JPS5946483A - Drain temperature control device for condenser - Google Patents

Drain temperature control device for condenser

Info

Publication number
JPS5946483A
JPS5946483A JP15669082A JP15669082A JPS5946483A JP S5946483 A JPS5946483 A JP S5946483A JP 15669082 A JP15669082 A JP 15669082A JP 15669082 A JP15669082 A JP 15669082A JP S5946483 A JPS5946483 A JP S5946483A
Authority
JP
Japan
Prior art keywords
flow rate
condenser
water
temperature difference
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15669082A
Other languages
Japanese (ja)
Other versions
JPS6250756B2 (en
Inventor
Toshiharu Kuniyoshi
国吉 俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15669082A priority Critical patent/JPS5946483A/en
Publication of JPS5946483A publication Critical patent/JPS5946483A/en
Publication of JPS6250756B2 publication Critical patent/JPS6250756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To save power required for operating a circulating water pump and to control the temperature difference between an inlet port and an outlet port for cooling water by a method wherein an optimum flow rate of the cooling water is estimated and a water inlet port and outlet port temperature difference feedback signal is used to correct the estimated flow rate when the estimation fails. CONSTITUTION:A correcting signal generator 104 receives as an input a difference epsilonT between a temperature difference DELTATa between the inlet port and the outlet port, and a temperature difference set value DELTATs and generates a correcting value BV1 for correcting the opening degree of a circulating water flow rate adjust value. An estimate signal generating section 105 receives as inputs a generator's effective electric power Go and the temperature difference DELTATa and after calculating a circulating water flow rate adjust valve opening degree estimate value BV6, outputs it to an adder 106. The adder 106 receives as inputs an estimate value BV2 and the correcting value BV1 and outputs a circulating water flow rate adjust valve opening degree correcting value BV3 to an operator 107. The operator 107 receives as inputs a command value BV3 and an adjust valve opening degree BVa1 and outputs a difference BVepsilon1. An adjuster 109 receives the difference BVepsilon1 as an input and generates a signal for driving a valve opening degree adjust motor 4A when the BVepsilon1 becomes zero so that the flow rate of the cooling water flowing through a circulating water flow rate adjust valve 3A is controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は原子力覚′屯や火力冗′屯等のプラント用初氷
器の排水温度制御装置i;7.に関する。 〔発明の技術的背玖〕 原子力あるいは火力発′屯フ0ラント宿−においては、
ノ^」知の辿シ鮒水設備と共に復水器’utBが設りら
れる。 核水設備は蒸気タービンで膨張し、仕事をした蒸気をん
j: If#させて抜水するものてめる。この復水設備
は蒸気タービンの排気圧力を下りることと、飯A:hI
Jした復水を回収して原子炉りるいは7+?イラへの給
水とすることを主目的とするが、旨い真空をつくって排
圧全像めることにょp蒸気タービン中の熱洛差を大きク
シ、タービンの出力および効率を増進する役割も来す。 このように、復水設備はり−ビン排気と冷却水との熱交
換を行なうものであるが、その冷却水として一般に海水
が使用される。 徨水器で熱交換を終えた冷却水は伺近の海水温度よシも
高いので、そのま1海に排出するとオ■々の弊百が生じ
る。そこで従来は取水口温度と排水口温度との温度差を
温度差設定値と比軟し、その偏差に応じて冷却水流量即
ち海水の循環水流層゛を制御していた。 〔背*技術の問題点〕 しかし、この複水設備においては、冷却水の取水口から
復水ン、ルf!:、tinで排水口に達する迄の管路が
極めて長いため、流量調如全竹なってもそれに基づく温
度変化が排水1コに現れるまで長い時間がかかる。この
ため、前記従来方式によると、タービン排気量か急激に
Jl:1加したとき、il+!I イ卸系のむだ時間に
よる応召の遅れからり1″水口υd1度が犬さく上昇し
、取水口と排水口の温度差をある人められだ1ljll
限S陀囲内に納めることかできなくなる。これを防止す
るには、01活度差設定値を予め小さく、I止定してお
けは良いが、そうすると通當時における冷却水流、j、
ft即ち循環水ボンダ吐出θiL;・」、全7L<低必
費以1 i′c大きくすることになる。この?r1)i
↓1ζ、11ハ」j、(水ボンツバをνへDツカする/
こめの′1b、力
[Technical Field of the Invention] The present invention relates to a drainage temperature control device for a first freezing device for plants such as nuclear reactors and thermal power reactors;7. Regarding. [Technical background of the invention] In nuclear power or thermal power generation,
A condenser 'utB will be installed along with the carp water equipment. Nuclear water equipment expands in a steam turbine and uses the steam that has done work to drain the water. This condensing equipment is used to reduce the exhaust pressure of the steam turbine and
Collect the J condensate and raise the reactor Rirui to 7+? The main purpose is to supply water to the steam turbine, but it also plays a role in creating a nice vacuum and increasing the exhaust pressure, thereby increasing the heat drop difference in the steam turbine and increasing the output and efficiency of the turbine. vinegar. In this way, the condensing equipment exchanges heat between the bottle exhaust gas and the cooling water, and seawater is generally used as the cooling water. The temperature of the cooling water that has undergone heat exchange in the water tank is higher than that of the nearby seawater, so if it is directly discharged into the sea, there will be a number of negative effects. Therefore, in the past, the temperature difference between the water intake temperature and the water outlet temperature was compared with a temperature difference set value, and the cooling water flow rate, that is, the circulating water flow layer of seawater, was controlled according to the difference. [Problems with back* technology] However, in this double water facility, condensate flows from the cooling water intake. : Because the pipe line leading to the drain is extremely long, even if the flow rate is controlled, it takes a long time for the temperature change to appear in one drain. Therefore, according to the conventional method, when the turbine displacement suddenly increases by Jl:1, il+! I Due to the delay in response due to the dead time of the wholesale system, the water inlet υd1 degree rises by 1 degree, and the temperature difference between the water intake and the drain is noticed by some people.
It will not be possible to keep it within the S limit. In order to prevent this, it is better to set the 01 activity difference set value to a small value in advance and keep it fixed at I, but in this case, the cooling water flow, j,
ft, that is, the circulating water bonder discharge θiL;・'', total 7L<low necessary cost will be increased by 1 i'c. this? r1)i
↓1ζ, 11ha''j, (Duck the water bottle to ν/
Temple'1b, power

【内勤(11jか多くlシフす、余多
)4、電力を必茨とずろ問題点かわった。 〔発明の目的〕 本発明は上記従来技11i7の間;鉋点を)トド消し、
fii「1lii糸のむノビ1ljj I出による!パ
ー・;)を少なくJることにより循環水ポンプの使用r
11.力を部約し、船ニオ・ルギー化に准幼な復水器の
すi°水湿温度制御製1巾2提供することを目的とする
。 〔す13明の概要〕 このだめ、本うしり」は復水器から刊水口寸ての″「、
。 踊のむたll4j IVJJをムくずために、:lb水
器におけるrt、:(父換に吸する冷却水/1<逸流量
の予訓乏イー」ft−レ1、互だ、取水口と1)1水口
の温j隻差フィーFノ% ツクG’s 号を予υ(11
か外れだ時の補止に使用することによシ、循環水ボンダ
に使用する′1シカhiを加約し、冷却水の出入口温度
差を一定に制(111するようにしたことを特徴とする
。 〔発明の夕”!、JM例〕 以下、本発明を図if+jに示す実施例を参照して説明
する。 第11シ1はnl 7に温度制伺1の対象となる本つし
明の−実力〔11例に係るぞ・2水fi+2 (+!i
iの冷却水系統図を示し/Cもので、#I:を本設(r
iiにl:A 、 Bの2系統からt1〜j成されてい
る。冷却水となる取水口1の海水Q−上循J!Ij 7
にボ゛ンプ2A、2Bにヨ’) Fitみ」ニリられ、
弁開灰1iL4i %J ’fijバill椋4A、、
4Bによ沙1う11度がh)ωWi+されるモti 1
3■え水6jGJ%j調節弁3A、3Bを進じて復水器
水室5 A +5Bに入る。そして、r1σ水は復水器
6の内部の冷却管群′ff−実糾の矢印で示す方向に進
む間に盃気クービン7よシ出た拶1気と熱交換をする。 熱文戻に/ よシ暖まった海水d2、その後イ製氷器出目弁8A。 8Bを通じて」井水口10に刊−出される。ここで、復
水器出口弁8A 、8Bは0N10FF弁て操作IH9
A 。 9Bにより全開あるいは全閉となる。温度1ム1」御に
必要な伶ムIJ水取水1」温度の検出は取水口伺近に設
けた取水口11、N度イ突出器工1により、また、排水
ロア都度の検出は排水口刊近に設けたUト水ロ温度検出
器12によりイボなわれる。 第2図は第1]ンjの循環水vIL bj’ H;L’
1] j/1+弁3A、3]1の開度を1171J御し
て復水器に流す冷却水γ7ifi i]iをu、、1間
することによシ、温度焉をノツ[定j(・1〕1四内に
納める排水温度i1i!I御装置1・Cのブロック図を
示したものである。 図中、谷1.1図と同一符号は同一111S分を示し、
史に、13は′1に力検出器、14 A 、 14 B
 &:j、1ノ「」度検出器、100は1lilJ御回
路である。このHi制御回跪100における101.1
02は加減績恥邪トシ、i 0311.L?+’+A度
差設足器、104d袖正化号作成器、105は予祠信号
作成器、106は加算v:’;s  107.108は
加該演界器、109,110は調坤播である。 史に、第3図は第2図の予測侶号作成器105の内部ブ
ロック図を示したもので、111は仙正′11.力発生
器、112は微分器、113は最J!、l流鼠発生器、
114は弁開度信号発生器である。 以上の構成で、演算器101は取水口温度検出器11で
検出した取水D tA Ii T 1  と排水口if
、1冒及検出器12で検出した排水口温度T2とを入力
し、その温度差ΔTaを出力する。補正イ5@作成器】
04はその実際の温度差ΔTaと温度差設定111↓Δ
Tsとの偏差εTを人力し、循環水流jIi調1珀弁開
度補正値13V、を出力するが、ハンチングを避けるた
め不感帝を有し、偏デとεTか予め定められたjl++
l ljuを越えたときにDtj環水流蚤調節弁1ji
′1度補正値BY+ffi出力する。 一方、予jlJ信号作成部105は電力検出器13で検
出した発電様有効電力GOと演算器101よシ出力され
る温度差ΔTaとを入力し、復水器6を流れる冷却水θ
II、titが必要十分な量となるような循環水流量調
節弁開度予測値BV2f:算出し、加q、器1υ6へ出
力する。 JテIJぢ、復水器6て行なわれる父換熱狙は、蒸気タ
ービンから排気される蒸気温度が一定のだめ、蒸気流斌
に比例し、また、この蒸気流血は発電様有効電力Gに比
例する。従って、温度差ΔTaを所定範囲に納めるに必
要な冷却水流量Qは発′1に機有効電力Gに関係し、第
4図に示す関数から求まる。 一方、循環水流社調節弁3A13Bから復水器6までの
管路のむだ時間をL秒とすると、現在復水器6を流れる
冷却水はL秒F+f、Iに循環水流i+1−調廟弁3A
、3Bを通過しプこ冷却水流−ハ−1である。1.・し
って、世、イ」、からl、秒イ々の発′屯11(3; 
4.19jJ ′+i4.力らI、イC1側上、石I“
41Z1の151係からメ寸1.L、−jる(1)六1
j水ンカ1甲Q、、夜・J・め・1111以ってvrI
i、!ii水DiC,rt 1dol Dl’lブ1ゝ
3A、3++のし11展を調j’iu L、ζ′11人
11水?If、二”jri: 0+、をi%i、ずよう
にすれ6.−1. % 1ふ一水七t6に76に7p4
必冷却水流j1;をθ11.すことができ、8目11’
r+のむだ時間をキャンセルすることかでさる。 このため、予測113刊作成4’iB 105の佃正′
1シリカ元生器111は、先ず、甲、力恢出器13よシ
発’4 ’tバ有幼′屯力COを入力し、下BL: (
1)八G・(よりシれ市11幾イ1効′屯力GLを/4
.lI−出1゛る。 GL−ΔGoX L 十G(1〔% J   ・−−・
−(]Jここで、ΔGoil″i発゛〜、依イタ′幼′
11を力Ge+の〕゛1′イ加率でりシ、時刻T、(+
cおける梶′眠俵有劫′屯力G T >と時刻T2にお
ける元′亀(級翁効′「1b力GT2よシ、GT、、−
G7[’1 ΔGo ””    T2−’1.1    C%A少
〕    −=−Azノによ#)請出することができる
。まグζ、このbii 3+−はマイクロッ0ロセソサ
を使用したデノタル市IJ 1iillシステムにおい
ては容易に実施することが司ijヒでめる。 更に、予?1IIJ最適冷却水誠すij:QLのf7j
度を上けるため、微分器1121一温度走ΔTa愛威分
し、有効11℃力相描K(lす6した値ΔGヶ補正電力
発生器111に入力する。油正厖力発生器111はこの
1[〔[Δ(Iを先に演録したGr、に加算して、 GL’=GL+ΔG      ・・・・・・・・・(
3シを出力する。最適υIt、 j(7発生器113は
その出力Gl刀・ら第4図に示したml!、1数関係を
基に最適冷却水vij ′MQ r、をシ:7出する。 丈に、弁1度1h号発止ン::曇114はこの最適冷却
水流M Qjから循城水θIL句、W1ΔJ4j弁開度
予4(1]値BV2を求め加31器6へ出力する。 屈1算器l 06はこのrrf環水θ)L鉦調節弁Vi
J度予測値BV2と補正信号作成部104の出力で必る
循環水流策′FA節弁[jiq度補正補正値UV入力し
、循城水流Bt調柚]弁囲度指令イ1な13V3を演算
器】07および1、08に出力する。演J1器107は
循環水流量調節弁1ノi′1夏指令値13V3と開度検
出器14Aで検出した循環水流i0■i:i弁開度BV
a1とを入力し、偏差BVε1を出力する。演算器10
8は南環水流h
[Office work (11j or more l shift, extra) 4, I changed the electricity to the thorns and the problems. [Object of the invention] The present invention eliminates the above conventional technique 11i7;
Use of circulating water pump by reducing fii '1lii yarn flow 1ljj I output!
11. The purpose is to reduce power consumption and provide a relatively small condenser with water humidity and temperature control for the conversion of ships. [Summary of the 13th Akira] Konodame, Honushiri' is the first book published from the condenser to the water outlet.
. In order to eliminate Odori no Muta ll4j IVJJ, : rt in the lb water tank: (Cooling water sucked into the father exchange / 1 < Preparation of escape amount is insufficient) ft-re 1, mutually, with the water intake 1) Temperature difference F of 1 water outlet
By using it to compensate when the cooling water is disconnected, the cooling water bonder is added with 1 HI, which is used for the circulating water bonder, and the temperature difference between the entrance and exit of the cooling water is controlled to a constant (111). [An evening of invention!, JM example] The present invention will be explained below with reference to the embodiment shown in Figure if+j. -Ability [Related to 11 cases・2 water fi+2 (+!i
Shows the cooling water system diagram of /C, and #I: is shown (r
ii: l: t1 to j are constructed from two lines A and B. Seawater Q at water intake 1 that becomes cooling water - Upper circulation J! Ij 7
Bump 2A, 2B and fit.
Benkai Ash 1iL4i %J 'fij Baillu 4A,,
Moti 1 where 4B Yosa 1 becomes 11 degrees h)ωWi+
3■ Effluent 6jGJ%j Proceed through the control valves 3A and 3B and enter the condenser water chamber 5A + 5B. Then, while the r1σ water moves in the direction indicated by the arrow of the cooling pipe group 'ff-actual condensation inside the condenser 6, it exchanges heat with the gas discharged from the cooling pipe 7. To return the fever/warm sea water d2, then turn on the ice maker outlet valve 8A. Published in Izuguchi 10 through 8B. Here, the condenser outlet valves 8A and 8B are 0N10FF valves operated by IH9.
A. 9B makes it fully open or fully closed. The temperature required to control the water intake temperature is detected by the water intake 11 installed near the water intake, and the protruding device 1 installed near the water intake. Warts are detected by the temperature detector 12 installed near the paper. Figure 2 shows the circulating water vIL bj'H;L'
1]j/1+valve 3A, 3]1 by controlling the opening degree of 1171J and cooling water γ7ifii]i flowing into the condenser for u, 1, the temperature can be kept at a constant [j(・1] This is a block diagram of the drainage temperature i1i!I control device 1・C to be stored in 14. In the figure, the same numerals as in the valley 1.1 figure indicate the same 111S,
Historically, 13 has a force detector in '1, 14 A, 14 B
&:j, 1 degree detector, 100 is 1lilJ control circuit. 101.1 in this Hi control rotation 100
02 is the addition and subtraction of shame, i 0311. L? +'+A degree difference foot device, 104d sleeve correction signal generator, 105 is pre-shrine signal generator, 106 is addition v:';s 107.108 is addition stage device, 109, 110 is control signal generator It is. 3 shows an internal block diagram of the predictive name generator 105 shown in FIG. 2, and 111 is Sensho'11. Force generator, 112 is differentiator, 113 is maximum J! , l-stream rat generator,
114 is a valve opening signal generator. With the above configuration, the calculator 101 calculates the intake water D tA Ii T 1 detected by the water intake temperature detector 11 and the drain if
, and the drain outlet temperature T2 detected by the leakage detector 12, and output the temperature difference ΔTa. Correction I5 @Creator]
04 is the actual temperature difference ΔTa and temperature difference setting 111↓Δ
The deviation εT from Ts is manually calculated and a circulating water flow jIi adjustment 1 valve opening correction value of 13V is output, but in order to avoid hunting, there is an insensitivity, and the deviation and εT are predetermined jl++
Dtj ring water flow control valve 1ji when exceeding lju
'1 degree correction value BY+ffi is output. On the other hand, the pre-jlJ signal generation unit 105 inputs the power generation active power GO detected by the power detector 13 and the temperature difference ΔTa output from the arithmetic unit 101, and calculates the cooling water θ flowing through the condenser 6.
A predicted value BV2f of the opening degree of the circulating water flow rate control valve such that II and tit are necessary and sufficient amounts is calculated and output to the adder 1υ6. The purpose of heat exchange performed in the condenser 6 is that the steam temperature exhausted from the steam turbine is constant, so it is proportional to the steam flow, and this steam blood flow is proportional to the active power G for power generation. do. Therefore, the cooling water flow rate Q required to keep the temperature difference ΔTa within a predetermined range is first related to the machine active power G, and can be determined from the function shown in FIG. On the other hand, if the dead time of the pipe from the circulating water flow control valve 3A13B to the condenser 6 is L seconds, the cooling water currently flowing through the condenser 6 is L seconds F + f, I is the circulating water flow i + 1 - control valve 3A.
, 3B, the cooling water flow is 1. 1.・Shitte, world, i'', from l, second i, 11 (3;
4.19jJ'+i4. Power I, I C1 side top, Stone I"
Me size 1 from 41Z1 151 section. L, -jru(1)61
j Mizukanka 1A Q,, Night J Me 1111 vrI
i,! ii water DiC, rt 1dol Dl'lbu 1ゝ3A, 3++ Noshi 11 exhibition j'iu L, ζ'11 people 11 water? If, 2" jri: 0+, i%i, zuyou ni suru 6.-1. % 1 fu one water seven t6 to 76 to 7 p4
The necessary cooling water flow j1; is set as θ11. 8th 11'
The solution is to cancel the dead time of r+. For this reason, prediction 113 publication 4'iB 105's Tsukuda Masa'
1. The silica generator 111 first inputs the force CO from the force generator 13, and lower BL: (
1) 8G・(more than 11 km) 1 effect'ton force GL /4
.. lI-exit 1. GL-ΔGoX L 10G (1[% J ・---・
-(]JHere, ΔGoil''i starts ~, ita'yo'
11 is the addition rate of force Ge+゛1', time T, (+
At time T2, Kaji'minutaura has kal'ton force GT > and former 'kame (class old man effect') at time T2 '1b force GT2, GT, -
G7['1 ΔGo ``''T2-'1.1 C%A low] -=-Azノ ノ #) can be requested. Magζ, this bii 3+- can be easily implemented in the Denotal city IJ 1iill system using the Microc0 processor. Furthermore, predictions? 1IIJ optimal cooling water Makoto ij: QL f7j
In order to increase the temperature, the differentiator 1121 is divided by the temperature travel ΔTa, and the effective 11°C force plot K (1 + 6 is input to the corrected value ΔG to the power generator 111. Add this 1[[Δ(I to Gr recorded earlier, GL'=GL+ΔG......
Output 3shi. Optimal υIt, j (7) The generator 113 outputs the optimum cooling water vij 'MQ r, based on the output Gl ml!, 1 number relationship shown in FIG. 1 degree 1h start time:: The cloud 114 calculates the circulating water θIL clause, W1ΔJ4j valve opening predetermined value 4(1) value BV2 from this optimum cooling water flow MQj, and outputs it to the adder 31 6. l 06 is this rrf ring water θ)L control valve Vi
Calculate 13V3 for circulating water flow plan required by J degree prediction value BV2 and the output of correction signal creation unit 104 [JIQ degree correction correction value UV input, circulating water flow Bt adjustment] output to 07, 1, and 08. Performance J1 device 107 is the circulating water flow rate control valve 1 no i'1 summer command value 13V3 and the circulating water flow i0i detected by the opening detector 14A: i valve opening BV
a1 is input, and the deviation BVε1 is output. Arithmetic unit 10
8 is the south ring water stream h

【びj 17i)弁しい度指令値BV3
と開度検出器1.4 Bで検出しだ循環水流量ij!l
’J節弁開度IVa2と’4(−入力し・11i:i 
)臂13Vε2を出力づる。1i17N如器10!)ケ
;土・l1ui jX、:: 13Vε】を人力し、H
Vεlが苓になるように弁1jiJIDj 1iLlJ
 1’14jTl+、!II!14’+5(4Aを、I
L(ぺ動する18号を混生し、1(vεlかイアに、t
J:る寸で駆動48号を発生し続ける。Fl’r!1節
器11.0はI!Ilj >X二B■ε2を入力し、B
■ξ2が寄になるよりに弁1]「1度υ4j’ilj 
’Ifi= !jj l戊4 A fノy4 BjJl
する(、i 月f ’JG生し、BVε27,7i ;
+了になるまでス嘔動イB号を発生しj跣りる0)1川
31」度i’7J 1.!i市。、di17伏+4Aは
調j11)会109の出力であるノ轟ルbイ1.1−弓
v0よシ虎環水ぴL用、調節弁3Aを壓)j’!uL、
これにょ9循環水流ji 1i111J 〕□f’+弁
3 A ’q pii:ノしる?Z却水rノi*、坦が
’+1j14111 aれる。弁1ji4 度1JAI
 fJili % !+の11i24Bはil・la 
a G l 10の出力である駆動(、F号によシpt
f繰水流M(tsLn j’4j弁3 B ’r: +
# II)し、これによシ循塚水vic :bj 8+
S mi 弁3 Bを成れる伶却水居り菫が1lilJ
 :1illされる。 このように、排水口温度上昇原因となるタービン排気蒸
′A流量の増加ll」ち発電様有効電力の」・a加全嘗
′路のむだ時間り秒前に予Jlll L、対比・する冷
屓J水流1Lを前照って増加することにょシ、1ijl
J イal系のむだ時間の影響を/卦さくし、餡に必要
最少41(の句却水流蚤の供給で排水する冷却水の温度
差を所定の範囲に納めることかでき、(Ji’i 3.
!ド水ポンプをハ(に動する’ii1’、力を犬1唱に
fJfj約することかできる。 尚、上配爽施例では、補正情号作成器]、 04、予測
信号作成器105の出力および演コシ−(器107゜1
08の入力として循流水流景調jvlj弁開吸化号金用
いたか、この代シに冷却水υ1i)lii情号を用いて
処理することもできる。丑だ、発′F札機有効電力の代
シにタービン主蒸気流−貴11号を用いてもよい。史に
、冷却水流かのn・’1rlJ’< 升IjiJ度tJ
’d 11) ’fir、 1ilJ (’ji 4 
A +4B、(+白パえ水流jt4’、 ti’勺加弁
3A、3Bで行なう代シに流ガt−1°Aσ1i伝能を
持った可動翼循環ボンフ0を使用することによっても実
施できることは勿論のことである。 〔発明の効果〕 以上のように本づ(′、明によれは、1lill 1j
41系の11−これ時間およびむだ時間の影臀を考應し
、冷却水流量が最通θ1し一一となるような予測信号を
ωin−によシ得て、温反変化が生じる前に制水温度j
ii制御を行なうため、連応性、A’tli度に後れ、
また、循城水、12ンプの消費′1a力を節約し、むプ
とのろ:いKm水器の排水温度11□1自illを行な
うことかで庁るよりにン:Cる。
[Bj 17i) Validity command value BV3
and opening detector 1.4 B detects the circulating water flow rate ij! l
'J section valve opening IVa2 and '4 (- input ・11i:i
) Outputs the arm 13Vε2. 1i17N like 10! )ke; Sat・l1ui jX, :: 13Vε] manually, H
Valve 1jiJIDj 1iLlJ so that Vεl becomes lily
1'14jTl+,! II! 14'+5 (4A, I
L (mixed No. 18 to move, 1 (vεl or ia, t
J: Continue to generate drive No. 48 at the same time. Fl'r! 1 verse 11.0 is I! Input Ilj >X2B■ε2, B
■As ξ2 approaches, valve 1] "1 degree υ4j'ilj
'Ifi=! jj l戊4 A fノy4 BjJl
(, i month f 'JG born, BVε27,7i;
0) 1 river 31" degree i'7J 1. ! i city. , di17 down + 4A is the output of the control valve 3A for the control valve 3A, which is the output of the test j11) meeting 109. uL,
Korenyo 9 circulating water flow ji 1i111J]□f'+valve 3 A'q pii: Noshiru? Z water r no i *, tan is '+1j14111 a. Valve 1ji4 degree 1JAI
fJili%! +11i24B is il・la
a G l The drive which is the output of 10 (, shipped by F
f Rewater flow M (tsLn j'4j valve 3 B'r: +
# II) And this is the reason why the water vic: bj 8+
S mi valve 3 B is 1lilJ
:1 ill. In this way, an increase in the flow rate of turbine exhaust steam, which causes an increase in the temperature at the drain outlet, and a reduction in the dead time of the active power for power generation, compared to the cooling The water flow will increase in advance of 1L, 1ijl
It is possible to reduce the influence of the dead time of the J ial system and keep the temperature difference of the cooling water drained within a predetermined range by supplying the minimum amount of water flow fleas required for the bean paste. ..
! When the water pump is moved to 'ii1', the force can be reduced to one dog chant. In addition, in the above example, the correction information generator] Output and performance (vessel 107゜1
The circulating water flow rate jvlj valve opening signal is used as the input for 08, or the cooling water υ1i)lii information may be used in its place. However, the turbine main steam flow may be used instead of the active power of the F-fail machine. Historically, the cooling water flow n・'1rlJ'< 升IjiJdegreetJ
'd 11) 'fir, 1ilJ ('ji 4
A + 4B, (+ white powder water flow jt4', ti' addition valve 3A, 3B) This can also be carried out by using a movable blade circulation bomb 0 with a flow rate of t-1°Aσ1i transmission. [Effect of the invention] As mentioned above, the book (', according to Akira, 1lill 1j
11 of the 41 system - Considering the effects of this time and dead time, obtain a prediction signal using ωin- that will make the cooling water flow rate θ1 and 11, and before a change in temperature and reaction occurs. Water control temperature
In order to perform ii control, there is a delay in coordination, A'tli degree,
In addition, circulating water can be used to save 12 liters of power, and the drain temperature of the water dispenser can be reduced to 11 □ 1 liters.

【図面の簡単な説明】[Brief explanation of the drawing]

第11′、J、Iは本発明の一実施例に係る銀水装j1
.の?1)却水系統[′;〈]、ff’; 21g]は
第1図の排水+7、+i J足?ii!I (if 5
 直の打Y成図、第3図は第2図の予71i1伯号作成
器のイア1成図、第4図は光′1’L’J ’l>’−
”!イコ効屯力とJ1之)灼イ令却水UIシ、i3iの
関係図である。 1・・・取水口、2 A 、 213・・・衛廃水、J
5ンプ、3 A 13B・・・1ノ11環水υf j、
lf’ li1旧゛4」弁、4A、4B・・・弁開j距
ii’・1節電XUIJ 4;め、5 A r 5 B
・・・復水器水室、6・・・復水器、7・・・然気ター
ビン、、1(A、8B・・復水益田L1弁、9 A 、
 9 B =4#作器、10−・・排水[」、11・・
取水口温度検出器、12・・・v1゛水口温度恢出器、
13・・・電力検出器、14A、14B・・・開度7:
、、)出器、100・・・制御回路、101,102,
107,108・・加減演算器、103・・・温度差設
定器、104・・・桶正信号作成器、105・・・予d
ll信号作成器、106・・・加昇器、109,110
・・・al’A j11j器、111・・・補正’i1
i、力発生器、112・・・微分器、113・・・ル通
流垣発生器、114・・・弁開度信号発生器。 代理人 弁理士 紋 1)  誠 電、 妬7図 二
No. 11', J, and I are silver water devices j1 according to an embodiment of the present invention.
.. of? 1) The drainage system [';〈], ff'; 21g] is the drainage +7, +i J foot in Figure 1? ii! I (if 5
Figure 3 is the Ia 1 composition diagram of the 71i1 Hakugo generator shown in Figure 2, and Figure 4 is the Hikari '1'L'J 'l>'-
``!This is a relationship diagram between the effective force and J1) Burning water UI, i3i. 1... Water intake, 2 A, 213... Sanitary and waste water, J
5 pump, 3 A 13B...1 no 11 ring water υf j,
lf' li1 Old '4' valve, 4A, 4B...Valve opening j distance ii' 1 Power saving XUIJ 4; Me, 5 A r 5 B
... Condenser water chamber, 6... Condenser, 7... Natural air turbine, 1 (A, 8B... Condensate Masuda L1 valve, 9 A,
9 B = 4# production equipment, 10-... drainage ['', 11...
Water intake temperature detector, 12...v1゛water intake temperature calculator,
13...Power detector, 14A, 14B...Opening degree 7:
,,) output device, 100... control circuit, 101, 102,
107, 108...Addition/subtraction calculator, 103...Temperature difference setting device, 104...Pail positive signal generator, 105...Pre-d
ll signal generator, 106... booster, 109, 110
...al'A j11j device, 111...correction'i1
i, force generator, 112...differentiator, 113...le flow fence generator, 114...valve opening degree signal generator; Agent Patent Attorney Crest 1) Seiden, Envy 7 Figure 2

Claims (1)

【特許請求の範囲】 (])  復水器に流す冷却水流量を調節することによ
シ復水器の排水温度を制御する装置において、冷却水の
取水口温度検出信号とJj+・水口温度検出信号とを入
力し、その温度差を算出する演算手段と、前記温度差と
発電機電力もしくは復水器蒸気流量とを入力し、イl水
器におけるpjA父換に要する冷却水の最適流量を予i
+す出力する予′611]信号作成手段と、前記温度差
がハf定範囲を越えたとき補正信号を出力する補正信号
作成手段とを具備し、前記予測信号作成手段と補正信号
作成手段との出力和に応じて前記冷却水流量を調簀1′
ノすることを9徴とする復水器の排水温度制御装置。 (2)ir!i=許請求の範囲第1項記載において、前
記予測信号作成手段は、前記発電機電力もしくは復水器
蒸気流量を入力し、制御系のむだ時間に相当する時間だ
け先の発電機電力もしくは復水器蒸気流量を予測演3’
> した値を更に前t112温度1″己の倣’tJ11
:’+で補正する手段と、この補正出力にメ」応する→
〉l別器然気流量と熱交換するに必要な冷ム1j水の最
適I′Jii、量全舞出する関数元生手段とを・共1f
tiすることを9.r徴とする復水器の排水温度1li
lJ ’l’fll装fi′1:。
[Claims] (]) In a device for controlling the temperature of the drain water of a condenser by adjusting the flow rate of cooling water flowing into the condenser, there is provided a cooling water intake temperature detection signal and a Jj+ water inlet temperature detection signal. a calculation means that inputs a signal and calculates the temperature difference, and inputs the temperature difference and the generator power or condenser steam flow rate, and calculates the optimum flow rate of cooling water required for PJA father exchange in the water heater. Preliminary i
and a correction signal generation means for outputting a correction signal when the temperature difference exceeds a predetermined range, the predicted signal generation means and the correction signal generation means; Adjust the cooling water flow rate according to the output sum of 1'
A condenser wastewater temperature control device that has nine characteristics: (2)ir! i = Scope of Claims In the first aspect of the invention, the prediction signal generating means inputs the generator power or the condenser steam flow rate, and calculates the generator power or the condenser steam flow rate ahead by a time corresponding to the dead time of the control system. Predicting water vapor flow rate 3'
> The value was further imitated by the previous t112 temperature 1'''tJ11
:Means for correcting with + and corresponding to this correction output→
〉L Optimum I'Jii of the cold water required for heat exchange with the separate air flow rate, and the function generation means that generates the entire amount.
9. Condenser drainage temperature 1li with r sign
lJ 'l'flll installation fi'1:.
JP15669082A 1982-09-10 1982-09-10 Drain temperature control device for condenser Granted JPS5946483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15669082A JPS5946483A (en) 1982-09-10 1982-09-10 Drain temperature control device for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15669082A JPS5946483A (en) 1982-09-10 1982-09-10 Drain temperature control device for condenser

Publications (2)

Publication Number Publication Date
JPS5946483A true JPS5946483A (en) 1984-03-15
JPS6250756B2 JPS6250756B2 (en) 1987-10-27

Family

ID=15633195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15669082A Granted JPS5946483A (en) 1982-09-10 1982-09-10 Drain temperature control device for condenser

Country Status (1)

Country Link
JP (1) JPS5946483A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632041B1 (en) * 2013-05-22 2014-11-26 中国電力株式会社 Power plant

Also Published As

Publication number Publication date
JPS6250756B2 (en) 1987-10-27

Similar Documents

Publication Publication Date Title
JPS5946483A (en) Drain temperature control device for condenser
JPH05222906A (en) Controller for power plant utilizing exhaust heat
CN103726892B (en) A kind of turbine circulation water residual heat using device
US3947319A (en) Nuclear reactor plants and control systems therefor
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
CN212511787U (en) Novel air heater system
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JP2002277053A (en) Hot-water recovery control device for co-generation system
JPS61145305A (en) Control device for turbine plant using hot water
CN115507357B (en) Water replenishing system of recoverer of boiler and water level control method and device thereof
JPS591987A (en) Steam condensing device in power plant
JPS6112195B2 (en)
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
JPS5842779Y2 (en) Control device for condensate system in nuclear power generation equipment
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
JPS5953470B2 (en) Condenser wastewater temperature control device
JP2585406B2 (en) Condenser deaerator
JPH0633730B2 (en) Control device for waste heat utilization system
JP2567013B2 (en) Exhaust heat utilization system
JPS58216773A (en) Coupling plant for nuclear power installation and sea water desalting device
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS61118508A (en) Control device for recirculating flow of feed pump
JPS5855322B2 (en) Power plant cooling water drainage temperature control device
JPH0476388A (en) Controller for vacuum in condenser
JPS5559884A (en) Operating method for water manufacture with solor energy collector