JPS5842779Y2 - Control device for condensate system in nuclear power generation equipment - Google Patents

Control device for condensate system in nuclear power generation equipment

Info

Publication number
JPS5842779Y2
JPS5842779Y2 JP17326879U JP17326879U JPS5842779Y2 JP S5842779 Y2 JPS5842779 Y2 JP S5842779Y2 JP 17326879 U JP17326879 U JP 17326879U JP 17326879 U JP17326879 U JP 17326879U JP S5842779 Y2 JPS5842779 Y2 JP S5842779Y2
Authority
JP
Japan
Prior art keywords
condensate
flow rate
water level
condenser
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17326879U
Other languages
Japanese (ja)
Other versions
JPS5693676U (en
Inventor
晃 高橋
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP17326879U priority Critical patent/JPS5842779Y2/en
Publication of JPS5693676U publication Critical patent/JPS5693676U/ja
Application granted granted Critical
Publication of JPS5842779Y2 publication Critical patent/JPS5842779Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【考案の詳細な説明】 本考案は原子力発電設備における復水系統の制御装置に
関する。
[Detailed Description of the Invention] The present invention relates to a control device for a condensate system in a nuclear power generation facility.

一般に復水系統は、主タービンの排気蒸気を、復水器で
凝縮し、復水として給水系統を経て、原子炉に送水する
系統であり、ここでいうところの復水系統とは、特に復
水系統の復水浄化系の運転が、プラント出力および運転
状況と関係なく、常に一定流量運転することを特徴とし
ている系統である。
In general, a condensation system condenses exhaust steam from the main turbine in a condenser and sends water as condensate to the nuclear reactor via the water supply system. This system is characterized in that the condensate purification system of the water system always operates at a constant flow rate regardless of the plant output and operating conditions.

この浄化系とは、第1図に示すように、排気蒸気を凝縮
、冷却して復水とする復水器1の下流に、復水を昇圧す
る復水濾過ポンプ2、復水濾過装置3および復水脱塩装
置4を直列に配設し、前記復水脱塩装置4に連結して、
空気抽出器中間冷却器5とグランド蒸気復水器6が並列
に配設されており、上記空気抽出器中間冷却器5および
グランド蒸気復水器6の出口ちて再び合流し、復水管路
7を形成し、その復水管路7に連結して、復水器1に通
ずる再循環管路8を形成している。
As shown in Fig. 1, this purification system consists of a condenser 1 that condenses and cools exhaust steam to form condensate, a condensate filtration pump 2 that increases the pressure of condensate, and a condensate filtration device 3. and a condensate desalination device 4 are arranged in series and connected to the condensate desalination device 4,
The air extractor intercooler 5 and the gland steam condenser 6 are arranged in parallel, and the air extractor intercooler 5 and the gland steam condenser 6 join together again at the outlet and form a condensate pipe 7. is connected to the condensate pipe 7 to form a recirculation pipe 8 leading to the condenser 1.

また上記復水管路7の後流には、復水ポンプ9が配設さ
れており、その吐出側の給水管路10を介して、原子炉
11に連結している。
Further, a condensate pump 9 is disposed downstream of the condensate pipe 7, and is connected to a nuclear reactor 11 via a water supply pipe 10 on its discharge side.

しかして、復水器1で凝縮した蒸気および給水加熱器ド
レン等は、一緒に集められ、復水器1内で必要な放射能
減衰時間を持った後、復水濾過ポンプ2により昇圧され
て、復水浄化系に送水され、復水濾過装置3および復水
脱塩装置4によって、清浄な復水となり、更に空気抽出
器中間冷却器5とグランド蒸気復水器6とにより、熱交
換をした後に復水ポンプ9の吸込みへ送水されるのだが
、前述したように、本系統はプラント出力および運転状
況と関係なく、常に一定流量運転のため、復水器1への
再循環管路8が設置されている。
Therefore, the steam condensed in the condenser 1 and the feed water heater drain etc. are collected together, and after the necessary radioactivity decay time in the condenser 1, the pressure is increased by the condensate filtration pump 2. The water is sent to the condensate purification system, and becomes clean condensate through the condensate filtration device 3 and the condensate desalination device 4, and then undergoes heat exchange through the air extractor intercooler 5 and the grand steam condenser 6. After that, the water is sent to the suction of the condensate pump 9, but as mentioned above, this system always operates at a constant flow rate regardless of the plant output and operating conditions, so the recirculation pipe 8 to the condenser 1 is is installed.

しがし本系統を独立させるためには、単に復水器1への
再循環管路8のみでは種々の問題が発生する。
However, in order to make the main system independent, simply providing the recirculation line 8 to the condenser 1 causes various problems.

すなわち、本系統の再循環管路8を使用して復水器1へ
流すとペーパーを発生する。
That is, when the recirculation pipe 8 of this system is used to flow the water to the condenser 1, paper is generated.

本系統内の差圧変化が吸収できない。Changes in differential pressure within this system cannot be absorbed.

原子炉最大給水要求への瞬時的対処ができない。It is not possible to instantaneously respond to the reactor's maximum water supply demand.

或いは復水濾過ポンプ2の1台がトリップした場合の原
子炉給水系への瞬時的対処ができない。
Alternatively, if one of the condensate filtration pumps 2 trips, it is not possible to take immediate action on the reactor water supply system.

更に起動中の復水濾過ポンプ2がランアウトする。Furthermore, the condensate filtration pump 2 that is being started runs out.

第2図は上記問題点対策の概略を示したもので、第1図
と同一部分については、同一符号を付して説明を省略す
る。
FIG. 2 shows an outline of a solution to the above problem, and the same parts as those in FIG. 1 are given the same reference numerals and the explanation thereof will be omitted.

再循環管路8に連結する中間貯槽12を設置し、その中
間貯槽12の制御系として、水位検出器13と水位調節
計14および水位調節弁15を再循環管路上に設置して
いる。
An intermediate storage tank 12 connected to the recirculation pipe 8 is installed, and as a control system for the intermediate storage tank 12, a water level detector 13, a water level controller 14, and a water level control valve 15 are installed on the recirculation pipe.

しかして、この中間貯槽12の制御は、一般的に水位検
出器13と水位調節計14および水位調節弁15とによ
り、水位制御が行なわれる。
The intermediate storage tank 12 is generally controlled by a water level detector 13, a water level regulator 14, and a water level control valve 15.

しがし前述したように、原子炉側よりの給水要求や、復
水濾過ポンプ2の1台トリップによる流量変化が発生し
た場合、水位制御方式では、流量変化が中間貯槽12の
水位変化に表われ、その後、系統の制御をするため、原
子炉給水系への流量変動が発生する。
However, as mentioned above, when a flow rate change occurs due to a water supply request from the reactor side or a trip of one of the condensate filtration pumps 2, the water level control method does not reflect the flow rate change in the water level change in the intermediate storage tank 12. Then, in order to control the system, fluctuations in the flow rate to the reactor water supply system occur.

また給水系統側で流量が変化した場合、例えば、復水ポ
ンプ9.2台運転中1台トリップし、予備機が自動起動
しない場合、本給水系はプラント運転がら独立であるた
め、流量の過不足骨は中間貯槽12の水位変化として表
われる。
In addition, if the flow rate changes in the water supply system, for example, if one of the two condensate pumps in operation trips and the standby pump does not start automatically, the main water supply system is independent of plant operation, so the flow rate will be exceeded. The missing bone appears as a change in the water level in the intermediate storage tank 12.

この水位変化を水位検出器13によって検出し、水位変
化信号を発し、水位調節計14を介して、水位調節弁1
5を動作させ、復水器1への流量過不足分を排出し、中
間貯槽12の流量を確保するのであるが、流量の変化が
中間貯槽12の水位変化として表われ、水位調節弁15
の開閉動作につながるまで、10秒以上の時間を必要と
し、この時間分だけ復水を余分にオーバーフローさせ、
この結果として中間貯槽12の水位は上下させられるこ
とになる。
This water level change is detected by the water level detector 13 and a water level change signal is sent to the water level control valve 1 via the water level controller 14.
5 is operated to discharge the excess or deficiency of the flow rate to the condenser 1 and ensure the flow rate of the intermediate storage tank 12. However, the change in flow rate appears as a change in the water level of the intermediate storage tank 12, and the water level control valve 15
It takes more than 10 seconds for the opening/closing operation to occur, and the condensate is allowed to overflow for this amount of time.
As a result, the water level in the intermediate storage tank 12 will be raised or lowered.

例えば、水位が上昇した場合は、中間貯槽12内が満水
になり、水位が降下した場合には、系統内でペーパーを
発生する。
For example, when the water level rises, the intermediate storage tank 12 becomes full of water, and when the water level falls, paper is generated within the system.

本考案は上記した点に鑑みてなされたもので、原子力発
電設備における復水系統の制御装置において、復水系側
で流量変動が生じた場合の給水系への流量変動を防止し
、また給水系側で流量が変化した場合の、中間貯槽の水
位変化がら制御動作完了までの間の復水オーバーフロー
をなくし、また中間貯槽の水位上下による中間貯槽の満
水、あるいは復水系統内でのペーパー発生を排除する等
の、優れた復水系統の制御装置を提供することを目的と
する。
The present invention was developed in view of the above points, and is a control device for a condensate system in a nuclear power generation facility, which prevents fluctuations in flow rate to the water supply system when flow fluctuations occur on the condensate system side, and Eliminates condensate overflow from the time the water level changes in the intermediate storage tank until the control operation is completed when the flow rate changes on the side, and also prevents the intermediate storage tank from becoming full due to the rise and fall of the water level in the intermediate storage tank, or the generation of paper in the condensate system. The purpose of the present invention is to provide an excellent control device for condensate systems.

以下添付第3図を参照して、本考案の一実施例について
説明する。
An embodiment of the present invention will be described below with reference to the attached FIG. 3.

尚第1図および゛第2図と同一部分については、同一符
号を付して説明を省略する。
Note that the same parts as in FIGS. 1 and 2 are designated by the same reference numerals, and the explanation thereof will be omitted.

復水管路7上および給水管路10上に、それぞれの流量
を検出する、復水流量検出器16および給水流量検出器
17を配設し、上記両流量検出器によって検出した流量
信号によって、両管路流量のバランス状態を検出する偏
差演算器18を設置しており、その偏差演算器18から
伝送される偏差信号と水位調節計14からの出力信号と
によって再循環管路8上に設置した水位調節弁15から
なる流量調整機構に動作指示信号を伝送する加算演算器
19を設置している。
A condensate flow rate detector 16 and a feed water flow rate detector 17 are disposed on the condensate pipe line 7 and the water supply line 10 to detect the respective flow rates, and the flow rate signals detected by both flow rate detectors are used to detect both flow rates. A deviation calculator 18 is installed to detect the balanced state of the pipe flow rate, and a deviation signal transmitted from the deviation calculator 18 and an output signal from the water level controller 14 are used to detect the balance state of the flow rate in the recirculation pipe 8. An addition calculator 19 is installed to transmit an operation instruction signal to a flow rate adjustment mechanism consisting of a water level adjustment valve 15.

しかして、復水管路7の流量を復水流量検出器16で検
出し、原子炉給水管路10の流量を、給水流量検出器1
7で検出して伝送される、側流量信号によって、両管路
のバランス状態を偏差演算器18で検出し、復水流量と
給水流量に偏差が出た場合には、その偏差を加算演算器
19に伝送する。
Therefore, the flow rate of the condensate pipe 7 is detected by the condensate flow rate detector 16, and the flow rate of the reactor feed water pipe 10 is detected by the feed water flow rate detector 1.
The balance state of both pipes is detected by the deviation calculator 18 based on the side flow rate signal detected and transmitted by 7, and if there is a deviation between the condensate flow rate and the feed water flow rate, the deviation is added to the calculation unit 18. 19.

加算演算器19は、伝送されてきた偏差信号に水位調節
計14の出力信号を加え、水位調節弁15へ動作指示信
号を伝送する。
The addition calculator 19 adds the output signal of the water level regulator 14 to the transmitted deviation signal and transmits an operation instruction signal to the water level regulating valve 15.

これにより、復水器1への再循環管路8の流量を制御す
る。
This controls the flow rate in the recirculation line 8 to the condenser 1.

すなわち給水流量と復水流量のバランス状態を常時監視
して、バランスがくずれたら直ちに、水位調節弁15か
らなる流量調整機構を動作せしめ、給水流量と復水流量
の偏差がゼロとなるようにし、その後、水位の偏差分を
水位検出器13、水位調節計14により修正動作を加え
る制御装置である。
That is, the balance state between the water supply flow rate and the condensate flow rate is constantly monitored, and as soon as the balance is lost, the flow rate adjustment mechanism consisting of the water level control valve 15 is operated so that the deviation between the water supply flow rate and the condensate flow rate becomes zero, After that, the control device performs a corrective operation for the deviation of the water level using a water level detector 13 and a water level controller 14.

従って給水流量と復水流量とのアンバランスが生じても
、操作端である調節弁15の動作が、流量偏差ニ追従す
るため時間的遅れがない。
Therefore, even if an imbalance occurs between the water supply flow rate and the condensate flow rate, the operation of the control valve 15, which is the operating end, follows the flow rate deviation, so there is no time delay.

この時間的遅・れが単なる水位制御方式に比較して小さ
いため、復水系統、給水系統への外乱がなく、安定した
制御ができる制御装置である。
Since this time delay is smaller than that of a simple water level control method, this control device can perform stable control without causing any disturbance to the condensate system or water supply system.

変形例として、プラント負荷と復水流量とでバランス状
態を監視しても同様の効果が得られる。
As a modification, the same effect can be obtained by monitoring the balance state between the plant load and the condensate flow rate.

以上説明したように本考案によれば、給水流量と復水流
量とのバランス状態を常時監視し、バランスがくずれた
ら直ちに流量調整機構を動作せしめ、再循環管路の復水
器への流量を制御し、給水流量と復水流量の偏差をゼロ
とする制御装置を設置したことにより、給水流量と復水
流量とのアンバランスが生しても、流量偏差に追従して
流量調整機構を動作し、時間的遅れを生ぜず、復水系統
、給水系統への外乱がなく、安定な制御のできる原子力
発電設備における復水系統の制御装置を提供することが
できるという効果を奏する。
As explained above, according to the present invention, the balance between the water supply flow rate and the condensate flow rate is constantly monitored, and if the balance is lost, the flow rate adjustment mechanism is immediately activated to reduce the flow rate of the recirculation pipe to the condenser. By installing a control device that eliminates the deviation between the water supply flow rate and the condensate flow rate, even if an imbalance occurs between the water supply flow rate and the condensate flow rate, the flow rate adjustment mechanism can be operated to follow the flow rate deviation. However, it is possible to provide a control device for a condensate system in a nuclear power generation facility that can perform stable control without causing a time delay, without causing any disturbance to the condensate system or the water supply system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子力発電設備における一般的な復水系と給水
系の構成を示す系統図、第2図は同上図における従来の
復水系制御装置の構成説明図、第3図は本考案による一
実施例の復水制御装置の構成を示す説明図である。 1・・・・・・復水器、3・・・・・・復水濾過装置、
4・・・・・・復水脱塩装置、7・・・・・・復水管路
、8・・・・・・再循環管路、12・・・・・・中間貯
槽、13・・・・・・水位検出器、14・・・・・・水
位調節計、15・・・・・・水位調節弁、16・・・・
・・復水流量検出器、17・・・・・・給水流量検出器
、18・・・・・・偏差演算器、19・・・・・・加算
演算器。
Figure 1 is a system diagram showing the configuration of a general condensate system and water supply system in nuclear power generation equipment, Figure 2 is an explanatory diagram of the configuration of the conventional condensate system control device in the same figure, and Figure 3 is an implementation according to the present invention. FIG. 2 is an explanatory diagram showing the configuration of an example condensate control device. 1... Condenser, 3... Condensate filtration device,
4... Condensate desalination device, 7... Condensate pipe line, 8... Recirculation pipe line, 12... Intermediate storage tank, 13... ...Water level detector, 14...Water level controller, 15...Water level control valve, 16...
...Condensate flow rate detector, 17... Water supply flow rate detector, 18... Deviation calculator, 19... Addition calculator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 復水器・復水濾過装置、復水脱塩装置、空気抽出器中間
冷却器およびグランド蒸気復水器等によって復水浄化系
を形威し、復水管路に連結して復水器に通ずる再循環管
路上に、中間貯槽とその制御系として、水位検出器、水
位調節計および水位調節弁を有する復水系統において、
復水管路および給水管路上にそれぞれの流量を検出する
、復水流量検出器および給水流量検出器を配設し、その
検出流量信号によって、両管路流量のバランス状態を検
出する偏差演算器を設置し、前記偏差演算器がら伝送さ
れる偏差信号と、水位調節計がらの出力信号とによって
、流量調整機構に動作指示信号を与える加算演算器を設
置したことを特徴とする、原子力発電設備における復水
系統の制御装置。
A condensate purification system is formed by a condenser/condensate filtration device, a condensate desalination device, an air extractor intercooler, a grand steam condenser, etc., and is connected to a condensate pipe leading to the condenser. In a condensate system that has an intermediate storage tank and its control system, a water level detector, a water level controller, and a water level control valve on the recirculation pipe,
A condensate flow rate detector and a feed water flow rate detector are installed on the condensate pipe and water supply pipe to detect the respective flow rates, and a deviation calculator is installed to detect the balanced state of the flow rate of both pipes based on the detected flow rate signal. A nuclear power generation facility, characterized in that an addition calculator is installed and provides an operation instruction signal to a flow rate adjustment mechanism based on a deviation signal transmitted from the deviation calculator and an output signal from a water level controller. Condensate system control device.
JP17326879U 1979-12-14 1979-12-14 Control device for condensate system in nuclear power generation equipment Expired JPS5842779Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17326879U JPS5842779Y2 (en) 1979-12-14 1979-12-14 Control device for condensate system in nuclear power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17326879U JPS5842779Y2 (en) 1979-12-14 1979-12-14 Control device for condensate system in nuclear power generation equipment

Publications (2)

Publication Number Publication Date
JPS5693676U JPS5693676U (en) 1981-07-25
JPS5842779Y2 true JPS5842779Y2 (en) 1983-09-28

Family

ID=29684058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17326879U Expired JPS5842779Y2 (en) 1979-12-14 1979-12-14 Control device for condensate system in nuclear power generation equipment

Country Status (1)

Country Link
JP (1) JPS5842779Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726697B2 (en) * 1989-04-12 1998-03-11 株式会社日立製作所 Water supply equipment and water supply control method thereof

Also Published As

Publication number Publication date
JPS5693676U (en) 1981-07-25

Similar Documents

Publication Publication Date Title
JPS5842779Y2 (en) Control device for condensate system in nuclear power generation equipment
CN209605141U (en) A kind of direct current cooker image-stabilization FCS water charging system
JPS6145157B2 (en)
JP2523511B2 (en) Steam generator output controller
JPS6124679B2 (en)
JP3340866B2 (en) Hot water system facilities in nuclear power plants
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
JP3112579B2 (en) Pressure control device
JPS6211283Y2 (en)
JPS61118508A (en) Control device for recirculating flow of feed pump
JPS6017997B2 (en) Heat exchanger protection device
JP2523153B2 (en) Feed water heater Drain water level control device
JPS6234148Y2 (en)
JPS5818510A (en) Feed water temperature controller for hot-water power generation equipment
SU979835A1 (en) Apparatus for controlling steam turbine plant heater
JPS5851195B2 (en) condensate equipment
JPH0387502A (en) Device for controlling feedwater for waste heat recovery boiler
JPS6154122B2 (en)
JPS58129189A (en) Water level controlling device for head tank of condensate
JPH01162193A (en) Control of dissolved oxygen in feedwater heater drain
JPS5941559B2 (en) Steam condensation system during reactor isolation
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
JPS59110810A (en) Water level control device for steam turbine degasifier
JPS6298103A (en) Controller for dissolved oxygen
JPS6093205A (en) Method and device for controlling dry heater system of generating plant