JPH0251033A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH0251033A
JPH0251033A JP63202172A JP20217288A JPH0251033A JP H0251033 A JPH0251033 A JP H0251033A JP 63202172 A JP63202172 A JP 63202172A JP 20217288 A JP20217288 A JP 20217288A JP H0251033 A JPH0251033 A JP H0251033A
Authority
JP
Japan
Prior art keywords
temperature
infrared
changes
signal
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63202172A
Other languages
Japanese (ja)
Other versions
JPH0553372B2 (en
Inventor
Atsushi Horinouchi
淳 堀之内
Hiroyuki Uehashi
浩之 上橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63202172A priority Critical patent/JPH0251033A/en
Publication of JPH0251033A publication Critical patent/JPH0251033A/en
Publication of JPH0553372B2 publication Critical patent/JPH0553372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To realize correct measurement of temperature, etc. by providing an adjusting means in a driving circuit for adjusting a driving signal such that the amplitude of a vibrating body is restrained from changing in corresponding to the change of an environmental temperature. CONSTITUTION:A diode 50 and a transistor 52 constituting a stabilized power circuit 53 for a driving circuit 41 have a minus temperature between an emitter and a base thereof. Accordingly, an absolute value of an output voltage -Vc volt represents a negative temperature characteristic. In this case, the power circuit 53 together with an infrared detector 1 including vibrating bodies 24, 25 is present within the same casing 42. Therefore, the negative temperature characteristic of the absolute value of the output voltage -Vc volt in the power circuit 53 is substantially corresponding to the same environmental temperature as the vibrating bodies 24, 25. Accordingly, even when the environmental temperature changes and the absolute value of the output voltage -Vc volt changes, a temperature signal outputted from an output terminal 63 is constant. That is, although the amplitude of the vibrating bodies 24, 25 might vary, it is restricted before it happens. Therefore, the temperature measurement does not result in an incorrect value.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は例えば被検知部の温度を赤外線に基づいて検知
する九めの赤外線検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Field of Industrial Application The present invention relates to a ninth infrared detection device that detects, for example, the temperature of a detected part based on infrared rays.

+7)従来の技術 1!11[Nは従来の赤外線検出装置の赤外線検出器(
100)を示す。斯る検出器(100)において、金I
Il製のヘッダ(101)及び赤外線透過部(102)
を有するキャラ7”(103)からなる外ケース(10
4)の内部には、入射赤外線変化量に晶づいてt荷を発
生する焦ME型の赤外線検出体(105)と、該検出体
に入射する赤外411:変化せしめるブヨツバ機構とが
設けらnている。該tヨツパaSは、第12図にも示す
が、一対の圧電振動体(106人(107)及び該振動
体の各々の端部に固定さnた一対の対向体(108人(
109)からなっている。斯る対向体(108)、 (
109)には各々赤外線を通過せしめる複数の同形状、
同寸法のスリン) (110λ(110)・・・が形成
されている。
+7) Conventional technology 1!11 [N is an infrared detector of a conventional infrared detection device (
100). In such a detector (100), gold I
Il header (101) and infrared transmitting part (102)
The outer case (10
4) is provided with a focused ME type infrared detector (105) that generates a t charge by crystallizing the amount of change in the incident infrared rays, and a bulge mechanism that changes the infrared 411 incident on the detector. There are n. As shown in FIG. 12, the Jotsupa aS includes a pair of piezoelectric vibrators (106 (107)) and a pair of opposing bodies (108 (107) fixed to each end of the vibrator).
109). Such an opposing body (108), (
109) has a plurality of identical shapes each of which allows infrared rays to pass through,
Surin) (110λ(110)... of the same size is formed.

而して、上記振動体(106人(107)は印加さnる
所定の交流駆動信号に基づいて互いに逆方向(A又は8
方向〕に周期的に振動し、こnにより上記対向体(10
8)、(109)は相対的位置関係が周期的に変化し、
上記対同体(108人(109)の各々のスリン) (
110)、(110)・・・が重なり合、て開放する状
態と、一方の対向体(108)のスリット(110)(
110)・・・が地方の対向体(109)のスリット(
110)CIIQ)・・・以外の部分と重なり合つて各
対向体(108)(109)のスリット(]10バ11
0)・・・が閉塞する状態とが繰返さnる。すると、上
記開放状橿においては被検知部からの赤外線がゲース(
104)の赤外線透過部(102)及び両対向体(10
8人(109)のスリン) (110)v (110)
・・・を経て上記赤外線検出体(105)に入射し、一
方上起閉塞状態においては対向体(108人(109)
からの赤外線のみが上記赤外線検出体(105)に入射
し、よ、て赤外線検出体(105)は入射赤外!!量が
周期的に変化し例えば被検知部の温度測定用としての電
荷を発生する。
The vibrating bodies (106 and 107) move in mutually opposite directions (A or 8) based on a predetermined AC drive signal applied.
direction], thereby causing the opposing body (10
8) and (109), the relative positional relationship changes periodically,
The above pair (Surin of each of 108 people (109)) (
110), (110)... are overlapped and open, and the slit (110) of one opposing body (108) is
110) ... is the slit (
110) CIIQ)... The slits ( ] 10 bars 11 of each opposing body (108) (109) overlap with other parts
0)... is blocked repeatedly. Then, in the open rod, the infrared rays from the detected part are
104) infrared transmitting part (102) and both opposing bodies (10
8 people (109) Surin) (110)v (110)
... and enters the infrared detecting body (105), while in the upwardly obstructed state, the opposing body (108 people (109)
Only the infrared rays from the infrared rays enter the infrared detector (105), and the infrared rays from the infrared detector (105) enter the infrared rays! ! The amount changes periodically and generates a charge for measuring the temperature of the detected part, for example.

さて、上記赤外線検出器(100)に訃いて、上記振動
体(106人(107)は周囲温度の影響を受け、周囲
温度の変化に基づいて、A又はB方向への撓み金主じる
と共に、振動時の振幅値が変動する。
Now, in relation to the infrared detector (100), the vibrating body (106 (107)) is affected by the ambient temperature, and depending on the change in ambient temperature, the oscillating body (106) flexes in the direction A or B. , the amplitude value fluctuates during vibration.

前者のよりIlc!Iみが生じると、非振動時における
両対向体(108)(109)の相対的位fiilW係
が所望の状態から変化し、振動時においてスリン) (
Jio)(110)・・・の所望の開放・閉塞状態が得
らnなくなる。又、後者のように振幅値が変動すると、
こn亦i劾時においてスリンl” (110)(110
)・・・の所望の開放・閉塞状態が得られなくなる。そ
して、このように所望の開放藝閉塞状態が得られなくな
ると、赤外線検出体(105)に入射する赤外線の変化
量が変動し、よって1囲温度の変化に基づいて赤外線検
出体(105)から発生する電荷の量が変動し、正確な
温度測定か行なえなくなる。
Ilc! than the former! When this occurs, the relative positions of the opposing bodies (108) and (109) change from the desired state during non-vibration, and when vibration occurs,
Jio) (110)... cannot achieve the desired open/closed state. Also, when the amplitude value fluctuates like the latter,
Surin l” (110) (110
)... will not be able to achieve the desired open/closed state. When the desired open/closed state is no longer obtained, the amount of change in the infrared rays incident on the infrared detector (105) changes, and therefore, the amount of change in the infrared rays incident on the infrared detector (105) changes based on the change in ambient temperature. The amount of charge generated fluctuates, making accurate temperature measurements impossible.

而して、前者の、周囲温度の変化に応じて生じる撓みは
、時開@59.46826号公報に見られるように、周
囲温度の変化に応じて両部動体(106)(107)に
直流バイアス信号を与えると、その発生が事前に抑制さ
几、従うて斯る撓みによる温度測定の不正確さは解消さ
nる。
The former deflection that occurs in response to changes in ambient temperature is caused by direct current flowing through both moving bodies (106) and (107) in response to changes in ambient temperature, as seen in Jikai@59.46826. By applying a bias signal, its occurrence is suppressed in advance, thus eliminating inaccuracies in temperature measurements due to such deflections.

しかし乍ら、後者のように周囲温度の変化に応じて振幅
値が変動し、こnにより温度測定が不正確となる点に関
する解決方法は未だ示さnていない。
However, a solution to the latter problem, in which the amplitude value fluctuates in response to changes in ambient temperature, resulting in inaccurate temperature measurement, has not yet been proposed.

c/)  発明が解決しようとする課題本発明は、嵜囲
@KC)変化によりm動体の振幅値が変動するの全防止
し、正画な温度測定等が行なえる赤外線検出装置を得る
ことにある。
c/) Problems to be Solved by the Invention The object of the present invention is to provide an infrared detection device that can completely prevent the amplitude value of a moving object from fluctuating due to changes in the surrounding area, and can perform accurate temperature measurement, etc. be.

に)課題を解決する之めの手段 本発明は、入射赤外線変化量に応じて電荷【発生する赤
外線検出体と、該検出体への赤外線入射域に配置ざn1
赤外線通過部及び赤外線検出部を共にMする一対の対同
体と、駆動信号の印加によるa=tV損幅値が周囲温度
の変化に応じて変動する特性があ、て、上記一対の対向
体間の相対的位gt関係を問期的に変える振動体と、上
記駆動信号を出力する駆動回路とを備えた赤外線検出装
置において、該駆動回路は、上記振動体の振幅値が上記
周囲温度の変化に応じて変動するのを抑制するように、
上記駆a′@号の大きさを調整する調整手段を有するこ
とを特徴とする。
2) Means for Solving the Problems The present invention provides an infrared detecting body that generates a charge depending on the amount of change in incident infrared light, and an infrared detecting body disposed in an infrared incident area to the detecting body.
A pair of opposing bodies having an infrared passing section and an infrared detecting section both M, and a characteristic that a=tV loss width value due to application of a drive signal varies according to changes in ambient temperature, In the infrared detection device, the infrared detection device includes a vibrating body that periodically changes the relative position gt relationship between In order to suppress fluctuations depending on
The present invention is characterized in that it has an adjusting means for adjusting the magnitude of the drive a'@.

(ホ)作用 周囲温度が変化すると、こnに応じて振動体に印加さn
る駆動傷号O大きさが調整され、 ffl動体のInl
lMfILか周囲温度の変化に応じて変動するのが抑制
さnる。
(e) When the ambient temperature changes, the voltage applied to the vibrating body changes accordingly.
The driving flaw signal O size is adjusted, and the Inl of the ffl moving object is adjusted.
Fluctuations in lMfIL in response to changes in ambient temperature are suppressed.

(へ)実施例 第1図及び第2図は本発明実施例の赤外線検出装置にお
ける赤外線検出器(1)t−示す。斯る検出器(1)に
おいて、金属製のヘッダ(2Jと赤外線透過フィルタ(
3)にて閉塞さfL次赤外線入射口(4)を有するキャ
ップ(5)とからなる外ケース(6)の内部には、赤外
線検出部(7)とtヨッパa構部(8)とが配置さnて
いる。
(F) Embodiment FIGS. 1 and 2 show an infrared detector (1) t- in an infrared detecting device according to an embodiment of the present invention. In such a detector (1), a metal header (2J) and an infrared transmission filter (
Inside the outer case (6) consisting of a cap (5) having an fL-order infrared entrance port (4) closed at It is arranged.

上記赤外線検出部(7)において、表、裏面電極(9)
α、[)を有し、入射赤外線変化量に応じて電荷を発生
するタンタル酸すtクム(LIT畠03〕単結晶からな
る焦tlE型赤外線検出体συが設けらn15検出体は
燐青銅などからなる金属裏叉持台αシ上に導電性接着剤
σJにて接層固定さnている。そして、上記赤外線検出
体αVは赤外線入射口σ4Iを有するシールド体αSに
より外来ノイズに対してシールドさnている。更に、上
記表面電極(9)は上記ヘッダ(2)に絶縁材を介して
植設さn九信号端子囮にインピーダンス変換回路(後述
する)を通して!気的に連なり、上記裏面電ffl叫は
接層剤αJ1叉持台aカ及びヘッダ(2)を介してアー
ス端子αηに電気的に運な、ている。
In the infrared detection section (7), front and back electrodes (9)
A pyrotlE type infrared detector συ made of tantalum acid tcum (LIT Hatake 03) single crystal which has α, [) and generates a charge according to the amount of change in incident infrared rays is provided.The n15 detector is made of phosphor bronze etc. The infrared detector αV is fixed in contact with a metal backing stand α consisting of a conductive adhesive σJ.The infrared detector αV is shielded from external noise by a shield αS having an infrared incidence opening σ4I. Further, the front surface electrode (9) is connected to the header (2) via an insulating material and connected to the impedance conversion circuit (described later) through the nine signal terminal decoys. The electric power is electrically connected to the ground terminal αη via the contacting agent αJ1 and the header (2).

次に、上記チョッパ機構部(8)において、上記検出体
(ill−、の赤外線の入射域、即ち上記検出体σDと
開口(4)との間には互いに平行状感に配置さn7を平
面状の一対の第11第2対同体+11M9が位置してい
る。該第11第2対向体は夫々第3図凰及びbに示す如
く、アルミニウムなどの赤外線非通過材料からなり、扇
形線状に延設さnた複数のスリットとしての赤外線通過
部(イ)及びc!!ilが形底さル、該通過部の各々の
間には夫々赤外線非通過部33及びのが位置している。
Next, in the chopper mechanism section (8), the infrared ray incident area of the detection object (ill-), that is, between the detection object σD and the opening (4), is arranged parallel to each other and n7 is a plane. A pair of eleventh second opposing bodies +11M9 are located in the shape of a shape.As shown in FIGS. The infrared ray passing portions (a) and c!!il as a plurality of extending slits are shaped like bottom holes, and the infrared ray non-passing portions 33 are located between each of the passing portions.

上記通過部■、C1lと非通過部■、のは共に同一寸法
、形状を有し、幅wl、W2は夫k 100 sin、
 200 sWJテh;b。
The above-mentioned passing part (2), C1l, and non-passing part (2) have the same dimensions and shape, and the widths wl and W2 are k 100 sin,
200 sWJteh;b.

そして、上記11g1、第2対回体αδ、α9Vi夫々
第1、第2振動体−1四の右端に固定さnている。
The above-mentioned 11g1, second rotating bodies αδ and α9Vi are fixed to the right ends of the first and second vibrating bodies 14, respectively.

該第1. 講2振動体の構成は第4図に詳細に示す。Part 1. Section 2 The configuration of the vibrator is shown in detail in Figure 4.

aち、燐青銅などからなる中央wL極(至)、@が存し
、該中央電極の各々の両側には、チタン酸バリクム、ジ
ルコン醒チタン改鉛などからなり単一方向(矢印p)九
分極された圧電体(至)、四が、その分極方向が同一と
なるように設けらnlそして上記各圧電体(至)、■の
外側表面には銀などからなる表面電極(7)、 C(I
)が杉取さルている。
There is a central wL pole (to), @ made of phosphor bronze, etc., and on both sides of each of the central electrodes there is a single direction (arrow p) made of baricum titanate, zirconium-containing titanium reformed lead, etc. Polarized piezoelectric bodies (1), (4) are provided so that their polarization directions are the same, and on the outer surface of each piezoelectric body (2), a surface electrode (7) made of silver or the like, C. (I
) is sugitori.

上記第1%第2振動体−1固は上記ヘッダ(2)上に絶
縁層時を介して固定さnた金属製の第1.第2固定台(
ト)、(ロ)にて挾持固定さnている。この場合、上記
M1、第2固定台田、曳には表面電極間C311が電気
的に接触する。そして、上記第1蛋動体C24+の中央
を極[有]及び上記第2固定台(ロ)は上記ヘッダ(2
)に絶縁材を介して植設さn九帛1損勤端子(至)に接
続され、又上記第2逗勧体すの中央成極の及び上記第1
固定台C33は上記ヘッダ(2)に絶縁材を介して同様
に植設さnた第2損動端子国に接続さnている。
The 1% second vibrating body-1 is a metal first vibrator fixed on the header (2) via an insulating layer. Second fixed base (
It is clamped and fixed at (g) and (b). In this case, the surface electrode C311 electrically contacts the M1, the second fixed stage, and the pulley. The center of the first protein C24+ is connected to the pole and the second fixing base (B) is connected to the header (2).
) through an insulating material, and is connected to the terminal (to) of the second transmission body through an insulating material;
The fixing base C33 is connected to a second loss terminal which is similarly implanted in the header (2) via an insulating material.

而して、上記M1、第2振動端子田、(至)間には、駆
動信号として、電位差+Vボルト(第1振動端子田の方
が第2WR動端子(至)より電圧が高い〕と−■ボルト
(第2振動端子(至)の方が第1損動端子田より電圧が
高い)の信号が周期的(周波数3Hz)に又互に繰返し
印加さnる。、後者の電位差の場合、上記渠l振劾体(
241においては下側(第4因〕の圧イ体嶺か縮むと共
に上側の圧電体(至)が伸び、従って第1蛋動体124
1は矢EiJへ方向に撓む。又、上記第2襲動体四にお
いては下側の圧電体のが伸びると共に上側の圧電体重が
縮み、従って第2S@体のは8方向に撓む。一方、前者
の1位差の場合、第1、i2!jK21体c!41.1
251は夫に上Ms、!ニーn逆ica、 A方間に撓
む。
Therefore, a potential difference between +V volts (the voltage of the first vibrating terminal is higher than that of the second WR dynamic terminal) and - is applied as a drive signal between M1 and the second vibrating terminal (to). ■ A signal of volts (the voltage is higher at the second vibrating terminal than at the first loss terminal) is applied periodically (frequency 3 Hz) and to each other repeatedly. In the case of the latter potential difference, The above-mentioned culvert (
In 241, the lower piezoelectric body 124 contracts, and the upper piezoelectric body extends.
1 is deflected in the direction of arrow EiJ. In addition, in the second attacking body 4, the lower piezoelectric body expands and the upper piezoelectric weight contracts, so that the second S@ body bends in eight directions. On the other hand, in the case of the former difference of 1 place, the 1st, i2! jK21 bodies c! 41.1
251 is for my husband! Knee n reverse ica, flexing towards A.

こAKより、上記第11第2振動体」、西は互いに逆方
向に周期的に振動し、斯る感動に基づいて上記第11第
2対向体a8、α]は相対的を置関係が変位し、両射同
体ff811(19の赤外線通過部■、211がNなり
合つて開放する状態と、第1対向体a8の赤外線通過部
のが第2対向体(19の赤外線非通過部のと重なり合っ
て閉塞する状態(第1対同体賭の赤外線非通過部のが第
2対向体任9の赤外線通過部(211と重なジ合。て閉
塞する状態でもある〕と、が周期的に繰返さnる。する
と、上記赤外線検出体a1は、フィルタ(3)を透過し
て外ケース(6)内に入。
From this AK, the 11th second vibrating body and the west vibrate periodically in opposite directions, and based on this impression, the relative position of the 11th second opposing body a8, α] is displaced. However, the infrared passing portions of the bireflective body ff811 (19 infrared passing portions ■, 211 are N and open, and the infrared passing portion of the first opposing body a8 overlaps with the infrared non-passing portion of the second opposing body (19) The state in which the infrared rays non-passing portion of the first opposing body 9 overlaps with the infrared ray passing portion (211) of the second opposing body 9 and is occluded is periodically repeated. Then, the infrared detector a1 passes through the filter (3) and enters the outer case (6).

てくる被検知物からの赤外線と対向体賭、住1からの赤
外線とに基づいて、入射赤外線量が変化し、よって被検
知物の温度に応じ九区苛、更に詳しくは被検知物と対向
体C111、C9とOa度差く対応し比信号を出力する
The amount of incident infrared rays changes based on the infrared rays coming from the object to be detected and the infrared rays from the opposing object. The body C111 corresponds to the Oa degree difference with C9 and outputs a ratio signal.

上記外ケース(6)には、更に対回体(18、C9の温
度を検知丁;b72:めの測温ダイオードc37)が内
蔵されている。該ダイオードの7ノードは上記ヘッダ(
2)に絶縁材を介して植設さn几ダイオード端子(7)
に接続さn1カンードは接地さnている。
The outer case (6) further has a built-in diode (18, temperature measuring diode C37) for detecting the temperature of C9. The 7 nodes of the diode are connected to the header (
2) Injected diode terminal (7) via insulating material
The n1 cand connected to n is grounded.

第5図は上記赤外線検出器(11を含む赤外線検出装置
の構造を示し、上記赤外線検出器il+はその各端子を
介してプリント基板C」に固定さnている。
FIG. 5 shows the structure of an infrared detection device including the infrared detector (11), and the infrared detector il+ is fixed to the printed circuit board C' through its respective terminals.

斯るプリント基板(支)には、上記赤外線検出器(11
からの温度信号を@珊する温度回路14Gと、上記振動
体c!4Iムに対する駆動信号としての、周期的な電位
逼+■ボルト及び−■ボルトの色号を出力する駆り回路
Iとが配設さnている。そして、上記赤外線検出器il
lが固定さ−n次プリント基板田は箱体(43内に配設
さnている。
The above-mentioned infrared detector (11) is mounted on such a printed circuit board (support).
A temperature circuit 14G that receives a temperature signal from the vibrating body c! A driving circuit I is provided which outputs color codes of periodic potentials ++■ volts and -■ volts as drive signals for the 4I timer. And the infrared detector il
A fixed-nth printed circuit board is placed inside a box (43).

第6因は上記赤外線検出器tilt含む赤外線検出装置
の回路を示す。上記赤外線検出体συの表面間41i1
t93は赤外線検出体συと共にシールド体15i内に
配置さn九インピーダンスf換回路+43に接続さnて
いる。該変換回路は1010〜1011Ωの請入力抵抗
圓と、F’ETfθと、約IQK’Ωの出力抵抗(48
とからなり、FET[45のソースが上記信号端子西に
接続さn1又ドレインは[流電圧印力a端子t47)に
接続さnている。
The sixth factor shows the circuit of the infrared detection device including the above-mentioned infrared detector tilt. Between the surfaces of the infrared detector συ 41i1
t93 is placed in the shield body 15i together with the infrared detector συ and connected to the impedance f conversion circuit +43. The conversion circuit has an input resistance field of 1010-1011Ω, F'ETfθ, and an output resistance (48
The source of the FET 45 is connected to the west of the signal terminal n1, and the drain is connected to the current voltage application terminal a terminal t47).

而して、上記第1、第2振動端子四国間には、上記駆動
回路圓から、JEK勤倍号として、±Vボルトの!!!
位差信号(g7図C)か交互に印加さnる。
Therefore, between the first and second vibration terminals Shikoku, there is a voltage of ±V volts from the drive circuit circle as a JEK frequency! ! !
A phase difference signal (Fig. C) is applied alternately.

即ち、上記駆動回路(4I)においては、発掘器08か
ら周波数3F(Zで低レベル(−7ボルト)のパルスP
が出力さnる(第7図b)。一方、ツェナダイオード+
4!J、ダイオードω、トランジスタ6υ63等からな
る安定化電源回路@は、スイッチ541Th介して−V
DD (約−40ボルト)の電圧をへカすることによジ
、−Vcボルトの電圧を発生下る(第7(2)a)。こ
の時、パルスPが出力すると、トランジスタ回がオンし
、そして次のトランジスタωもオンし、こnにより栗l
S勧端子四にOボルトが印加さn且つ第2振動端子田に
−Vcボルトが印加さnる。、要するに、all、第2
振動端子@(至)間に+Vボルトの電を差信号が印加さ
nる。又、パルスPが出力しない間は、トランジスタ6
9がオフシ、そして久のトランジスタ(56)もオフし
、こnにより第11第2搗勤端子田(ト)には逆に夫々
−Vcボルト及びOボルトが印加され、要するに第1、
第2振動端子田c!a間に一■ボルトの這イ止差Ig号
が印加さnる。
That is, in the drive circuit (4I), a pulse P of frequency 3F (low level (-7 volts) at Z) is sent from the excavator 08.
is output (Figure 7b). On the other hand, Zener diode +
4! A stabilized power supply circuit @ consisting of J, diode ω, transistor 6υ63, etc. is connected to −V via switch 541Th.
By reducing the voltage of DD (approximately -40 volts), a voltage of -Vc volts is generated (Section 7 (2) a). At this time, when the pulse P is output, the transistor turns on, and the next transistor ω also turns on, which causes the chestnut
O volts are applied to the S terminal 4, and -Vc volts are applied to the second oscillating terminal. , in short, all, the second
A differential signal of +V volts is applied between the vibrating terminals. Also, while the pulse P is not output, the transistor 6
9 is turned off, and the transistor (56) is also turned off, so that -Vc volts and O volts are applied to the 11th and 2nd terminals (G), respectively.
Second vibration terminal field c! A stopping difference Ig of 1 volt is applied between a and n.

このよりにして、上記嘉l、第2搦動端子ω(至)間に
±Vボルトの電位差信号が交互に印加さnると、上記第
11WJ2逗動体囚固は上述の如く退勤し、斯るS開時
には、被検知物と対向体賭、αjとの温度差に応じ比信
号が上記インピーダンス変換回路143を通して上記信
号端子αeより検出器[11外部へ導出さnる。斯る信
号は実際は第7囚dの如き交流eをなし、その振幅が上
記温度差に応じtものとなっている。このように導出さ
n7?1.信号は続いて上記温度回路3Gに至シ、フィ
ルタ増幅器εηを介して同期検波器−に入力さnる。
As a result, when a potential difference signal of ±V volts is alternately applied between the above-mentioned terminal and the second pulsating terminal ω, the 11th WJ2 moving body prisoner leaves work as described above, and thus When S is open, a ratio signal is output from the signal terminal αe to the outside of the detector 11 through the impedance conversion circuit 143 in accordance with the temperature difference between the object to be detected and the opposing body, αj. Such a signal actually forms an alternating current e as in the seventh case d, and its amplitude becomes t in accordance with the above-mentioned temperature difference. Thus derived n7?1. The signal then goes to the temperature circuit 3G and is input to the synchronous detector via the filter amplifier εη.

斯る検波器(至)は、上記交流信号eと上記発振器38
の出力との同期音とり、被検知物の温度が対向体σ&、
任9の温度より高い場合はその温度差に応じ比圧の直流
信号を検波出力し、被機知物の温度が対向体αe119
の温度より低い場合はその温度差に応じ之負の[a信号
を検波出力する。即ち、上記交流信号eとしては、被検
知物の温度力1対向体aぶ、σうの温度より羅いと正側
半ティクルe+が発掘器(481出力の電位差+Vボル
トに相当する部分と一致し、被検知物の温度が対向体賭
、(11の温度より低いと負側半チイクル・−が発振器
明出力の電位差+Vボルトに相当〒る部分と一致する。
Such a detector (to) detects the AC signal e and the oscillator 38.
The sound is synchronized with the output of the object to be detected, and the temperature of the object is
If the temperature of the object to be detected is higher than the temperature of the object 9, a DC signal of specific pressure is detected and output according to the temperature difference, and the temperature of the object to be detected is
If the temperature is lower than the temperature, a negative [a signal is detected and output according to the temperature difference. That is, as for the above AC signal e, the temperature force 1 of the object to be detected 1 is greater than the temperature of the opposing body ab, σ, and the positive half tickle e+ coincides with the portion corresponding to the potential difference +V volts of the output of the excavator (481). If the temperature of the object to be detected is lower than the temperature of the opposing body (11), the negative half cycle - corresponds to the portion corresponding to the potential difference +V volts of the oscillator bright output.

そして、上記t*波器58からは、前者の一致がとnる
と被検知物と対同体ff&1α9との温度差に応じた正
の直流信号が出力され、後者の一致がとnると斯る@度
差に応じた負の直流信号が出力さnる。
Then, the t* wave generator 58 outputs a positive DC signal corresponding to the temperature difference between the object to be detected and the object ff&1α9 when the former matches, and when the latter matches. A negative DC signal corresponding to the degree difference is output.

而して、上記検波器(ト)からの出力は直流増幅器器を
介して合成口路冊に入力さnる。該合成回路には更に上
記測温ダイオードc37)からの出力、即ち対向体U1
α9の温度に応じ比信号が直流増幅器6υ?介して人力
さnる。そして、上記合成回路句はこnら2つの入力?
加算し実際の被機知物の温度に応じ比信号を出力する。
The output from the detector (g) is input to the synthesis port via a DC amplifier. The synthesis circuit further includes the output from the temperature measuring diode c37), that is, the opposing body U1.
Depending on the temperature of α9, the ratio signal is DC amplifier 6υ? Through human power. And is the above synthesis circuit phrase these two inputs?
A ratio signal is output according to the actual temperature of the object to be detected.

斯る出力は直流増幅器ti3を介して出力端子口より上
記箱体り外へ出力さn1マイクロコンピユータを含む制
8回路t641へ入力さnる。
The output is outputted from the output terminal through the DC amplifier ti3 to the outside of the box and inputted to the control circuit t641 including the microcomputer n1.

斯る制#回路−はこのように入力さnるa度q号に基づ
いて各権利y4を行なう。例えば電子レンジにおいては
、上記温I!1.信号に基づいて77D熱を制御する。
The control circuit performs each right y4 based on the input a degree q in this way. For example, in a microwave oven, the above temperature I! 1. Control the 77D heat based on the signal.

又、上記制御回路−はこの温度信号の入力を行なう場合
には、予め発掘器(481を発根開始せしめ且つ上記ス
イッチ(5411t−オンする。
Further, when inputting this temperature signal, the control circuit causes the excavator (481) to start rooting in advance and turns on the switch (5411t).

さて、上記第1%第2憑動体LJ41四は王電体詣囚等
からなり、第8(2)に示す如く周囲温度の変化に応じ
て上記周期的振動の振幅値が変動する特注があり、具体
的には、問囲温度が上昇するに従うて振幅値が増大する
正の温度特性かある。このように振幅値が変動すると、
この′tまでは第9図に示す如く、上記安定化電源回路
ωの出カイ圧−Vcボルトの絶対1直(こt″Lは第1
.第2振動端子西C灼に印加さnる[[差信号±Vボル
トに対応するンVc′Rする上記出力端子1から出力さ
nる温度信号は、周v!U@度の変化に応じて変動する
。具体的には、出力電圧−Vcボルトの絶対値がVpC
−30ポル))である場合にdL、IIS囲温度が5℃
、25℃、60℃(C夫々変化すると、m度Δ号はRT
s、RTzs、11(T6oに変1する。従、て、pN
囲11A度が変化し、第11第2熾幻体CG(至)の!
禮幅伍が変動すると、温度測定が不正確となるのである
Now, the above-mentioned 1% second possessed body LJ414 is made up of Oden body pilgrims, etc., and as shown in Section 8 (2), there is a special order in which the amplitude value of the above-mentioned periodic vibration changes according to changes in the ambient temperature. Specifically, there is a positive temperature characteristic in which the amplitude value increases as the ambient temperature rises. When the amplitude value fluctuates like this,
Until this 't', as shown in FIG.
.. The temperature signal outputted from the output terminal 1 corresponding to the difference signal ±V volts applied to the second vibrating terminal C is the temperature signal outputted from the output terminal 1, which corresponds to the difference signal ±V volts. U @ fluctuates according to changes in degrees. Specifically, the absolute value of the output voltage -Vc volts is VpC
-30 pol)), dL, IIS ambient temperature is 5℃
, 25℃, 60℃ (if C changes, m degree Δ is RT
s, RTzs, 11 (change 1 to T6o. Therefore, te, pN
The 11A degree changes, and the 11th and 2nd fiendish body CG (To)!
Fluctuations in the temperature range result in inaccurate temperature measurements.

ここに、本発明実施例において、上記駆動回路(41)
の安定化電源I!!I絡63全63全構成イオード6α
及びトランジスタ6zのエミッタ・ベース間は負の温度
特性を■しておジ、こnにより上記出力璽圧−Vcボル
トの絶対iは第10(2)に示す如く負の温I!を特注
を有している。この場合、上記安定化電源回路6四は上
配駆vJ回路Aυを構底するものでる。て上記プリント
基板端に配設さn1上紀第1、M2振動体1#f251
を含む赤外線検出器(11と共に、同一の箱体り内に存
在し、従って上記安定化電源回路(ト)内の出力電圧−
Vcボルトの絶対値の負の温度特注は第1、第2蛋動体
は(ハ)と笑質的に同一の周囲温度に応じたものと′i
k、ている。
Here, in the embodiment of the present invention, the drive circuit (41)
Stabilized power supply I! ! I connection 63 all 63 all configuration iodes 6α
And the emitter-base of the transistor 6z has a negative temperature characteristic (1), so that the absolute i of the output voltage -Vc volts becomes a negative temperature I! as shown in No. 10 (2). We have a custom order. In this case, the stabilizing power supply circuit 64 serves as the bottom of the upper drive vJ circuit Aυ. N1 Joki 1st, M2 vibrator 1 #f251 arranged at the end of the printed circuit board.
It is present in the same box together with the infrared detector (11) containing the
The negative temperature customization of the absolute value of Vc volts means that the first and second protein bodies correspond to the ambient temperature that is qualitatively the same as (c).
k, there.

而して、周囲温Sが5℃、25℃、60℃に夫々変化す
ると、出力電圧−Vcボルトの絶対値はVpl  、V
p、Vp−に変動する。そしで、こnは、第9図と対比
させるに、周囲温度が変化し出力電圧−Vcボルトの絶
対1直がVpl、Vp。
Therefore, when the ambient temperature S changes to 5°C, 25°C, and 60°C, the absolute value of the output voltage -Vc volts becomes Vpl, V
p, Vp-. So, in comparison with FIG. 9, when the ambient temperature changes, the absolute one voltage of the output voltage -Vc volts is Vpl, Vp.

Vplに変動しても、上記出力端子6312)−ら出力
される温度信号がRTzsで一定となり、 第1%第2
愚動体@6の振幅値が変動するのが事前に抑制さnるこ
とを表わす。従、て、温度測定が不正確となることはな
い。
Even if Vpl fluctuates, the temperature signal output from the output terminal 6312) remains constant at RTzs, and
This indicates that fluctuations in the amplitude value of the immobile body @6 are suppressed in advance. Therefore, the temperature measurement will not be inaccurate.

ここで、上記駆動回路f41)の安定化電源回路卵内の
ダイオードω及びトランジスタ(52は第11第2振動
体[241囚の振幅値が周囲温度の変化に応じて変動す
るのを抑制するように駆動回路CDからの駆動信号を調
整するものであって、本発明の調整手段に相当する、。
Here, a diode ω and a transistor (52) in the stabilizing power supply circuit of the drive circuit f41) are used to suppress fluctuations in the amplitude value of the eleventh second vibrating body [241] according to changes in ambient temperature. It adjusts the drive signal from the drive circuit CD, and corresponds to the adjustment means of the present invention.

尚、X実i列にかいて、上記第1.第2振動体c!4I
caの振幅1厘の11温度に対する変動がより大暑い場
合には例えば安定化電源四路Q内のツェナダイ万一ドt
aにも負の温度特性を特定せnば良ぐ、逆に、小さい場
合には例えばダイオードωに負の温度特注を持たせない
ようにするか又はツェナダイオード四に正の温度特性’
t−fF*せnば良い。
In addition, in the X real i column, the above 1. Second vibrating body c! 4I
11 If the fluctuation of the amplitude of ca with respect to the temperature is larger, for example, if the Zener die in the stabilized power supply four-way Q is
It is sufficient to specify a negative temperature characteristic for a. Conversely, if it is small, for example, the diode ω should not have a negative temperature characteristic, or the Zener diode 4 should have a positive temperature characteristic.
All you have to do is t-fF*.

(トノ発明の効果 本発明によnば、周囲温度が変化しても振動体の振幅値
は変動することがなく、従、て正確な′@度測測定等全
行うことができる。
(Effects of the Invention According to the present invention, the amplitude value of the vibrating body does not fluctuate even if the ambient temperature changes, so that accurate measurements can be carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第10図は不発明の実施例を示し、第1図は
赤外線検出器の分S斜視因、第2図は同Ifr面図、與
3図a、bは夫々第1、第2対同体の平面図、!44内
は赤外線検出器の要部平面図、第5図は赤外線検出装置
の斜視図、第6図は同回路図、第7図は信号波形図、第
8図は周囲温度に対する振幅値の特性図、第9図は1圧
値L−Valは赤外線検出器の断面図、第12図は同要
部平面図である。 (11)・・・赤外線検出体、αa e a3・・・第
1、第2対同体、■、r211・・・赤外線通過部、の
、r23・・・赤外線非通過部、C4J、固・・・第1
1第2振動体、(4υ・・・駆動回路。
1 to 10 show an embodiment of the invention, FIG. 1 is a perspective view of an infrared detector, FIG. 2 is an Ifr side view of the infrared detector, and FIGS. A plan view of two pairs of bodies! 44 is a plan view of the main part of the infrared detector, Fig. 5 is a perspective view of the infrared detection device, Fig. 6 is the same circuit diagram, Fig. 7 is a signal waveform diagram, and Fig. 8 is the characteristic of amplitude value with respect to ambient temperature. 9 is a cross-sectional view of the infrared detector showing one pressure value L-Val, and FIG. 12 is a plan view of the main part thereof. (11)... Infrared detector, αa e a3... First and second antiisomer, ■, r211... Infrared passing section, r23... Infrared non-passing section, C4J, solid...・First
1 second vibrating body, (4υ... drive circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)入射赤外線変化量に応じて電荷を発生する赤外線
検出体と、該検出体への赤外線入射域に配置され、赤外
線通過部及び赤外線非通過部を共に有する一対の対向体
と、駆動信号の印加による振動の振幅値が周囲温度の変
化に応じて変動する特性があって、上記一対の対向体間
の相対的位置関係を周期的に変える振動体と、上記駆動
信号を出力する駆動回路とを備えた赤外線検出装置にお
いて、該駆動回路は、上記振動体の振幅値が上記周囲温
度の変化に応じて変動するのを抑制するように、上記駆
動信号の大きさを調整する調整手段を有することを特徴
とする赤外線検出装置。
(1) An infrared detecting body that generates a charge according to the amount of change in incident infrared rays, a pair of opposing bodies that are arranged in the infrared incident area to the detecting body and have both an infrared passing part and an infrared non-passing part, and a drive signal. a vibrating body that has a characteristic that the amplitude value of vibration caused by the application of oscillation changes in response to changes in ambient temperature, and periodically changes the relative positional relationship between the pair of opposing bodies; and a drive circuit that outputs the drive signal. In the infrared detection device, the drive circuit includes adjusting means for adjusting the magnitude of the drive signal so as to suppress the amplitude value of the vibrating body from changing in accordance with changes in the ambient temperature. An infrared detection device comprising:
JP63202172A 1988-08-12 1988-08-12 Infrared detector Granted JPH0251033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202172A JPH0251033A (en) 1988-08-12 1988-08-12 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202172A JPH0251033A (en) 1988-08-12 1988-08-12 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0251033A true JPH0251033A (en) 1990-02-21
JPH0553372B2 JPH0553372B2 (en) 1993-08-09

Family

ID=16453159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202172A Granted JPH0251033A (en) 1988-08-12 1988-08-12 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0251033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296830A (en) * 1992-02-19 1993-11-12 Nohmi Bosai Ltd Pyroelectric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296830A (en) * 1992-02-19 1993-11-12 Nohmi Bosai Ltd Pyroelectric element

Also Published As

Publication number Publication date
JPH0553372B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
USRE42923E1 (en) Piezoelectric vibration angular velocity meter and camera using the same
US5663505A (en) Pressure sensor having a piezoelectric vibrator with concencentric circular electrodes
US7523665B2 (en) Angular velocity sensor and method for operating the same
JPH09170927A (en) Vibration type angular velocity detecting device
US5388458A (en) Quartz resonant gyroscope or quartz resonant tuning fork gyroscope
US4631406A (en) Infrared ray detector
JPH0251033A (en) Infrared detector
US20140002202A1 (en) Vibratory device and electronic apparatus
US5696322A (en) Vibrating gyroscope
KR100198308B1 (en) Vibrating gyroscope
JPS622246B2 (en)
US2778881A (en) Microphone
JPH0262810B2 (en)
JPH0156367B2 (en)
JP2001183139A (en) Physical quantity detector
JP4963662B2 (en) Vibrator drive circuit
JP2000283764A (en) Angular velocity detector
JPS58129334A (en) Infrared detector
JP3491234B2 (en) Electrostatic Toluca type accelerometer
JPH0334668Y2 (en)
JPS5937431A (en) Infrared detector
JP2016161451A (en) Gyro sensor, electronic apparatus, mobile body, and method for manufacturing the gyro sensor
JPH11258286A (en) Minute capacitance detection circuit
JPH0127069Y2 (en)
JPH037890B2 (en)