電極(34)には第3リード端子
(32)を介して所定の交流電圧、即ち周期的パルニ4
か印加きれるのである力釈斯るパルスが印加されない場
合には、上記第2対向体(27)の第2赤外線非透過部
(28)、<28〉191.は」二足第1対向体(24
)の第1赤外線透ノμ部(26〉、(26)、 、に完
全に重性JE、(第2図Cの釧線領域Jに位置する)。
The first vibrating electrode (34) is supplied with a predetermined alternating current voltage, that is, the periodic pulse voltage 4, through the third lead terminal (32).
If such a pulse is not applied, the second infrared non-transmissive portion (28) of the second opposing body (27) <28>191. ” bipedal first opposing body (24
) in the first infrared transmission μ part (26〉, (26), ), which is completely heavy JE, (located in the sublined region J of FIG. 2C).

そしC,ト記パルスが印加された場合には、上記ハイ−
[・ルノ(30)が入方向に撓み、第2赤外線非透過部
〈28)、(28)1.は第1赤外線非透過部(25)
、 (25)、に完全に重畳するく第2図Cの打点領域
1に位置する)。従って、上記第1振動電極(34)へ
パルスが周期的に印加されることにより、上記バイモル
フ(30)が周期的にA、、B方向に振動し、上記赤外
線検出体(2)には赤外線検出器(1)外部の被検出体
からの赤外線が周期的に入射する。斯る入射がなされる
と、赤外線検出体(2〉に入射する赤外線計が周期的に
変化するために上記赤外線検出体〈2)はこの変化量に
応じた電荷を発生ずる。そして、この電荷は被検出体の
温度と室温(第2対向体(27)の温度)との温度差に
基づいている。
When the pulses C and G are applied, the above high-
[-Luno (30) is bent in the incoming direction, and the second infrared non-transmissive part 〈28), (28)1. is the first infrared opaque part (25)
, (25), which completely overlaps and is located in the dot area 1 of FIG. 2C). Therefore, by periodically applying pulses to the first vibrating electrode (34), the bimorph (30) periodically vibrates in directions A, B, and the infrared detector (2) detects infrared rays. Infrared rays from an object to be detected externally enter the detector (1) periodically. When such incidence is made, the infrared meter incident on the infrared detector (2) changes periodically, so the infrared detector (2) generates a charge corresponding to the amount of change. This charge is based on the temperature difference between the temperature of the object to be detected and the room temperature (temperature of the second opposing object (27)).

第4図は上記赤外線検出器(1)を含む赤外線検出装置
の回路を示し、赤外線検出器(1)内のインピーダンス
変換回路(8)は10’ 0〜1011Ωの高入力抵抗
(38)、FET(電界効果トランジスタ)(39)及
び約10にΩの出力抵抗(40)にて形成されている。
Fig. 4 shows the circuit of the infrared detection device including the above-mentioned infrared detector (1), and the impedance conversion circuit (8) in the infrared detector (1) has a high input resistance (38) of 10'0 to 1011Ω, FET (field effect transistor) (39) and an output resistor (40) of approximately 10Ω.

そして、上記赤外線検出器(1)は第1リード端r−(
13)にて直流電圧が供給され、上記バイモルフ(30
)の振動時には第2リード端子(14)から被検出体の
温度と室温との温度差に応した振幅を有する第5図aの
如き交流信号eが出力される。り41)は室温測定を行
い室温に応じた直流信号を出力する室温用ダイオード、
(42)は無安定マルチバイブレーク−からなり第5図
すの如き電圧Vが1〜30v、好ましくは14vのパル
スfを周波数20Hzにて発振する発振器、(43)は
上記パルスrに基ついて上記バイモルフ(30)を振動
uしめるノ、−めの周期的パルスを出力する駆動回路、
(44〉、(45)、(46)は直流増幅器、(47〉
はノイルタ増幅器、(48)は同期検波器で、該検波器
は、上記赤外線検出器(1〉からの交流信号eと上記発
振器(42〉からのパルスfとの同期をとり、被検出体
の温度が室温より高い場合はその温度差に応した正の直
流信号を出力し、被検出体の温度が室温より低い場合は
その温度差に応し、た負の直流信号を出力する。
The infrared detector (1) is connected to the first lead end r-(
13), a DC voltage is supplied to the bimorph (30
), an AC signal e as shown in FIG. 5a is output from the second lead terminal (14) with an amplitude corresponding to the temperature difference between the temperature of the object to be detected and the room temperature. 41) is a room temperature diode that measures room temperature and outputs a DC signal according to the room temperature;
(42) is an oscillator consisting of an astable multi-by-break, which oscillates a pulse f with a voltage V of 1 to 30 V, preferably 14 V, at a frequency of 20 Hz, as shown in Figure 5; a drive circuit that outputs periodic pulses that cause the bimorph (30) to vibrate;
(44>, (45), (46) are DC amplifiers, (47>
is a Noirtor amplifier, and (48) is a synchronous detector, which synchronizes the AC signal e from the infrared detector (1) with the pulse f from the oscillator (42), and detects the detected object. When the temperature is higher than room temperature, a positive DC signal is output according to the temperature difference, and when the temperature of the object to be detected is lower than room temperature, a negative DC signal is output according to the temperature difference.

即ち、赤外線検出器(1)の出力交流18号eとしCは
、被検出体の温度が室温より高いと正側半サイクルe+
がパルスfと一致し、被検出体の温度か室温より低いと
負側半サイクルe−がパルスrと一致4−る。そして、
上記同期検波器(48)からは、パルスfと正側半サイ
クルC+との一致がと1’Lると被検出体と室温との温
度差に応した正の直流信弼が出力され、パルスrと負(
II半ナイクルe−との一致がとれると被検出体と室温
との温度差に応した負の直流信号が出力される。
That is, the output AC No. 18 e of the infrared detector (1) is a positive half cycle e+ when the temperature of the object to be detected is higher than room temperature.
coincides with the pulse f, and when the temperature of the object to be detected is lower than room temperature, the negative half cycle e- coincides with the pulse r. and,
When the coincidence between the pulse f and the positive half cycle C+ is 1'L, the synchronous detector (48) outputs a positive DC signal corresponding to the temperature difference between the detected object and the room temperature, and the pulse r and negative (
When a match is established with II half-nicle e-, a negative DC signal corresponding to the temperature difference between the object to be detected and the room temperature is output.

(49)は斯る同期検波器(48〉からの直流信号と室
温用ダイオード(41)の室温に応じた直流信号とを互
いに加算する合成回路で、該回路は断る加算にで被検出
体の温度に応した信零を出力する。(50)は断る温度
信号を所望回路へ出力4−る/−めの出力端fである。
(49) is a synthesis circuit that adds together the DC signal from the synchronous detector (48) and the DC signal corresponding to the room temperature of the room temperature diode (41). It outputs a zero signal corresponding to the temperature.(50) is the 4th/-th output terminal f which outputs the temperature signal to decline to the desired circuit.

こニーに、上記バイモルフ(30〉の振動状態は室温が
所望温度T’Cに保持されている場合のものであり、室
温が斯る序1望温度T’Cに較へ一〇−1−昇或いは一
ド降した場合にはバイモルフ(30)の振動状態か上述
に較へて著しく変化する。即ち、例えは室温が所望温度
より上肩した場合には、」−記ハイモルフ(30)はパ
ルスrの非発生時においてもB方向に寸法mだけ撓み、
第2図dに示す如く第2赤外線非透過部<28)、(2
8>、、、、が斜線領域J′に位置して第1赤外線透過
部(26)、(26)、 、 、 、に完全に重畳しな
くなり、被検出体からの赤外線が赤外線検出体(2)に
かなり入射してしまう。そして、パルスfが発生した場
合には第2赤外線非透過部(28)、(28)111.
は打点領域I゛に位置して第1赤外線非透過部(25)
、〈25)1.に完全に重畳しなくなり、被検出体から
の赤外線か赤外線検出体(2)に充分に入射しない状態
となる。すると、赤外線検出体り2)の入射赤外線変化
購が著しく減少し、赤外線検出器(1)の出力としては
第5図aの交流信号e′の如く小さくなって所望振幅を
有する交流18号eか得られなくなり、従って赤外線検
出装置の検出精度が著しく低ト4−る。
In addition, the vibration state of the bimorph (30〉) above is when the room temperature is maintained at the desired temperature T'C, and the room temperature is 10-1- compared to the desired temperature T'C. When the bimorph (30) goes up or down, the vibrational state of the bimorph (30) changes significantly compared to the above.That is, if the room temperature rises above the desired temperature, the bimorph (30) Even when the pulse r is not generated, it is deflected by the dimension m in the B direction,
As shown in FIG. 2d, the second infrared non-transmissive portion <28)
8>, , , are located in the shaded area J' and do not completely overlap with the first infrared transmitting portions (26), (26), , , , , and the infrared rays from the object to be detected are located in the infrared detecting object (2). ). When the pulse f is generated, the second infrared opaque portions (28), (28) 111.
is the first infrared non-transmissive part (25) located in the dot area I'.
,〈25)1. The infrared rays from the object to be detected do not completely overlap with each other, and the infrared rays from the object to be detected are not sufficiently incident on the infrared detecting object (2). As a result, the change in the incident infrared radiation of the infrared detector 2) is significantly reduced, and the output of the infrared detector (1) becomes smaller as shown in the AC signal e' in Fig. 5a, and becomes an AC signal e having the desired amplitude. Therefore, the detection accuracy of the infrared detection device is significantly reduced.

ぞ、−℃・、−J−配光外線検出装置では更に次の構成
かなさJじ(いる。(51)は上記へンダ(11)に絶
縁材(52)を介して植設された第4リード端子、(5
3)はバイモルフ(30)の温度を検知し−C斯る検知
温度に基ついた直流電圧を出力ず\く、収納体り9)内
のバイモルフ(30)近傍に配置されI一温度検知器と
し−(のへイモルフ用グイオーFで、該グイ」−ドのア
ノードは上記第4リード端子(51)に接続され且つカ
ソードはヘッダ〈11)に接続(接地)されでいる。
-℃・, -J- The light distribution external ray detection device further has the following configuration. 4 lead terminal, (5
3) detects the temperature of the bimorph (30) and outputs a DC voltage based on the detected temperature, and is placed near the bimorph (30) in the storage body 9). The anode of the guide F for the heimorph is connected to the fourth lead terminal (51), and the cathode is connected (grounded) to the header (11).

(54)は差動増幅器で、該増幅器の一入力端r−には
上記バイモルフ用ダイオード(53)のアノードが第4
リード端子(51)を介して接続され、十入力端子には
可変抵抗器(55)が接続されている。斯る可変抵抗器
(55)においては、上記差動増幅器り54)の十入力
端子に人力する直流電圧が、バイモルフ温度が上記所望
温度T’Cの時に一入力端子に人力する直流電圧と等し
くなるように、予め所望の抵抗値が設定されている。
(54) is a differential amplifier, and the anode of the bimorph diode (53) is connected to the fourth input terminal r- of the amplifier.
It is connected via a lead terminal (51), and a variable resistor (55) is connected to the input terminal. In such a variable resistor (55), the DC voltage applied to the input terminal of the differential amplifier 54) is equal to the DC voltage applied to the input terminal when the bimorph temperature is the desired temperature T'C. A desired resistance value is set in advance so that

(56)は」二足差動増幅器(54)の出力を反転1゛
るインバーターである。該インバーターの出力としては
バイモルフ(30)の温度がT”Cの時には0■であり
、一方例えばT″Cより高い時にはそのJ:: y+、
温度に基ついた直vllも電圧BSが第5図Cの如く出
力される。り57〉は上記駆動回路(43)を構成する
加算器で、該加算器では上記発振器(42)からのパル
スfの1−記インバータ(56)からの直流電圧BSが
第5図dの如く加算され、その加算出力は上記第1振動
電極(34)へ印加される。
(56) is an inverter which inverts the output of the two-legged differential amplifier (54). The output of the inverter is 0 when the temperature of the bimorph (30) is T''C, and on the other hand, when it is higher than T''C, for example, its J:: y+,
The voltage BS based on the temperature is also output as shown in FIG. 5C. 57 is an adder constituting the drive circuit (43), and in this adder, the DC voltage BS from the inverter (56) of the pulse f from the oscillator (42) is as shown in FIG. 5d. The summed output is applied to the first vibrating electrode (34).

、−の場合、上記バイモルフ(30〉は上記直a、電圧
BSにて直流バイアスきれた状態となり、この状態を基
準にしてパルスrに基づいてA、B方向に周期的に振動
する。ここに、上記バイモルフ(30)は−ト記直流バ
イアス状態ではA方向に寸法m(第21Ad)Iニーけ
繞み、結果的に温度T’Cに較へた上昇温度によるB方
向・〜のバイモルフ(30)の撓みがなくなる。したが
って、バイモルフ(30)は第2図Cに示す如く第2赤
外線非透過部(28)、(28)、 。
, -, the bimorph (30) is in a state where the DC bias is cut off at the voltage BS, and with this state as a reference, it vibrates periodically in the A and B directions based on the pulse r.Here, , the above-mentioned bimorph (30) has a dimension m (21st Ad) I knee in the A direction in the DC bias state mentioned above, and as a result, the bimorph (30) in the B direction due to the temperature increase compared to the temperature T'C. Therefore, as shown in FIG.

か1■点領域I及び斜線領域Jに周期的に位置しく゛、
赤外線検出体(2)に入射1−る赤外線が完全に遮断さ
れ、赤外線検出器(1)からは第5図aの如さ2流信号
eが出力される。
1) Periodically located in the point area I and the shaded area J゛,
The infrared rays incident on the infrared detector (2) are completely blocked, and the infrared detector (1) outputs a second-stream signal e as shown in FIG. 5a.

とユろが、ト記バイモルフ(30)は印加電圧と撓み[
jj−との間に第6図の如きヒステリシス特性を有し、
印加電圧が増加してきたか、或いは減少してきたかによ
って同一印加電圧においても撓み敵に差異が生じる。し
かして、上記バイモルフ(30)の入方向への撓み邪m
は印加電圧としてのバイアス電圧BSが線Hに沿って増
加傾向を辿ってきた場合に生したものとすると、逆にバ
イアス電圧BSが線h 1. h 211.に沿って減
少傾向を辿ってきた場合にはバイモルフ(30)は撓み
量がmより大となる。すると、二の場合も第2赤外線非
透過部(28〉、(28)、 、  が第1赤外線透過
部(26)、(26)110.と第1赤外線非透過部(
25)、(25)、5.に完全に重畳しなくなり、従っ
−(赤外線検出体(2)の入射赤外線変化!I!′が減
少し、赤外線検出装置の検出精度が低下する。
However, the bimorph (30) has a relationship between the applied voltage and the deflection [
It has a hysteresis characteristic as shown in Fig. 6 between
Depending on whether the applied voltage has increased or decreased, there will be a difference in the deflection even with the same applied voltage. However, the bending of the bimorph (30) in the incoming direction
is generated when the bias voltage BS as the applied voltage follows an increasing trend along the line H. Conversely, if the bias voltage BS follows the increasing trend along the line h1. h211. When the bimorph (30) follows a decreasing trend along the direction of , the amount of deflection of the bimorph (30) becomes larger than m. Then, in the second case as well, the second infrared non-transmissive parts (28>, (28), , , ) are the first infrared transparent parts (26), (26) 110.
25), (25), 5. Therefore, the incident infrared ray change !I!' of the infrared detector (2) decreases, and the detection accuracy of the infrared detector decreases.

(ハ)実施例 本発明は斯る点に鑑みてなされたもので、以下本発明実
施例を図面に基ついて詳述4−る。尚、従来例と同一部
分には同一符号を記し−(その説明を省略丈る。
(C) Embodiments The present invention has been made in view of these points, and embodiments of the present invention will be described below in detail with reference to the drawings. Incidentally, the same parts as in the conventional example are denoted by the same reference numerals (description thereof will be omitted).

第7図において、(58)は無安定マルチバイブレータ
からなる発振器で、該発振器は幅がI×103〜1秒の
パルスを5秒毎に周期的に発振する。(59)は断るパ
ルスに基ついて極めて大きな所定1[圧−60V[斯る
電圧はダイオード(53)の通常の検知状態ではバイア
ス電圧BSとして現われなし・)のパルスを同様に幅1
×103〜1秒にして5秒毎に発振し、斯る一60Vの
パルスを上記バイモルフ(30)の第1振動電極(34
)へ印加せしめるための所定電圧印加回路、(60)は
上記発振器(58)からのパルスの非発生時には上記加
賀器(54)の出力を第1振動電極(34)へ送り、L
記パルスの発生時には上記所定電圧印加回路(59〉の
出力を第1振動電極(34)・\送るスイ7ブンク回路
、(61)は上記出力端子(50)に現われる信号を′
rシタル信号に変換するA−D(アナL1ゲーデ、タル
)変換器、(62)は該変換器からのテンタル信υ及び
1−配交振器(58〉からのパルスに基ついて温度表示
信号りを出力するフイクUJ ’:iンビュータなとか
らなる制御部、(63)は断る温度表示信号りに基つい
て温度を表示する表示器である。
In FIG. 7, (58) is an oscillator consisting of an astable multivibrator, and this oscillator periodically oscillates a pulse having a width of I×10 3 to 1 second every 5 seconds. (59) is based on a reject pulse with a very large predetermined voltage of 1 [voltage -60 V [such voltage does not appear as a bias voltage BS in the normal sensing state of the diode (53)]] with a width of 1.
×103 to 1 second and oscillates every 5 seconds, and the 60V pulse is applied to the first vibrating electrode (34) of the bimorph (30).
), a predetermined voltage application circuit (60) sends the output of the Kaga device (54) to the first vibrating electrode (34) when no pulse is generated from the oscillator (58);
When the pulse is generated, the switch circuit (61) sends the output of the predetermined voltage applying circuit (59) to the first vibrating electrode (34), and the switch circuit (61) outputs the signal appearing at the output terminal (50).
An A-D (Ana L1 Gaede, Tal) converter (62) converts into a digital signal a temperature indicating signal based on the tental signal υ from the converter and the pulse from the alternating oscillator (58). A controller (63) is a display device that displays the temperature based on the temperature display signal that is rejected.

面し一〇、」二足所定電圧印加回路(59)からの極め
て大きな所定型LJ>60Vのパルスが上記第1振動′
1「極(34)に5秒毎に印加さねると、その度に上記
バイモルフ(30)は第6図のヒステリシス特性に示4
″如く極めて大きくB方向へ撓む。そして、上記パイセ
ルフ(30)は−60Vが印加された後は所望バイアス
電圧に基ついて線Hに沿−)で再現性よくA方向に撓む
。従って、バイモルフ(30)はハイアス′市11ニー
BSの減少傾向により撓んだ状態であっても5秒毎に逐
次撓み]11か補正されることとなり、即ら第2赤外線
非透過部(28)、(28〉11.が第1赤外線透過部
(26)、(26)、  と第1赤外線非透過部(25
)、 (25)、  に完全に重畳するように補正きれ
る、−とになり、赤外線検出体(2)の入射赤外線変化
11の減少か抑制される。
Facing 10, an extremely large predetermined type pulse of LJ>60V from the predetermined voltage application circuit (59) causes the first vibration'
1" is applied to the pole (34) every 5 seconds, each time the bimorph (30) exhibits the hysteresis characteristic shown in FIG. 6.
After applying -60V, the pi-self (30) deflects in the direction A with good reproducibility along the line H based on the desired bias voltage. Therefore, Even if the bimorph (30) is in a deflected state due to the decreasing tendency of the knee BS, the deflection will be corrected every 5 seconds, that is, the second infrared non-transparent part (28) (28>11. is the first infrared transmitting part (26), (26), and the first infrared non-transmitting part (25)
), (25), can be corrected so as to be completely superimposed on -, and the change 11 in the incident infrared rays on the infrared detector (2) is reduced or suppressed.

、−の場合、制御部(62)は発振器(58)からのパ
ルス2人力しない状態においてA−D変換器(61)が
らの信号に基ついて表示器(63〉にて温度表示せしめ
、発振器(58)からのパルスを人力したときは温度表
示を停止上しめる。即ち、発振器(58)からパルスが
発生したときはバイモルフ(3o)がB 方向へ極めて
大きく撓み、赤外線検出体(2〉へ入射Vる赤外線の断
続か所望とする状態ではなくなり、検出精度が劣るから
である。
, -, the control unit (62) displays the temperature on the display (63) based on the signal from the A-D converter (61) in the absence of pulses from the oscillator (58), and the oscillator (58) When the pulse from the oscillator (58) is generated manually, the temperature display is stopped and raised.In other words, when the pulse is generated from the oscillator (58), the bimorph (3o) is deflected extremely greatly in the B direction, and the infrared rays are incident on the infrared detector (2). This is because the intermittent infrared rays are no longer in the desired state, resulting in poor detection accuracy.

尚、」二足実施例では、室温用ダイオード(41)トハ
イモルフ用グイオード(53)とが各々別個に設けられ
でいるか、バイモルフ用ダイオード(53)の検知温度
は収納体(9)内の温度でありこの温度は室温(第2対
向体(27)の温度)と等しいために、室温、用ターr
オー1:(41)を省い−CハイEルフ用グイ」−1・
(53)に室温用ダイオ−1’(41)の役[1を兼用
きせることかできる。
In the two-legged embodiment, the room temperature diode (41) and the bimorph diode (53) are each provided separately, or the detected temperature of the bimorph diode (53) is determined by the temperature inside the housing (9). Since this temperature is equal to room temperature (the temperature of the second opposing body (27)),
O1: Omit (41) -C High E Luf's Gui'' -1・
(53) can also serve as the room temperature diode 1' (41).

(ニ)発明の効果 以」−の説明から明らかな如く、本発明赤外線検出装置
によれは、人q、+赤外線変化!バに応して電荷を発生
する赤外線検出体、該検出体・・の赤外線入nI域に配
置され赤外線透過部及び赤外線非運Jb部を共に有−4
る一対の対向体、交流信号の印加にて振動し、L記 3
jの対向体の赤外線透過部及び赤外線非透過部と上古己
他方の対向体の赤外線透過部及び赤外線非透過部か夫々
電畳判る状態と、1−2一対の対向体の赤外線透過部と
うし及び赤外線非透過部とうしか重畳する状態とを交互
に繰返せしめるための振動−r−1該振動r−の温度を
検知し、斯る検知温度に基づき[−記振動子を直1Mバ
イアス1−ろだめの直流信号を出力する温度検知器、所
望時に上記振動子に所定電圧を印加せしめる所定電圧印
加手段を備えノーから、赤外線検出体の入射赤外線量は
確実に所定の差をもって変化し、従って極めて高い赤外
線の検出精度を維持できる。
(d) Effects of the Invention As is clear from the explanation in ``Effects of the Invention'', the infrared detection device of the present invention can cause a person q + infrared change! An infrared detecting body that generates an electric charge in accordance with the energy of
A pair of opposing bodies vibrate when an AC signal is applied, L 3
The state in which the infrared transmitting part and the infrared non-transmitting part of the opposing body of j and the infrared transmitting part of the other opposing body are clearly visible, and the infrared transmitting part and the infrared transmitting part of the pair of opposing bodies 1-2. Detect the temperature of the vibration r-1 to alternately repeat the state in which the infrared opaque part and the infrared rays are superimposed. Based on the detected temperature, - a temperature sensor that outputs a direct current signal from the radiator, and a predetermined voltage applying means for applying a predetermined voltage to the vibrator at a desired time, so that the amount of infrared rays incident on the infrared detector reliably changes with a predetermined difference; Therefore, extremely high infrared detection accuracy can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は近時の赤外線検出装置を示し、第1
図は赤外線検出器の断面図、第2図a、b、c、dは夫
々要部平面図、第3図は第1図において矢印■方向から
見た図、第4図は回路図、第5図a、b、c、dは第4
図における要部信号波形図、第6図はバイモルフのヒス
テリンス特性図、第7図は本発明実施例赤外線検出装置
の回路図である。 (2)・・赤外線検出体、(9)・収納体、(20)・
・・開口、(24)・・第1対向体。 (25)、(25)、  ・・第1赤外線非透過部、(
26)、 (26)、・・第1赤外線透過部、(27)
・・・第2対向体、 (28)、(28)、・・第2赤外線非透過部、(29
)、 <29)、・・・第2赤外線透過部、(30)・
・バイモルフ、 (53)・ バイモルフ用ダイオード、(59)・15
r定電圧印加回路。 l’、 :、”、、 ′ 第2図 口====コ 鉱
Figures 1 to 6 show recent infrared detection devices.
The figure is a cross-sectional view of the infrared detector, Figures 2 a, b, c, and d are plan views of the main parts, respectively, Figure 3 is a view seen from the direction of arrow ■ in Figure 1, Figure 4 is a circuit diagram, and Figure 4 is a circuit diagram. Figure 5 a, b, c, d are the fourth
FIG. 6 is a diagram of the hysteresis characteristics of a bimorph, and FIG. 7 is a circuit diagram of an infrared detection device according to an embodiment of the present invention. (2)・Infrared detector, (9)・Storage body, (20)・
...Opening, (24)...First opposing body. (25), (25), ... first infrared non-transmissive part, (
26), (26),...first infrared transmitting section, (27)
...Second opposing body, (28), (28), ...Second infrared non-transmissive part, (29
), <29), ... second infrared transmitting section, (30).
・Bimorph, (53)・Diode for bimorph, (59)・15
r Constant voltage application circuit. l', :,”,, ′ Figure 2 mouth====Co-mine

Claims (1)

【特許請求の範囲】[Claims] (1)入射赤外線変化量に応じて電荷を発生−4る赤外
線検出体、該検出体への赤外線入射域に配置され赤外線
透過部及び赤外線非透過部を共に有する一対の対向体、
交流信号の印加にて振動し、上記一方の対向体の赤外線
透過部及び赤外線非透過部と上記他方の対向体の赤外線
非透過部及び赤外線透過部が夫々重畳する状態と、上記
一対の体向体の赤外線透過部どうし及び赤外線非透過部
とうしが重畳する状態とを交互に繰返ゼしめるための振
動子、該振動子の温度を検知し、斯る検知温度に基つき
上記振動子を直流バイアスするための直流信号を出力す
る温度検知器、所望時に上記振動子に所定電圧を印加せ
しめる所定電圧印加手段を備えたことを特徴とVる赤外
線検出装置。
(1) an infrared detector that generates a charge according to the amount of change in incident infrared radiation; a pair of opposing bodies that are arranged in an infrared incident region to the detector and have both an infrared transmitting part and an infrared non-transmitting part;
a state in which the infrared transmitting part and the infrared non-transmitting part of the one opposing body are superimposed on each other, and the infrared non-transmitting part and the infrared transmitting part of the other opposing body are vibrated by the application of an AC signal, and the pair of bodies are oriented A vibrator for alternately repeating a state in which infrared transmitting parts of the body and non-infrared transmitting parts overlap each other; An infrared detection device characterized by comprising: a temperature detector that outputs a DC signal for DC bias; and a predetermined voltage applying means for applying a predetermined voltage to the vibrator when desired.
JP18490582A 1982-10-20 1982-10-20 Infrared ray detecting device Pending JPS5973742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18490582A JPS5973742A (en) 1982-10-20 1982-10-20 Infrared ray detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18490582A JPS5973742A (en) 1982-10-20 1982-10-20 Infrared ray detecting device

Publications (1)

Publication Number Publication Date
JPS5973742A true JPS5973742A (en) 1984-04-26

Family

ID=16161376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18490582A Pending JPS5973742A (en) 1982-10-20 1982-10-20 Infrared ray detecting device

Country Status (1)

Country Link
JP (1) JPS5973742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124907A (en) * 2011-12-14 2013-06-24 Panasonic Corp Infrared sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124907A (en) * 2011-12-14 2013-06-24 Panasonic Corp Infrared sensor

Similar Documents

Publication Publication Date Title
US4631406A (en) Infrared ray detector
JPH0477256B2 (en)
JPS5973742A (en) Infrared ray detecting device
JPS622246B2 (en)
JPH0262810B2 (en)
JPH0156367B2 (en)
JPH0216858B2 (en)
JPH037890B2 (en)
JPH0230740Y2 (en)
JPS5937431A (en) Infrared detector
JPS59120831A (en) Apparatus for detecting infrared rays
JPH0238894B2 (en)
JPH0334668Y2 (en)
JPH0313707Y2 (en)
JPH0127069Y2 (en)
JPS59206727A (en) Infrared detector
JPS59159032A (en) Infrared-ray detector
JPH05835Y2 (en)
JPS571932A (en) Infrared sensor
JPH0142726Y2 (en)
JPH053957Y2 (en)
JPS6132336Y2 (en)
JPH051793Y2 (en)
JPS61117420A (en) Infrared detector
JPH02196989A (en) Vibration capacity type electrometer for measuring radiaton