JPS6154122B2 - - Google Patents
Info
- Publication number
- JPS6154122B2 JPS6154122B2 JP1722380A JP1722380A JPS6154122B2 JP S6154122 B2 JPS6154122 B2 JP S6154122B2 JP 1722380 A JP1722380 A JP 1722380A JP 1722380 A JP1722380 A JP 1722380A JP S6154122 B2 JPS6154122 B2 JP S6154122B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- deaerator
- steam
- water
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 72
- 238000000605 extraction Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000010248 power generation Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Physical Water Treatments (AREA)
- Degasification And Air Bubble Elimination (AREA)
Description
【発明の詳細な説明】
本発明は、蒸気発電プラントの脱気器の圧力制
御方法とその制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure control method and a control device for a deaerator in a steam power plant.
蒸気発電プラントの脱気器まわりの従来構成と
その運用法を第1図により説明する。蒸気発電プ
ラントにおける脱気器1は、蒸気タービン2から
逆止弁9を有する抽気蒸気配管8を経て抽気蒸気
が、また低圧給水加熱器3から復水配管10を経
て復水が、また高圧給水加熱器4からドレン配管
12を経てドレン水がそれぞれ流入する。このう
ち、タービン抽気蒸気の量は制御されず、蒸気タ
ービン2の抽気点圧力と脱気器1内圧力との差圧
により流れ、また高圧給水加熱器4からのドレン
水も高圧給水加熱器4内の圧力と脱気器1内圧力
との差圧により流れ込む。これに対し、復水配管
10を介する復水は、脱気器1に付帯した水位検
出器13からの水位信号に基づき、水位制御装置
14により復水流量調整弁15の開度を制御する
ことにより、その流量が調整され、脱気器1内の
水位が制御される。なお、5は復水器、6aは復
水ポンプ、6bはブースターポンプ、7は脱気器
内保有水を高圧給水系統に送り込む給水ポンプ、
16は給水調整弁、11はボイラへの給水配管で
ある。 The conventional configuration around the deaerator of a steam power plant and its operation method will be explained with reference to FIG. A deaerator 1 in a steam power generation plant receives extracted steam from a steam turbine 2 via an extracted steam pipe 8 having a check valve 9, condensate from a low pressure feed water heater 3 via a condensate pipe 10, and high pressure feed water. Drain water flows from the heater 4 through the drain pipes 12, respectively. Of these, the amount of turbine bleed steam is not controlled and flows due to the differential pressure between the bleed point pressure of the steam turbine 2 and the internal pressure of the deaerator 1, and the drain water from the high pressure feed water heater 4 also flows into the high pressure feed water heater 4. It flows in due to the differential pressure between the pressure inside the deaerator 1 and the pressure inside the deaerator 1. On the other hand, the condensate flowing through the condensate pipe 10 is controlled by the water level control device 14 to control the opening degree of the condensate flow rate regulating valve 15 based on the water level signal from the water level detector 13 attached to the deaerator 1. The flow rate is adjusted and the water level in the deaerator 1 is controlled. In addition, 5 is a condenser, 6a is a condensate pump, 6b is a booster pump, 7 is a water supply pump that sends the water held in the deaerator to the high-pressure water supply system,
16 is a water supply regulating valve, and 11 is a water supply pipe to the boiler.
上述の如く、一般の脱気器1の運用は、その保
有水の水位制御のみについて行われており、この
ことは、現在の発電プラントにおける定常運転及
び通常の負荷変化率での運転ではさほど大きな問
題とはならない。しかし、今後負荷変化率がます
ます大きくなるにつれて急速負荷減少時にタービ
ン抽気蒸気が確保できなくなるといつた問題が生
じるおそれがある。即ち、第2図Aに示す如く、
通常の負荷減少時の脱気器特性は、抽気点圧力P1
の減少に追従して脱気器内圧力P2も減少するもの
であり、このため、抽気蒸気量Fが確保されてい
るので問題はない。しかし、これに対し、第2図
Bの如く、急速に負荷を減少する場合には、脱気
器内圧力P2が抽気点圧力P1に追従しきれなくな
り、例えば時間約10%の時点で脱気器内圧力P2が
抽気点圧力P1よりも高くなり、前記逆止弁9が閉
じて抽気蒸気量Fが零になつてしまう。 As mentioned above, the general deaerator 1 is operated only to control the water level of its retained water, which is not very important in steady operation and normal load change rate in current power plants. Not a problem. However, as the rate of load change becomes larger and larger in the future, there is a risk that problems such as the inability to secure turbine extraction steam during rapid load reduction may occur. That is, as shown in FIG. 2A,
The deaerator characteristic during normal load reduction is the bleed point pressure P 1
The deaerator internal pressure P 2 also decreases following the decrease in , and therefore, there is no problem because the extracted steam amount F is secured. However, if the load is rapidly reduced as shown in Figure 2B, the deaerator internal pressure P2 will no longer be able to follow the bleed point pressure P1 , for example at about 10% of the time. The deaerator internal pressure P2 becomes higher than the extraction point pressure P1 , the check valve 9 closes, and the extraction steam amount F becomes zero.
上述の如く、今後予想される急速負荷減少の場
合には、抽気蒸気が確保できなくなり、脱気器の
脱気性能低下をきたす。また、脱気器内圧力P2と
抽気点圧力P1との差圧が小さい時、脱気器内飽和
水の自己蒸発現象が急激であつたり、逆止弁の応
答が遅かつたり、動作が不良であつたりすると、
脱気器内で発生した自己蒸発蒸気が蒸気タービン
内へ逆流するような現象を引き起こす。このよう
な現象は、発電プラントの運用上、脱気性能低下
と共に非常に重大な事故につながる原因となるお
それがある。 As mentioned above, in the case of a rapid load reduction that is expected in the future, it will no longer be possible to secure bleed steam, resulting in a decline in the degassing performance of the deaerator. In addition, when the differential pressure between the deaerator internal pressure P 2 and the bleed point pressure P 1 is small, the self-evaporation phenomenon of saturated water in the deaerator may be rapid, the response of the check valve may be slow, and the operation of the check valve may be slow. If there is a problem with the
This causes the self-evaporated steam generated in the deaerator to flow back into the steam turbine. Such a phenomenon may lead to a decrease in degassing performance and a very serious accident in the operation of the power plant.
本発明の目的は、急速負荷減少時においても常
に抽気蒸気を確保できる信頼性の高い脱気器運用
が可能となる脱気器の圧力制御方法とその制御装
置を提供することにある。 An object of the present invention is to provide a deaerator pressure control method and a control device thereof, which enable highly reliable deaerator operation that can always ensure extracted steam even during rapid load reduction.
本発明による脱気器の圧力制御方法の特徴とす
るところは、脱気器内保有水の一部を、該脱気器
内圧力よりも低位の圧力を有する機器に送水して
蒸気タービンからの抽気蒸気量と低圧給水加熱器
からの復水流入量の比を小さくすることにより、
脱気器内保有水温度を低下させて抽気蒸気の圧力
よりも脱気器内圧力が常に低くなるように制御
し、これによつて抽気蒸気が確保されるようにし
たことにある。 The feature of the deaerator pressure control method according to the present invention is that part of the water held in the deaerator is sent to a device having a pressure lower than the pressure in the deaerator to remove water from the steam turbine. By reducing the ratio of the amount of extracted steam to the amount of condensate inflow from the low pressure feed water heater,
The purpose is to lower the temperature of the water held in the deaerator to control the pressure in the deaerator to always be lower than the pressure of the extracted steam, thereby ensuring the extracted steam.
また本発明による脱気器の圧力制御装置は、脱
気器内保有水の一部を該脱気器内圧力よりも低位
の圧力を有する機器に送水するドレン配管と、該
ドレン配管に設けられたドレン水量調整弁と、脱
気器内蒸気圧力と抽気蒸気圧力との偏差により前
記ドレン水量調整弁を制御する弁制御装置を備え
たことを特徴とする。 Further, the pressure control device for a deaerator according to the present invention includes a drain pipe that sends a part of the water held in the deaerator to a device having a pressure lower than the pressure inside the deaerator, and a drain pipe provided in the drain pipe. The present invention is characterized in that it includes a drain water amount adjusting valve, and a valve control device that controls the drain water amount adjusting valve based on a deviation between the steam pressure in the deaerator and the bleed steam pressure.
以下本発明の詳細を図面に示す実施例により説
明する。第3図、第4図は本発明の一実施例を示
すもので、第1図と同一符号は同一機能を有する
ものを示す。本実施例においては、脱気器1内の
保有水の一部を脱気器内圧力よりも低圧の機器の
1つである復水器5に送水するドレン配管18を
設け、該ドレン配管にドレン水量調整弁17を設
けると共に、抽気蒸気の圧力と脱気器内蒸気圧力
との偏差によりドレン水量調整弁17を制御する
弁制御装置19とを設け、第2図Bのようにター
ビン抽気圧力P1が脱気器内圧力P2より低下する以
前にドレン水量調整弁17を開き、ドレン配管1
8を介して脱気器1内保有水の一部を復水器5内
に送水することにより、低圧給水加熱器3から復
水配管10を介する脱気器1への復水流入量を増
加させ、抽気蒸気量と復水流入量との比を小さく
し、これにより脱気器1内圧力が抽気蒸気圧力よ
りも常に低くなるように制御する。 The details of the present invention will be explained below with reference to embodiments shown in the drawings. 3 and 4 show an embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate those having the same functions. In this embodiment, a drain pipe 18 is provided to send a part of the water held in the deaerator 1 to the condenser 5, which is one of the devices with a pressure lower than the internal pressure of the deaerator. In addition to providing a drain water amount regulating valve 17, a valve control device 19 is provided that controls the drain water amount regulating valve 17 based on the deviation between the pressure of extracted steam and the steam pressure in the deaerator, and as shown in FIG. 2B, the turbine extracted pressure is adjusted. Before P 1 falls below the deaerator internal pressure P 2 , open the drain water flow adjustment valve 17 and drain the drain pipe 1.
By sending a part of the water held in the deaerator 1 into the condenser 5 through 8, the amount of condensate flowing from the low-pressure feed water heater 3 to the deaerator 1 through the condensate pipe 10 is increased. The deaerator 1 is controlled so that the internal pressure of the deaerator 1 is always lower than the bleed steam pressure by reducing the ratio of the bleed steam amount to the condensate inflow amount.
本実施例においては、抽気蒸気の圧力と脱気器
1内蒸気圧力との偏差を求めるに当り、脱気器内
保有水に温度分布が生じることを考慮し、脱気器
1内圧力のより安全サイドの評価として、脱気器
1の貯水タンク内保有水の温度を温度検出器21
で検出し、第4図に示すように、該温度検出器2
1の出力である温度信号を蒸気圧演算器22で圧
力に換算するようにしている。また、抽気蒸気配
管8における逆止弁9の上流側の圧力を検出する
圧力検出器20を設けて抽気蒸気圧力を求める。 In this example, when calculating the deviation between the pressure of the extracted steam and the steam pressure inside the deaerator 1, we took into consideration the temperature distribution that occurs in the water held in the deaerator, and calculated the difference between the pressure inside the deaerator 1. As a safety evaluation, the temperature of the water held in the water storage tank of the deaerator 1 is measured by the temperature detector 21.
As shown in FIG.
1 is converted into pressure by a vapor pressure calculator 22. Further, a pressure detector 20 is provided to detect the pressure on the upstream side of the check valve 9 in the bleed steam piping 8 to determine the bleed steam pressure.
なお、脱気器1内圧力を求めるに、第5図に示
すように、圧力検出器29を設置して直接的に圧
力を求めるようにしてもよく、この場合には第4
図の例における蒸気圧演算器22は不要となる。 In order to determine the pressure inside the deaerator 1, a pressure detector 29 may be installed to directly determine the pressure as shown in FIG.
The vapor pressure calculator 22 in the illustrated example becomes unnecessary.
また、第4図、第5図の例では、抽気蒸気圧力
P1と脱気器内圧力P2との偏差がある基準レベル以
下であるときにドレン水量調整弁17を開とする
ために、偏差設定器23で基準偏差ΔPを設定
し、加算器24,25によりP2+ΔP−P1=ΔP
−(P1−P2)=PAの演算を行い、該PAの値が正で
ある時に制御器28によりドレン水量調整弁17
をPAの値に応じた開度で開く信号を生じさせる
ようにしている。 In addition, in the examples shown in Figures 4 and 5, the extraction steam pressure
In order to open the drain water amount adjustment valve 17 when the deviation between P 1 and the deaerator internal pressure P 2 is below a certain reference level, the standard deviation ΔP is set with the deviation setting device 23, and the adder 24, 25, P 2 +ΔP−P 1 =ΔP
−(P 1 −P 2 )=P A is calculated, and when the value of P A is positive, the controller 28 controls the drain water amount adjustment valve 17.
A signal is generated to open the valve at an opening degree corresponding to the value of P A.
また、第4図、第5図の例では、ドレン水量調
整弁17を開く必要が生じる場合にのみ制御器2
8から操作信号が得られるように、制御器28の
入力側にリレー等のスイツチ26を設け、第2図
に示したように蒸気タービンの負荷が減少してい
る場合(負荷減少率27が正の場合)には該スイツ
チ26をオンとして前記PAの信号を制御器28
に与え、反対に負荷が増加している場合(負荷減
少率27が負の場合)にはスイツチ26をオフとす
るようにしている。 In addition, in the examples shown in FIGS. 4 and 5, the controller 2
A switch 26 such as a relay is provided on the input side of the controller 28 so that an operation signal can be obtained from the controller 28. ), the switch 26 is turned on and the P A signal is sent to the controller 28.
On the other hand, when the load is increasing (when the load reduction rate 27 is negative), the switch 26 is turned off.
即ちこの例では、圧力偏差があるレベル以下で
かつ負荷が減少している場合にのみドレン水量調
整弁17が開き、圧力偏差がレベル以上又は負荷
が増加している時にはドレン水量調整弁17を閉
じるようにしているのである。 That is, in this example, the drain water flow adjustment valve 17 opens only when the pressure deviation is below a certain level and the load is decreasing, and the drain water flow adjustment valve 17 is closed when the pressure deviation is above a certain level or the load is increasing. That's how I do it.
第6図は本発明の他の実施例を示すもので、逆
止弁9の弁開度又はトルクを検出する検出器30
を設けてP1−P2の偏差信号に相当する信号を求
め、該信号と偏差設定器31からの設定値ΔPと
を加算器32に入力して前記同様のPAの信号を
求めるようにしたものである。本実施例によれ
ば、制御装置の構成が簡略化されるという利点が
ある。 FIG. 6 shows another embodiment of the present invention, in which a detector 30 detects the valve opening degree or torque of the check valve 9.
is provided to obtain a signal corresponding to the deviation signal of P 1 −P 2 , and this signal and the set value ΔP from the deviation setter 31 are input to the adder 32 to obtain the same signal of P A as described above. This is what I did. According to this embodiment, there is an advantage that the configuration of the control device is simplified.
以上述べたように、本発明においては、脱気器
内保有水の一部を、該脱気器内圧力よりも低位の
圧力を有する機器に送水して蒸気タービンからの
抽気蒸気量と低圧給水加熱器からの復水流入量と
の比を小さくすることにより、脱気器内保有水温
度を低下させて抽気蒸気の圧力よりも脱気器内蒸
気圧力が常に低くなるようにしたので、抽気蒸気
を常に確保できるように脱気器を運用することが
可能となる。またこれにより、前述した脱気器内
保有水の自己蒸発蒸気の蒸気タービンへの流入な
どが防止でき、信頼性の高い安定した蒸気発電プ
ラントの運用が可能となる。 As described above, in the present invention, a part of the water held in the deaerator is sent to a device having a pressure lower than the pressure in the deaerator to increase the amount of steam extracted from the steam turbine and the low-pressure water supply. By reducing the ratio to the condensate inflow from the heater, the temperature of the water held in the deaerator is lowered and the steam pressure in the deaerator is always lower than the pressure of the bleed steam. It becomes possible to operate the deaerator so that steam is always available. Moreover, this makes it possible to prevent the aforementioned self-evaporated steam of the water held in the deaerator from flowing into the steam turbine, making it possible to operate the steam power plant in a highly reliable and stable manner.
第1図は従来の蒸気発電プラントにおける脱気
器まわりの系統図、第2図A,Bは負荷減少時の
脱気器の特性の説明図、第3図は本発明の一実施
例を示す脱気器まわりの系統図、第4図ないし第
6図は本発明により制御装置の具体例を示す構成
図である。
1……脱気器、2……蒸気タービン、3……低
圧給水加熱器、5……復水器、7……給水ポン
プ、8……抽気蒸気配管、9……逆止弁、10…
…復水配管、17……ドレン水量調整弁、18…
…ドレン配管、19……弁制御装置、20,29
……圧力検出器、21……温度検出器、22……
蒸気圧演算器、23,31……偏差設定器、26
……スイツチ、30……検出器。
Figure 1 is a system diagram around a deaerator in a conventional steam power plant, Figures 2A and B are explanatory diagrams of the characteristics of the deaerator when the load is reduced, and Figure 3 shows an embodiment of the present invention. The system diagrams around the deaerator, FIGS. 4 to 6, are block diagrams showing specific examples of the control device according to the present invention. DESCRIPTION OF SYMBOLS 1... Deaerator, 2... Steam turbine, 3... Low pressure feed water heater, 5... Condenser, 7... Water feed pump, 8... Steam extraction piping, 9... Check valve, 10...
...Condensate piping, 17...Drain water flow adjustment valve, 18...
...Drain piping, 19...Valve control device, 20, 29
...Pressure detector, 21...Temperature sensor, 22...
Steam pressure calculator, 23, 31... Deviation setting device, 26
...Switch, 30...Detector.
Claims (1)
(ロ)水位検出器を備え、(ハ)上記水位検出器の出力信
号を入力されて復水流量制御弁を開閉作動せしめ
る復水流量調整弁を備え、(ニ)上記復水流量調整弁
を介して、低圧給水加熱器から復水を導入され、
(ホ)高圧給水加熱器のドレンを導入するドレン配管
を備え、(ヘ)蒸気タービンの抽気蒸気を逆止弁を介
して導入する抽気蒸気配管を備え、かつ、(ト)保有
水を給水ポンプによつて高圧側給水系統に送出さ
れる構造の脱気器において、脱気器内保有水の一
部を、該脱気器内圧力よりも低位の圧力を有する
機器に送水して前記蒸気タービンからの抽気蒸気
量と前記低圧給水加熱器からの復水流入量との比
を小さくすることにより、脱気器内保有水温度を
低下させて前記抽気蒸気の圧力よりも該脱気器内
の圧力が常に低くなるように制御することを特徴
とする脱気器の圧力制御方法。 2 (イ)蒸気発電プラントの給水系統に設置され、
(ロ)水位検出器を備え、(ハ)上記水位検出器の出力信
号を入力されて復水流量制御弁を開閉作動せしめ
る復水流量調整弁を備え、(ニ)上記復水流量調整弁
を介して、低圧給水加熱器から復水を導入され、
(ホ)高圧給水加熱器のドレンを導入するドレン配管
を備え、(ヘ)蒸気タービンの抽気蒸気を逆止弁を介
して導入する抽気蒸気配管を備え、かつ、(ト)保有
水を給水ポンプによつて高圧側給水系統に送出さ
れる構造の脱気器において、脱気器内保有水の一
部を該脱気器内圧力よりも低位の圧力を有する機
器に送水するドレン配管と、該ドレン配管に設け
られたドレン水量調整弁と、脱気器内蒸気圧力と
タービン抽気蒸気圧力との偏差により前記ドレン
水量調整弁を制御する弁制御装置とを備えたこと
を特徴とする脱気器の圧力制御装置。 3 前記弁制御装置には、蒸気タービンの負荷減
少時にのみ前記ドレン水量調整弁の操作信号を生
じさせるスイツチを設けたことを特徴とする特許
請求の範囲第2項記載の脱気器の圧力制御装置。 4 前記脱気器内蒸気圧力を検出する手段とし
て、脱気器内保有水温度を検出する温度検出器
と、該温度検出器の出力である温度信号を蒸気圧
信号に換算する蒸気圧演算器とを備えたことを特
徴とする特許請求の範囲第2項記載の脱気器の圧
力制御装置。 5 前記偏差を求める手段として、蒸気タービン
抽気蒸気流路に設けられた逆止弁の開度又はトル
クを検出する検出器を備えたことを特徴とする特
許請求の範囲第2項記載の脱気器の圧力制御装
置。 6 前記弁制御装置には前記偏差のレベルを設定
する偏差設定器を備え、前記偏差が該偏差設定器
により設定された設定値以下となつた場合に前記
ドレン水量調整弁を開とする信号を生じさせる如
く構成したことを特徴とする特許請求の範囲第2
項記載の脱気器の圧力制御装置。 7 前記機器が復水器であることを特徴とする特
許請求の範囲第2項記載の脱気器の圧力制御装
置。[Claims] 1. (a) Installed in the water supply system of a steam power generation plant,
(b) a water level detector; (c) a condensate flow rate adjustment valve that receives the output signal of the water level detector to open and close the condensate flow rate control valve; (d) the condensate flow rate adjustment valve. Condensate is introduced from the low pressure feed water heater through the
(E) Equipped with a drain pipe that introduces the drain of the high-pressure feed water heater, (F) Equipped with an extracted steam pipe that introduces the extracted steam from the steam turbine via a check valve, and (G) Pumps the retained water into the water supply pump. In a deaerator configured to be sent to a high-pressure side water supply system by a deaerator, a part of the water held in the deaerator is sent to a device having a pressure lower than the pressure in the deaerator, and the water is sent to the steam turbine. By reducing the ratio of the amount of steam extracted from the bleed water heater to the amount of condensate flowing in from the low-pressure feed water heater, the temperature of the water held in the deaerator is lowered so that the pressure of the water in the deaerator is lower than the pressure of the bleed steam. A deaerator pressure control method characterized by controlling the pressure so that it is always low. 2 (a) Installed in the water supply system of a steam power plant,
(b) a water level detector; (c) a condensate flow rate adjustment valve that receives the output signal of the water level detector to open and close the condensate flow rate control valve; (d) the condensate flow rate adjustment valve. Condensate is introduced from the low pressure feed water heater through the
(E) Equipped with a drain pipe that introduces the drain of the high-pressure feed water heater, (F) Equipped with an extracted steam pipe that introduces the extracted steam from the steam turbine via a check valve, and (G) Pumps the retained water into the water supply pump. In a deaerator structured to be sent to a high-pressure side water supply system by A deaerator comprising: a drain water volume adjustment valve provided in a drain pipe; and a valve control device that controls the drain water volume adjustment valve based on a deviation between the steam pressure inside the deaerator and the turbine extraction steam pressure. pressure control device. 3. Pressure control of a deaerator according to claim 2, characterized in that the valve control device is provided with a switch that generates an operation signal for the drain water flow adjustment valve only when the load of the steam turbine is reduced. Device. 4. As a means for detecting the steam pressure inside the deaerator, a temperature detector that detects the temperature of water held in the deaerator, and a steam pressure calculator that converts a temperature signal that is the output of the temperature detector into a steam pressure signal. 3. A pressure control device for a deaerator according to claim 2, comprising: 5. Deaeration according to claim 2, characterized in that the means for determining the deviation includes a detector that detects the opening degree or torque of a check valve provided in the steam turbine extraction steam flow path. Pressure control device for the vessel. 6 The valve control device is equipped with a deviation setting device for setting the level of the deviation, and sends a signal to open the drain water flow control valve when the deviation becomes equal to or less than a set value set by the deviation setting device. Claim 2 is characterized in that it is configured to cause
Pressure control device for the deaerator described in Section 1. 7. The deaerator pressure control device according to claim 2, wherein the device is a condenser.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1722380A JPS56115803A (en) | 1980-02-16 | 1980-02-16 | Pressure control for deaerator and its control device |
DE19813105355 DE3105355A1 (en) | 1980-02-16 | 1981-02-13 | Method and device for controlling the pressure in a deaerator arranged in the feed-water line of a steam power station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1722380A JPS56115803A (en) | 1980-02-16 | 1980-02-16 | Pressure control for deaerator and its control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56115803A JPS56115803A (en) | 1981-09-11 |
JPS6154122B2 true JPS6154122B2 (en) | 1986-11-20 |
Family
ID=11937942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1722380A Granted JPS56115803A (en) | 1980-02-16 | 1980-02-16 | Pressure control for deaerator and its control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56115803A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6416908U (en) * | 1987-07-15 | 1989-01-27 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4578354B2 (en) * | 2005-08-30 | 2010-11-10 | 株式会社日立エンジニアリング・アンド・サービス | Waste heat utilization equipment for steam turbine plant |
-
1980
- 1980-02-16 JP JP1722380A patent/JPS56115803A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6416908U (en) * | 1987-07-15 | 1989-01-27 |
Also Published As
Publication number | Publication date |
---|---|
JPS56115803A (en) | 1981-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6154122B2 (en) | ||
JPS6136123B2 (en) | ||
JP2923040B2 (en) | Power plant and water level control method and apparatus | |
JP2575482B2 (en) | Deaerator pressure control system in steam turbine cycle | |
JPS6154121B2 (en) | ||
JP2519282B2 (en) | Deaerator water level control system | |
JP2501347B2 (en) | Nuclear power turbine control device | |
JPS59110810A (en) | Water level control device for steam turbine degasifier | |
JP2574779B2 (en) | Water level control device for feed water heater | |
JPH0423286B2 (en) | ||
JPS5842779Y2 (en) | Control device for condensate system in nuclear power generation equipment | |
JPS61205307A (en) | Water level controller of deaerator | |
JPH0220565Y2 (en) | ||
JPS6246107A (en) | Water-level controller | |
JPS6226648Y2 (en) | ||
JPH0368278B2 (en) | ||
JPS60219404A (en) | Stabilizing device of deaerator output | |
JPH0238844B2 (en) | ||
JPS6128881B2 (en) | ||
JPS61138806A (en) | Steam turbine plant | |
JPS6017604A (en) | Controller for water level of deaerator | |
JPH0337083B2 (en) | ||
JPH0118230Y2 (en) | ||
CN110836697A (en) | Method for detecting water flow in closed pipeline | |
JPH0222360B2 (en) |