JP2002277053A - Hot-water recovery control device for co-generation system - Google Patents

Hot-water recovery control device for co-generation system

Info

Publication number
JP2002277053A
JP2002277053A JP2001073757A JP2001073757A JP2002277053A JP 2002277053 A JP2002277053 A JP 2002277053A JP 2001073757 A JP2001073757 A JP 2001073757A JP 2001073757 A JP2001073757 A JP 2001073757A JP 2002277053 A JP2002277053 A JP 2002277053A
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
heat exchanger
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001073757A
Other languages
Japanese (ja)
Inventor
Masaharu Akazawa
正治 赤澤
Kenji Komiyama
研二 小宮山
Ryuta Masai
竜太 政井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2001073757A priority Critical patent/JP2002277053A/en
Publication of JP2002277053A publication Critical patent/JP2002277053A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To improve the utilizing efficiency of waste heat by simple improvement. SOLUTION: Waste heat from a gas engine 1, connected to a generator 2 so as to be operated in conjunction with the same, is recovered as hot-water in a hot-water recovering circuit 11 by a heat exchanger 4 and is reserved in a hot-water storage tank 9. When a hot-water supplying load is increased and the temperature of hot-water in the hot-water storage tank 9 has become lower than a set temperature for auxiliary heating, a boiler 15 is started to supplement the shortage amount of heat. A position near the supplying place of hot-water from the hot-water recovering circuit 11 of the hot-water storage tank 9 is connected to a place between the hot-water storage tank 9 and the heat exchanger 4 in the hot-water recovering circuit 11 through a third bypass pipeline 39. The flow rate of hot-water from the hot-water storage tank 9 into the hot-water recovering circuit 11 through the bypass pipeline 39 is regulated by a valve mechanism 40. The temperature of waste heat recovering liquid, passed through the heat exchanger 4, is measured by a liquid temperature sensor 41 to control the valve mechanism 40 so as to maintain the temperature of waste heat recovering liquid at a temperature higher than the set temperature for cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジン式発電機
や燃料電池などの熱電併給装置からの排熱を温水として
回収し、その温水を貯湯槽に貯めるとともに給湯などに
利用するように構成したコージェネレーションシステム
の温水回収制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention recovers exhaust heat from a cogeneration system such as an engine generator or a fuel cell as hot water, stores the hot water in a hot water tank and uses it for hot water supply. The present invention relates to a hot water recovery control device for a cogeneration system.

【0002】[0002]

【従来の技術】この種の装置としては、従来、次のよう
なものが知られている。 A.第1従来例 図7の全体概略構成図に示されるように、ガスエンジン
01に発電機02が連動連結されている。ガスエンジン
01には、循環ポンプ03と温水回収用の熱交換器04
と冷却手段05とを介装した排熱回収回路06が接続さ
れている。
2. Description of the Related Art As this type of apparatus, the following is conventionally known. A. First Conventional Example As shown in the overall schematic configuration diagram of FIG. 7, a generator 02 is linked to a gas engine 01. The gas engine 01 includes a circulation pump 03 and a heat exchanger 04 for collecting hot water.
The exhaust heat recovery circuit 06 interposed with the cooling means 05 is connected.

【0003】排熱回収回路06のガスエンジン01から
の出口箇所に排ガス熱交換器07が付設され、その排ガ
ス熱交換器07にガスエンジン01からの排ガスを排出
する排気管08が導入され、エンジン冷却後の排熱回収
液(ジャケット冷却水や特殊溶液)にエンジン排ガスの
熱をも回収するように構成されている。
[0003] An exhaust gas heat exchanger 07 is attached to the exhaust heat recovery circuit 06 at an outlet from the gas engine 01, and an exhaust pipe 08 for discharging exhaust gas from the gas engine 01 is introduced into the exhaust gas heat exchanger 07. The exhaust heat recovery liquid (jacket cooling water or special solution) after cooling also recovers the heat of the engine exhaust gas.

【0004】熱交換器04と、給湯用配管09aを接続
した貯湯タンク09とがポンプ010を付設した温水回
収回路011を介して接続され、熱交換器04で回収し
た排熱により温水を得てその温水を貯湯タンク09に供
給して貯めるように構成されている。
[0004] The heat exchanger 04 and a hot water storage tank 09 to which a hot water supply pipe 09a is connected are connected via a hot water recovery circuit 011 provided with a pump 010, and hot water is obtained by exhaust heat recovered by the heat exchanger 04. The hot water is supplied to the hot water storage tank 09 for storage.

【0005】貯湯タンク09の底部には水を供給する給
水管012が接続されている。また、貯湯タンク09に
は、補助回路用ポンプ013を付設した補助温水回収回
路014を介してボイラー015が接続され、給湯負荷
が増大して、排熱により得られる温水では温水量が不足
するときに貯湯タンク09内の水をボイラー015で加
熱して温水を得るように構成されている。排熱回収回路
06には、熱交換器04と並列に分配流量を調整可能な
第1の三方弁016を介して第1のバイパス配管017
が接続されている。
[0005] A water supply pipe 012 for supplying water is connected to the bottom of the hot water storage tank 09. Further, a boiler 015 is connected to the hot water storage tank 09 via an auxiliary hot water recovery circuit 014 provided with an auxiliary circuit pump 013, so that the hot water supply load increases and the amount of hot water obtained by exhaust heat is insufficient. The water in the hot water storage tank 09 is heated by a boiler 015 to obtain hot water. A first bypass pipe 017 is connected to the exhaust heat recovery circuit 06 via a first three-way valve 016 capable of adjusting the distribution flow rate in parallel with the heat exchanger 04.
Is connected.

【0006】冷却手段05は、分配流量を調整可能な第
2の三方弁018を介して排熱回収回路06に接続され
た第2のバイパス配管019と、第2のバイパス配管0
19に介装された冷却用熱交換器020と、クーリング
タワー021と、冷却用熱交換器020とクーリングタ
ワー021とにわたって接続された冷却回路022とか
ら構成されている。023は、冷却回路022に設けら
れた冷却ポンプを示している。
The cooling means 05 includes a second bypass pipe 019 connected to the exhaust heat recovery circuit 06 via a second three-way valve 018 capable of adjusting a distribution flow rate, and a second bypass pipe 0
19 includes a cooling heat exchanger 020, a cooling tower 021, and a cooling circuit 022 connected across the cooling heat exchanger 020 and the cooling tower 21. Reference numeral 023 denotes a cooling pump provided in the cooling circuit 022.

【0007】貯湯タンク09の中間箇所に、貯湯タンク
09内の温水の温度を測定する湯温センサ024が設け
られている。この湯温センサ024で測定される温水の
温度に基づき、測定温度が温水用設定温度よりも低くな
ったときにポンプ010を駆動して貯湯タンク09内の
温水の温度が温水用設定温度以上になるようにしてい
る。
A hot water temperature sensor 024 for measuring the temperature of the hot water in the hot water storage tank 09 is provided at an intermediate position of the hot water storage tank 09. Based on the temperature of the hot water measured by the hot water temperature sensor 024, when the measured temperature is lower than the set temperature for hot water, the pump 010 is driven to raise the temperature of the hot water in the hot water storage tank 09 to the set temperature for hot water. I am trying to become.

【0008】また、ポンプ010の駆動後において、湯
温センサ024で測定される温水の温度が温水用設定温
度よりも低い補助加熱用設定温度よりも低くなったとき
に補助回路用ポンプ013およびボイラー015を起動
し、貯湯タンク09内の温水の温度が温水用設定温度以
上になるように、かつ、補助加熱用設定温度よりも低い
下限温度になったときに、ポンプ010の駆動を停止す
るようにしている。更に、湯温センサ024で測定され
る温水の温度に基づき、貯湯タンク09内の温水の温度
が温水用設定温度になるように第1の三方弁016の分
配流量を調整し、熱交換器04に流す流量を調整するよ
うにしている。
After the pump 010 is driven, when the temperature of the hot water measured by the hot water temperature sensor 024 becomes lower than the auxiliary heating set temperature lower than the hot water set temperature, the auxiliary circuit pump 013 and the boiler 015 is started, and the driving of the pump 010 is stopped when the temperature of the hot water in the hot water storage tank 09 becomes equal to or higher than the set temperature for hot water and when the lower temperature becomes lower than the set temperature for auxiliary heating. I have to. Further, based on the temperature of the hot water measured by the hot water temperature sensor 024, the distribution flow rate of the first three-way valve 016 is adjusted so that the temperature of the hot water in the hot water storage tank 09 becomes the set temperature for hot water. To adjust the flow rate.

【0009】排熱回収回路06の、熱交換器04および
第1のバイパス配管017との接続箇所よりも上流側箇
所と、循環ポンプ03に近いかつそれよりも上流側箇所
とが、そこを流れる排熱回収液の温度に応じて分配流量
を調整可能なグリス弁025および分岐配管026を介
して接続され、ガスエンジン01に供給される排熱回収
液の温度が冷却用設定温度よりも低くならないようにし
ている。
A portion of the exhaust heat recovery circuit 06 upstream of the connection between the heat exchanger 04 and the first bypass pipe 017 and a portion of the exhaust heat recovery circuit 06 closer to and upstream of the circulation pump 03 flow therethrough. Connected via a grease valve 025 and a branch pipe 026 capable of adjusting the distribution flow rate according to the temperature of the exhaust heat recovery liquid, the temperature of the exhaust heat recovery liquid supplied to the gas engine 01 does not become lower than the cooling set temperature. Like that.

【0010】B.第2従来例 この第2従来例の場合、第1従来例と異なっているのは
次の通りである。すなわち、図8の全体概略構成図に示
されるように、貯湯タンク09に代えて、仕切り031
によって水補給槽032と給湯槽033とに区画された
貯湯槽034が用いられている。
B. Second Conventional Example The second conventional example differs from the first conventional example in the following. That is, as shown in the overall schematic configuration diagram of FIG.
A hot water storage tank 034 partitioned into a water supply tank 032 and a hot water supply tank 033 is used.

【0011】水補給槽032に給水管035が接続され
るとともに、温水回収回路011および補助温水回収回
路014それぞれの取り出し側が接続されている。一
方、給湯槽033には、給湯用配管09aと、温水回収
回路011および補助温水回収回路014それぞれの温
水供給側が接続されている。そして、給湯槽033に、
貯湯槽034内の温水の温度を測定する湯温センサ02
4が設けられている。他の構成、ならびに制御動作は第
1従来例と同じであり、同一図番を付してその説明は省
略する。
[0011] A water supply pipe 035 is connected to the water supply tank 032, and the hot water recovery circuit 011 and the auxiliary hot water recovery circuit 014 are connected to their respective outlets. On the other hand, the hot water supply tank 033 is connected to a hot water supply pipe 09 a and a hot water supply side of a hot water recovery circuit 011 and an auxiliary hot water recovery circuit 014. And in hot water tank 033,
Hot water temperature sensor 02 that measures the temperature of hot water in hot water storage tank 034
4 are provided. Other configurations and control operations are the same as those of the first conventional example, and the same reference numerals are assigned and description thereof will be omitted.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記第
1および第2従来例のいずれにおいても、入浴などのた
めに給湯負荷が増大する時間帯とか冬場などにあって、
給湯負荷が増大したときに、次のような問題を生じる欠
点があった。
However, in both of the first and second conventional examples, there are times when the hot water supply load is increased due to bathing or the like, or in winter.
When the hot water supply load increases, there is a disadvantage that the following problem occurs.

【0013】すなわち、給湯負荷の増大に伴って補給さ
れる水量が増し、湯温センサ024で測定される、貯湯
タンク09や給湯槽033内の温度が低下し、ポンプ0
10を駆動して熱交換器04から温水を供給しても給湯
負荷の増大に追いつかず、貯湯タンク09や給湯槽03
3内の温度が低下し、補助回路用ポンプ013およびボ
イラー015が早期に起動し、排熱の利用効率が低下し
てエネルギーの消費ロスを生じる欠点があった。
That is, the amount of water to be replenished increases with an increase in the hot water supply load, and the temperature in the hot water storage tank 09 and the hot water tank 033 measured by the hot water temperature sensor 024 decreases.
10 does not catch up with the increase in hot water supply load even if hot water is supplied from the heat exchanger 04, and the hot water storage tank 09 or the hot water tank 03
3 has a disadvantage that the auxiliary circuit pump 013 and the boiler 015 start up early, the exhaust heat utilization efficiency is reduced, and energy consumption is lost.

【0014】また、給湯負荷の増大時には、熱交換器0
4での排熱回収量が増大し、それに伴ってガスエンジン
01に供給される排熱回収液の温度が低下し、その結
果、グリス弁025に流れる排熱回収液の温度が冷却用
設定温度よりも低くなり、熱交換器04に流される排熱
回収液の量が減少し、このことも補助回路用ポンプ01
3およびボイラー015が早期に起動する要因となって
いた。
When the hot water supply load increases, the heat exchanger 0
4, the temperature of the exhaust heat recovery liquid supplied to the gas engine 01 decreases, and as a result, the temperature of the exhaust heat recovery liquid flowing to the grease valve 025 becomes the cooling set temperature. And the amount of the exhaust heat recovery liquid flowing to the heat exchanger 04 is reduced.
3 and the boiler 015 were the cause of early activation.

【0015】本発明は、このような事情に鑑みてなされ
たものであって、簡単な改良によって排熱の利用効率を
向上できるようにすることを目的とする。
The present invention has been made in view of such circumstances, and has as its object to make it possible to improve the efficiency of waste heat utilization by simple improvement.

【0016】[0016]

【課題を解決するための手段】本発明は、上述のような
目的を達成するために、電気と熱とを発生する熱電併給
装置と、前記熱電併給装置からの排熱回収液を循環流動
して前記熱電併給装置を冷却する排熱回収回路と、前記
排熱回収回路に設けられる熱交換器と、前記熱交換器に
供給される排熱の温度が排熱用設定温度以下になったこ
とを検知して前記熱交換器への排熱回収液の供給量を制
御して前記熱電併給装置に供給する排熱回収液の温度を
冷却用設定温度に維持する冷却温度維持手段と、前記排
熱回収回路の前記熱交換器よりも下流側に設けられる冷
却手段と、温水を貯める貯湯槽と、前記貯湯槽内に水を
供給する給水管と、前記熱交換器で回収した排熱により
温水を得てその温水を前記貯湯槽に供給するポンプを付
設した温水回収回路と、補助加熱手段と、前記貯湯槽内
の温水の温度を測定する湯温測定手段と、前記湯温測定
手段で測定される温水の温度が温水用設定温度よりも低
くなったときに前記ポンプを駆動する排熱回収制御手段
と、前記ポンプの駆動後に前記湯温測定手段で測定され
る温水の温度が前記温水用設定温度よりも低い補助加熱
用設定温度よりも低くなったときに前記補助加熱手段を
起動する補助加熱制御手段とを備えたコージェネレーシ
ョンシステムの温水回収制御装置であって、前記貯湯槽
の前記温水回収回路からの温水供給箇所に近い位置と、
前記温水回収回路の前記貯湯槽と前記熱交換器との間の
箇所とをバイパス配管を介して接続するとともに、前記
バイパス配管を通じて前記貯湯槽からの温水を前記温水
回収回路に流す流量を調整する弁機構を設け、前記排熱
回収回路の前記熱交換器と前記冷却手段との間に排熱回
収液の温度を測定する液温センサを設け、前記液温セン
サで測定される排熱回収液の温度を冷却用設定温度以上
に維持するように前記弁機構を制御する低温化抑制制御
手段を設けて構成する。
SUMMARY OF THE INVENTION In order to achieve the above objects, the present invention provides a combined heat and power supply for generating electricity and heat, and circulates and discharges the waste heat recovery liquid from the combined heat and power supply. An exhaust heat recovery circuit that cools the cogeneration system, a heat exchanger provided in the exhaust heat recovery circuit, and a temperature of exhaust heat supplied to the heat exchanger is equal to or lower than a set temperature for exhaust heat. Cooling temperature maintaining means for controlling the supply amount of the waste heat recovery liquid to the heat exchanger to maintain the temperature of the waste heat recovery liquid supplied to the cogeneration device at a set temperature for cooling; A cooling means provided downstream of the heat exchanger in the heat recovery circuit, a hot water storage tank for storing hot water, a water supply pipe for supplying water into the hot water storage tank, and hot water recovered by the exhaust heat recovered by the heat exchanger. And a hot water recovery circuit provided with a pump for supplying the hot water to the hot water storage tank. Auxiliary heating means, hot water temperature measuring means for measuring the temperature of hot water in the hot water storage tank, and the pump when the temperature of the hot water measured by the hot water temperature measuring means becomes lower than the set temperature for hot water. Exhaust heat recovery control means for driving the auxiliary water heater when the temperature of the hot water measured by the hot water temperature measuring means after driving the pump becomes lower than the auxiliary heating set temperature lower than the hot water set temperature. A hot water recovery control device for a cogeneration system including auxiliary heating control means for activating a heating means, and a position near a hot water supply point from the hot water recovery circuit of the hot water storage tank,
A portion of the hot water recovery circuit between the hot water tank and the heat exchanger is connected via a bypass pipe, and a flow rate of hot water from the hot water tank to the hot water recovery circuit through the bypass pipe is adjusted. A valve mechanism, a liquid temperature sensor for measuring a temperature of the exhaust heat recovery liquid between the heat exchanger and the cooling means of the exhaust heat recovery circuit, and an exhaust heat recovery liquid measured by the liquid temperature sensor. And a low-temperature suppression control means for controlling the valve mechanism so as to maintain the temperature at or above the cooling set temperature.

【0017】[0017]

【作用】本発明のコージェネレーションシステムの温水
回収制御装置の構成によれば、給湯負荷の増大に起因し
て熱交換器での排熱回収量が増加し、熱交換器を出た後
の排熱回収液の温度が冷却用設定温度よりも低くなる
と、そのことを液温センサにより感知し、低温化抑制制
御手段が作動して弁機構を制御し、バイパス配管を通じ
て貯湯槽からの温水を温水回収回路に流す流量を調整す
る。このとき、温水回収回路から貯湯槽に供給する温水
を、その貯湯槽ヘの温水供給箇所に近い位置からバイパ
ス配管に流し、温度が高い状態の温水を熱交換器に戻し
て熱交換器で回収する熱量を減少し、熱電併給装置に供
給される排熱回収液の温度が低下することを抑制すると
ともに、熱電併給装置から熱交換器に供給される排熱回
収液の温度が低下することを抑制する。これに伴い、温
水回収回路から貯湯槽に供給する温水の温度低下を抑制
し、湯温測定手段で測定する貯湯槽内の温水の温度が補
助加熱用設定温度よりも低くなるタイミングを遅らせ、
補助加熱手段の起動時間を可及的に短くすることができ
る。
According to the configuration of the hot water recovery control device of the cogeneration system of the present invention, the amount of waste heat recovered in the heat exchanger increases due to the increase in the hot water supply load, and the waste heat after leaving the heat exchanger is increased. When the temperature of the heat recovery liquid becomes lower than the set temperature for cooling, the temperature is sensed by the liquid temperature sensor, the low-temperature suppression control means operates to control the valve mechanism, and the hot water from the hot water storage tank is heated through the bypass pipe. Adjust the flow rate to the recovery circuit. At this time, the hot water supplied from the hot water recovery circuit to the hot water tank flows into the bypass pipe from a position near the hot water supply point to the hot water tank, and the high temperature hot water is returned to the heat exchanger and collected by the heat exchanger. The amount of heat to be reduced is reduced, and the temperature of the waste heat recovery liquid supplied to the combined heat and power supply device is suppressed from decreasing, and the temperature of the waste heat recovery liquid supplied from the combined heat and power supply to the heat exchanger is reduced. Suppress. Along with this, the temperature of the hot water supplied from the hot water recovery circuit to the hot water tank is suppressed, and the timing at which the temperature of the hot water in the hot water tank measured by the hot water temperature measuring means becomes lower than the auxiliary heating set temperature is delayed,
The starting time of the auxiliary heating means can be shortened as much as possible.

【0018】[0018]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0019】図1は、本発明に係るコージェネレーショ
ンシステムの温水回収制御装置の第1実施例を示す全体
概略構成図であり、ガスエンジン1に発電機2が連動連
結されている。ガスエンジン1には、循環ポンプ3と温
水回収用の熱交換器4と冷却手段5とを介装した排熱回
収回路6が接続されている。
FIG. 1 is an overall schematic diagram showing a first embodiment of a hot water recovery control device for a cogeneration system according to the present invention. A generator 2 is connected to a gas engine 1 in an interlocking manner. The gas engine 1 is connected to an exhaust heat recovery circuit 6 in which a circulation pump 3, a heat exchanger 4 for recovering hot water, and a cooling means 5 are interposed.

【0020】排熱回収回路6のガスエンジン1からの出
口箇所に排ガス熱交換器7が付設され、その排ガス熱交
換器7にガスエンジン1からの排ガスを排出する排気管
8が導入され、エンジン冷却後の排熱回収液にエンジン
排ガスの熱をも回収するように構成されている。
An exhaust gas heat exchanger 7 is provided at an outlet of the exhaust heat recovery circuit 6 from the gas engine 1, and an exhaust pipe 8 for discharging exhaust gas from the gas engine 1 is introduced into the exhaust gas heat exchanger 7. The exhaust heat recovery liquid after cooling also recovers the heat of the engine exhaust gas.

【0021】熱交換器4と、給湯用配管9aを接続した
貯湯タンク9とがポンプ10を付設した温水回収回路1
1を介して接続され、熱交換器4で回収した排熱により
温水を得てその温水を貯湯タンク9に供給して貯めるよ
うに構成されている。
A hot water recovery circuit 1 having a pump 10 and a heat exchanger 4 and a hot water storage tank 9 connected to a hot water supply pipe 9a.
1, hot water is obtained by exhaust heat recovered by the heat exchanger 4, and the hot water is supplied to the hot water storage tank 9 and stored therein.

【0022】貯湯タンク9の底部には水を供給する給水
管12が接続されている。また、貯湯タンク9には、補
助回路用ポンプ13を付設した補助温水回収回路14を
介してボイラー15が接続され、給湯負荷が増大して、
排熱により得られる温水では温水量が不足するときに貯
湯タンク9内の水をボイラー15で加熱して温水を得る
ように構成されている。排熱回収回路6には、熱交換器
4と並列に分配流量を調整可能な第1の三方弁16を介
して第1のバイパス配管17が接続されている。
A water supply pipe 12 for supplying water is connected to the bottom of the hot water storage tank 9. Further, a boiler 15 is connected to the hot water storage tank 9 via an auxiliary hot water recovery circuit 14 provided with an auxiliary circuit pump 13, so that the hot water supply load increases.
When the amount of hot water obtained by exhaust heat is insufficient, the water in the hot water storage tank 9 is heated by the boiler 15 to obtain hot water. A first bypass pipe 17 is connected to the exhaust heat recovery circuit 6 via a first three-way valve 16 capable of adjusting a distribution flow rate in parallel with the heat exchanger 4.

【0023】冷却手段5は、分配流量を調整可能な第2
の三方弁18を介して排熱回収回路6に接続された第2
のバイパス配管19と、第2のバイパス配管19に介装
された冷却用熱交換器20と、クーリングタワー21
と、冷却用熱交換器20とクーリングタワー21とにわ
たって接続された冷却回路22とから構成されている。
23は、冷却回路22に設けられた冷却ポンプを示して
いる。
The cooling means 5 is provided with a second adjustable flow rate.
Connected to the exhaust heat recovery circuit 6 through the three-way valve 18 of FIG.
, A cooling heat exchanger 20 interposed in the second bypass pipe 19, and a cooling tower 21.
And a cooling circuit 22 connected across the cooling heat exchanger 20 and the cooling tower 21.
Reference numeral 23 denotes a cooling pump provided in the cooling circuit 22.

【0024】貯湯タンク9の中間箇所に、貯湯タンク9
内の温水の温度を測定する湯温センサ24が設けられて
いる。この湯温センサ24で測定される温水の温度に基
づき、貯湯タンク9内の温水の温度が温水用設定温度に
なるように第1の三方弁16の分配流量を調整し、熱交
換器4に流す流量を調整できるようになっている。
In the middle of the hot water storage tank 9, the hot water storage tank 9
A hot water temperature sensor 24 for measuring the temperature of hot water in the inside is provided. Based on the temperature of the hot water measured by the hot water temperature sensor 24, the distribution flow rate of the first three-way valve 16 is adjusted so that the temperature of the hot water in the hot water storage tank 9 becomes the set temperature for hot water. The flow rate can be adjusted.

【0025】排熱回収回路6の、熱交換器4および第1
のバイパス配管17との接続箇所よりも上流側箇所と、
循環ポンプ3に近いかつそれよりも上流側箇所とが、そ
こを流れる排熱回収液の温度に応じて分配流量を調整可
能なグリス弁25および分岐配管26を介して接続さ
れ、ガスエンジン1に供給される排熱回収液の温度が冷
却用設定温度(例えば、60℃)よりも低くならないよう
に冷却温度維持手段が構成されている。
The heat exchanger 4 and the first heat exchanger 4 of the exhaust heat recovery circuit 6
A point upstream of the point of connection with the bypass pipe 17;
A portion close to and upstream of the circulation pump 3 is connected to the gas engine 1 through a grease valve 25 and a branch pipe 26 capable of adjusting the distribution flow rate according to the temperature of the exhaust heat recovery liquid flowing therethrough. The cooling temperature maintaining means is configured so that the temperature of the supplied waste heat recovery liquid does not become lower than a cooling set temperature (for example, 60 ° C.).

【0026】すなわち、グリス弁25が、温度変化によ
って体積を膨張収縮するワックス液を封入したいわゆる
ダイアフラム弁であり、グリス弁25を流れる排熱回収
液の温度が設定下限温度(例えば、60℃)より高くなる
に伴って、熱交換器4側に流れる排熱回収液の量を増加
させ、設定上限温度(例えば、70℃)以上で排熱回収液
の全量が熱交換器4側に流れるように構成されている。
一方、排熱回収液の温度が設定下限温度より低くなった
ときには、排熱回収液の全量を分岐配管26を通じてガ
スエンジン1に供給するようになっている。冷却温度維
持手段を構成するのに、上記グリス弁25に代えて、例
えば、分配流量を調整可能な三方弁とか、互いに連動し
て開度を調整可能に熱交換器4側と分岐配管26とに流
量調整弁を設けるとともに排熱回収回路6のガスエンジ
ン1への供給箇所に温度センサを設け、温度センサで測
定される温度に応じて三方弁や流量調整弁の開度を調整
するようにしても良い。
That is, the grease valve 25 is a so-called diaphragm valve in which a wax liquid whose volume expands and contracts due to a change in temperature is sealed, and the temperature of the exhaust heat recovery liquid flowing through the grease valve 25 is set to a lower limit temperature (for example, 60 ° C.). As the temperature becomes higher, the amount of the exhaust heat recovery liquid flowing to the heat exchanger 4 side is increased, so that the entire amount of the exhaust heat recovery liquid flows to the heat exchanger 4 side at or above the set upper limit temperature (for example, 70 ° C.). Is configured.
On the other hand, when the temperature of the exhaust heat recovery liquid becomes lower than the set lower limit temperature, the entire amount of the exhaust heat recovery liquid is supplied to the gas engine 1 through the branch pipe 26. In order to constitute the cooling temperature maintaining means, instead of the grease valve 25, for example, a three-way valve capable of adjusting the distribution flow rate or the heat exchanger 4 side and the branch pipe 26 capable of adjusting the opening in conjunction with each other are used. And a temperature sensor is provided at a point of supply of the exhaust heat recovery circuit 6 to the gas engine 1 so that the opening of the three-way valve or the flow control valve is adjusted according to the temperature measured by the temperature sensor. May be.

【0027】排熱回収回路6の第2の三方弁18より下
流側箇所に排熱回収液の温度を測定する冷却用液温セン
サ27が設けられ、この冷却用液温センサ27と第2の
三方弁18とが連動され、ガスエンジン1に供給される
排熱回収液の温度が冷却用設定温度に維持されるように
冷却用熱交換器20に流す排熱回収液の量を自動的に調
整するようになっている。冷却手段5に供給される排熱
回収液の温度が冷却用設定温度以下のときには、排熱回
収液の全量が冷却用熱交換器20に流されずにガスエン
ジン1に供給される。
A cooling liquid temperature sensor 27 for measuring the temperature of the exhaust heat recovery liquid is provided at a position downstream of the second three-way valve 18 of the exhaust heat recovery circuit 6, and the cooling liquid temperature sensor 27 and the second The amount of the exhaust heat recovery liquid flowing to the cooling heat exchanger 20 is automatically adjusted so that the three-way valve 18 is linked and the temperature of the exhaust heat recovery liquid supplied to the gas engine 1 is maintained at the set temperature for cooling. Adjustments are made. When the temperature of the exhaust heat recovery liquid supplied to the cooling means 5 is equal to or lower than the cooling set temperature, the entire amount of the exhaust heat recovery liquid is supplied to the gas engine 1 without flowing through the cooling heat exchanger 20.

【0028】図2のブロック図に示すように、湯温セン
サ24がコントローラ28に接続され、コントローラ2
8にポンプ10、補助回路用ポンプ13およびボイラー
15それぞれが接続されている。
As shown in the block diagram of FIG. 2, the hot water temperature sensor 24 is connected to the controller 28,
8, a pump 10, an auxiliary circuit pump 13 and a boiler 15 are connected to each other.

【0029】コントローラ28には、第1および第2の
比較手段29,30とポンプ停止手段31とポンプ駆動
手段32とから成る排熱回収制御手段33と、第2、第
3および第4の比較手段30,34,35と補助回路用
ポンプ・ボイラー停止手段36と補助回路用ポンプ・ボ
イラー駆動手段37とから成る補助加熱制御手段38と
が備えられている。
The controller 28 includes first and second comparing means 29 and 30, a pump stopping means 31 and a pump driving means 32, and an exhaust heat recovery controlling means 33, and second, third and fourth comparing means. An auxiliary heating control means 38 comprising means 30, 34, 35, an auxiliary circuit pump / boiler stopping means 36, and an auxiliary circuit pump / boiler driving means 37 is provided.

【0030】第1の比較手段29では、湯温センサ24
で測定される温水の温度と上限温度(例えば、60℃)と
を比較し、測定温度が上限温度を越えたときには、ポン
プ停止手段31に停止信号を出力して、ポンプ10の駆
動を停止するようになっている。第2の比較手段30で
は、湯温センサ24で測定される温水の温度と温水用設
定温度(例えば、50℃)とを比較し、測定温度が温水用
設定温度よりも低くなったときには、ポンプ駆動手段3
2に駆動信号を出力して、ポンプ10を駆動するように
なっている。また、測定温度が温水用設定温度よりも高
くなったときには、補助回路用ポンプ・ボイラー停止手
段35に停止信号を出力して補助回路用ポンプ13およ
びボイラー15の駆動を停止するようになっている。こ
れらにより、貯湯タンク9内の温水の温度が温水用設定
温度以上になるように排熱回収制御手段33が構成され
ている。
In the first comparing means 29, the hot water temperature sensor 24
Is compared with the upper limit temperature (for example, 60 ° C.), and when the measured temperature exceeds the upper limit temperature, a stop signal is output to the pump stop means 31 to stop driving the pump 10. It has become. The second comparing means 30 compares the temperature of the hot water measured by the hot water temperature sensor 24 with the set temperature for hot water (for example, 50 ° C.), and when the measured temperature is lower than the set temperature for hot water, Drive means 3
2 to output a drive signal to drive the pump 10. When the measured temperature is higher than the set temperature for hot water, a stop signal is output to the auxiliary circuit pump / boiler stopping means 35 to stop driving the auxiliary circuit pump 13 and the boiler 15. . Thus, the exhaust heat recovery control means 33 is configured so that the temperature of the hot water in the hot water storage tank 9 becomes equal to or higher than the set temperature for hot water.

【0031】第3の比較手段34では、湯温センサ24
で測定される温水の温度と補助加熱用設定温度(例え
ば、45℃)とを比較し、測定温度が補助加熱用設定温度
よりも低くなったときには、補助回路用ポンプ・ボイラ
ー駆動手段36に駆動信号を出力して補助回路用ポンプ
13およびボイラー15を駆動するようになっている。
第4の比較手段35では、湯温センサ24で測定される
温水の温度と下限温度(例えば、40℃)とを比較し、測
定温度が下限温度よりも低くなったときには、ポンプ停
止手段31に停止信号を出力してポンプ10の駆動を停
止するようになっている。
In the third comparing means 34, the hot water temperature sensor 24
Is compared with the set temperature for auxiliary heating (for example, 45 ° C.). When the measured temperature is lower than the set temperature for auxiliary heating, the auxiliary circuit pump / boiler driving means 36 is driven. A signal is output to drive the auxiliary circuit pump 13 and the boiler 15.
The fourth comparing means 35 compares the temperature of the hot water measured by the hot water temperature sensor 24 with the lower limit temperature (for example, 40 ° C.), and when the measured temperature is lower than the lower limit temperature, the pump stopping means 31 The drive of the pump 10 is stopped by outputting a stop signal.

【0032】補助回路用ポンプ13およびボイラー15
を駆動した後においては、前述のように、測定温度が温
水用設定温度よりも高くなるに伴って、補助回路用ポン
プ・ボイラー停止手段35に停止信号を出力して補助回
路用ポンプ13およびボイラー15の駆動を停止するよ
うになっており、これらにより、給湯負荷の増大時など
にあって、排熱によって得られる温水量で給湯に必要な
熱量が不足する場合に、その不足分の熱量をボイラー1
5によって補充するように補助加熱制御手段と37が構
成されている。
Auxiliary circuit pump 13 and boiler 15
Is driven, as described above, as the measurement temperature becomes higher than the set temperature for hot water, a stop signal is output to the auxiliary circuit pump / boiler stop means 35 to output the auxiliary circuit pump 13 and the boiler. In this way, when the amount of heat required for hot water supply is insufficient with the amount of hot water obtained by exhaust heat, for example, when the load of hot water supply is increased, the amount of heat for the shortage is reduced. Boiler 1
A supplementary heating control means and 37 are configured to be supplemented by 5.

【0033】上記構成により、図3のタイムチャートに
示すように、例えば、初期に貯湯タンク9内に55℃の温
水が貯められているとして、給湯に伴って温度が低下
し、温水用設定温度50℃まで低下するとポンプ10が駆
動して排熱回収によって得られた温水を貯湯タンク9に
供給する。ところが、給湯負荷増大時には、温水の供給
が給湯量に追いつかず、温度が低下していく。
With the above configuration, as shown in the time chart of FIG. 3, for example, assuming that hot water of 55 ° C. is initially stored in the hot water storage tank 9, the temperature decreases with hot water supply, and the set temperature for hot water is reduced. When the temperature drops to 50 ° C., the pump 10 is driven to supply hot water obtained by exhaust heat recovery to the hot water storage tank 9. However, when the hot water supply load increases, the supply of hot water cannot keep up with the hot water supply amount, and the temperature decreases.

【0034】補助加熱用設定温度45℃まで低下するに伴
い、補助回路用ポンプ13およびボイラー15を駆動す
る。駆動直後ではボイラー15から温水が供給されない
ため、温度が下限温度40℃以下に低下していく。その下
限温度40℃以下になった時点でポンプ10の駆動を停止
する。ボイラー15から温水が供給されるようになる
と、温度が上昇する。そして、温水用設定温度50℃にな
るに伴って、補助回路用ポンプ13およびボイラー15
の駆動を停止する。その停止直後は温度が上昇するが、
給湯を続けると、温度が低下する。この低下により、温
水用設定温度50℃まで低下するとポンプ10が駆動して
排熱回収によって得られた温水を貯湯タンク9に供給す
る。
As the auxiliary heating temperature drops to 45 ° C., the auxiliary circuit pump 13 and the boiler 15 are driven. Immediately after the driving, the hot water is not supplied from the boiler 15, so that the temperature decreases to the lower limit temperature of 40 ° C. or lower. When the lower limit temperature becomes 40 ° C. or less, the drive of the pump 10 is stopped. When hot water is supplied from the boiler 15, the temperature rises. Then, as the set temperature for hot water reaches 50 ° C., the auxiliary circuit pump 13 and the boiler 15
Stop driving. Immediately after the stop, the temperature rises,
Continued hot water supply lowers the temperature. Due to this decrease, when the set temperature for hot water drops to 50 ° C., the pump 10 is driven to supply hot water obtained by exhaust heat recovery to the hot water storage tank 9.

【0035】給湯負荷が減少すると、温度が上昇に転ず
る。上限温度60℃まで上昇すると、ポンプ10の駆動を
停止する。このようにして、所望温度範囲での給湯を行
えるようになっている。
When the hot water supply load decreases, the temperature starts to increase. When the temperature reaches the upper limit temperature of 60 ° C., the drive of the pump 10 is stopped. In this way, hot water can be supplied in a desired temperature range.

【0036】貯湯タンク9の温水回収回路11からの温
水供給箇所に近い位置と、温水回収回路11の貯湯タン
ク9と熱交換器4との間の箇所とが第3のバイパス配管
39と弁機構40とを介して接続されている。弁機構4
0は、第3のバイパス配管39を通じて貯湯タンク9か
らの温水を温水回収回路11に流す流量を調整するよう
に三方弁で構成されている。この弁機構40としては、
第3のバイパス配管39および温水回収回路11それぞ
れに流量調整弁を設け、その開度を互いに反比例するよ
うに調整するように構成しても良い。
The position of the hot water storage tank 9 close to the hot water supply location from the hot water recovery circuit 11 and the location between the hot water storage tank 9 and the heat exchanger 4 of the hot water recovery circuit 11 are the third bypass pipe 39 and the valve mechanism. 40. Valve mechanism 4
Numeral 0 is a three-way valve that adjusts the flow rate of hot water from the hot water storage tank 9 to the hot water recovery circuit 11 through the third bypass pipe 39. As the valve mechanism 40,
A flow rate control valve may be provided in each of the third bypass pipe 39 and the hot water recovery circuit 11, and the openings may be adjusted so as to be inversely proportional to each other.

【0037】排熱回収回路6の熱交換器4と冷却手段5
との間で第2のバイパス配管19よりも下流側箇所に、
排熱回収液の温度を測定する液温センサ41が設けられ
ている。この液温センサ41と弁機構40とが連動さ
れ、液温センサ41で測定される排熱回収液の温度が低
いほど貯湯タンク9から第3のバイパス配管39に流れ
る温水量が多くなるように、すなわち、排熱回収液の温
度を冷却用設定温度以上に維持するように弁機構40を
制御するように低温化抑制制御手段が構成されている。
The heat exchanger 4 and the cooling means 5 of the exhaust heat recovery circuit 6
At a location downstream of the second bypass pipe 19 between
A liquid temperature sensor 41 for measuring the temperature of the exhaust heat recovery liquid is provided. The liquid temperature sensor 41 and the valve mechanism 40 are linked so that the lower the temperature of the exhaust heat recovery liquid measured by the liquid temperature sensor 41, the larger the amount of hot water flowing from the hot water storage tank 9 to the third bypass pipe 39. That is, the low-temperature suppression control means is configured to control the valve mechanism 40 so as to maintain the temperature of the exhaust heat recovery liquid at or above the cooling set temperature.

【0038】この構成により、給湯負荷が増大したとき
に、温水回収回路11から貯湯タンク9に供給する温水
を、その貯湯タンク9ヘの温水供給箇所に近い位置から
第3のバイパス配管39に流し、温度が高い状態の温水
を熱交換器4に戻して熱交換器4で回収する熱量を減少
し、ガスエンジン1に供給される排熱回収液の温度が低
下することを抑制するとともに、ガスエンジン1から熱
交換器4に供給される排熱回収液の温度が低下すること
を抑制する。これに伴い、温水回収回路11から貯湯タ
ンク9に供給する温水の温度低下を抑制し、湯温センサ
24で測定する貯湯タンク9内の温水の温度が補助加熱
用設定温度よりも低くなるタイミングを遅らせ、補助回
路用ポンプ13およびボイラー15の起動時間を可及的
に短くして排熱の利用効率を向上し、省エネルギー性を
向上できるようになっている。
With this configuration, when the hot water supply load increases, the hot water supplied from the hot water recovery circuit 11 to the hot water storage tank 9 flows from the position near the hot water supply point to the hot water storage tank 9 to the third bypass pipe 39. Returning the hot water having a high temperature to the heat exchanger 4 to reduce the amount of heat recovered by the heat exchanger 4 and suppressing the temperature of the waste heat recovery liquid supplied to the gas engine 1 from decreasing, The temperature of the exhaust heat recovery liquid supplied from the engine 1 to the heat exchanger 4 is prevented from lowering. Accordingly, a decrease in the temperature of the hot water supplied from the hot water recovery circuit 11 to the hot water storage tank 9 is suppressed, and the timing at which the temperature of the hot water in the hot water storage tank 9 measured by the hot water temperature sensor 24 becomes lower than the auxiliary heating set temperature is set. By delaying the starting time of the auxiliary circuit pump 13 and the boiler 15 as much as possible, the efficiency of waste heat utilization is improved, and the energy saving is improved.

【0039】図4は、本発明に係るコージェネレーショ
ンシステムの温水回収制御装置の第2実施例を示す全体
概略構成図であり、第1実施例と異なるところは次の通
りである。すなわち、貯湯タンク9に代えて、仕切り5
1によって水補給槽52と給湯槽53とに区画された上
部開放型の貯湯槽54が用いられている。
FIG. 4 is an overall schematic configuration diagram showing a second embodiment of the hot water recovery control device of the cogeneration system according to the present invention. The difference from the first embodiment is as follows. That is, instead of the hot water storage tank 9, the partition 5
An open-top hot water storage tank 54 divided into a water supply tank 52 and a hot water supply tank 53 by 1 is used.

【0040】水補給槽52に給水管55が接続されると
ともに、温水回収回路11および補助温水回収回路14
それぞれの取り出し側が接続されている。一方、給湯槽
53には、給湯用配管9aと、温水回収回路11および
補助温水回収回路14それぞれの温水供給端が開口され
ている。そして、給湯槽53に、貯湯槽54内の温水の
温度を測定する湯温センサ24が設けられている。
A water supply pipe 55 is connected to the water supply tank 52, and the hot water recovery circuit 11 and the auxiliary hot water recovery circuit 14 are connected.
Each take-out side is connected. On the other hand, the hot water supply tank 53 is provided with a hot water supply pipe 9a and hot water supply terminals of the hot water recovery circuit 11 and the auxiliary hot water recovery circuit 14, respectively. The hot water tank 53 is provided with a hot water temperature sensor 24 for measuring the temperature of the hot water in the hot water storage tank 54.

【0041】給湯槽53の底部、すなわち、温水回収回
路11からの温水供給箇所に近い位置と、温水回収回路
11の水補給槽52と熱交換器4との間の箇所とが第3
のバイパス配管39と弁機構40とを介して接続されて
いる。他の構成、ならびに制御動作は第1実施例と同じ
であり、同一図番を付してその説明は省略する。
The bottom of the hot water supply tank 53, that is, the position near the hot water supply point from the hot water recovery circuit 11, and the point between the water supply tank 52 and the heat exchanger 4 of the hot water recovery circuit 11 are the third.
Are connected via a bypass pipe 39 and a valve mechanism 40. Other configurations and control operations are the same as those of the first embodiment, and the same reference numerals are assigned and the description will be omitted.

【0042】この第2実施例によれば、給湯負荷が増大
したときに、温水回収回路11から給湯槽53に供給す
る温水を、その給湯槽53ヘの温水供給箇所に近い位置
から第3のバイパス配管39に流し、温度が高い状態の
温水を熱交換器4に戻して熱交換器4で回収する熱量を
減少し、前述第1実施例と同様に、補助回路用ポンプ1
3およびボイラー15の起動時間を可及的に短くして排
熱の利用効率を向上し、省エネルギー性を向上できるよ
うになっている。
According to the second embodiment, when the hot water supply load increases, the hot water supplied from the hot water recovery circuit 11 to the hot water tank 53 is supplied from the position near the hot water supply point to the hot water tank 53 to the third position. The hot water in a high temperature state is returned to the heat exchanger 4 by flowing into the bypass pipe 39 to reduce the amount of heat recovered in the heat exchanger 4.
The startup time of the boiler 3 and the boiler 15 is shortened as much as possible, so that the efficiency of waste heat utilization is improved, and the energy saving is improved.

【0043】図5は、本発明に係るコージェネレーショ
ンシステムの温水回収制御装置の第3実施例を示す全体
概略構成図であり、第1実施例と異なるところは次の通
りである。すなわち、貯湯タンク9に代えて、上部開放
型の貯湯槽61が用いられ、この貯湯槽61の底部側で
内周壁に近い位置で温水回収回路11および補助温水回
収回路14それぞれの温水供給端が開口され、貯湯槽6
1の底部側で旋回流動させながら温水を供給するように
なっている。一方、給水管62の供給端は、貯湯槽61
の上下方向中間箇所で開口されている。
FIG. 5 is an overall schematic configuration diagram showing a third embodiment of the hot water recovery control device of the cogeneration system according to the present invention. The difference from the first embodiment is as follows. That is, an open-top hot water storage tank 61 is used instead of the hot water storage tank 9, and the hot water supply ends of the hot water recovery circuit 11 and the auxiliary hot water recovery circuit 14 are located at a position near the inner peripheral wall at the bottom of the hot water storage tank 61. Opened, hot water tank 6
The hot water is supplied while swirling and flowing on the bottom side of 1. On the other hand, the supply end of the water supply pipe 62 is
Is opened at an intermediate point in the vertical direction.

【0044】貯湯槽61の底部、すなわち、温水回収回
路11からの温水供給箇所に近い位置と、温水回収回路
11の貯湯槽61と熱交換器4との間の箇所とが第3の
バイパス配管39と弁機構40とを介して接続されてい
る。他の構成、ならびに制御動作は第1実施例と同じで
あり、同一図番を付してその説明は省略する。
The bottom of the hot water storage tank 61, that is, a position close to the hot water supply point from the hot water recovery circuit 11, and a point between the hot water storage tank 61 and the heat exchanger 4 of the hot water recovery circuit 11 are the third bypass piping. 39 and the valve mechanism 40 are connected. Other configurations and control operations are the same as those of the first embodiment, and the same reference numerals are assigned and the description will be omitted.

【0045】この第3実施例によれば、給湯負荷が増大
したときに、温水回収回路11から貯湯槽61に供給す
る温水を、その貯湯槽61ヘの温水供給箇所に近い位置
から第3のバイパス配管39に流し、温度が高い状態の
温水を熱交換器4に戻して熱交換器4で回収する熱量を
減少し、前述第1実施例と同様に、補助回路用ポンプ1
3およびボイラー15の起動時間を可及的に短くして排
熱の利用効率を向上し、省エネルギー性を向上できるよ
うになっている。
According to the third embodiment, when the hot water supply load increases, the hot water supplied from the hot water recovery circuit 11 to the hot water storage tank 61 is supplied from the position near the hot water supply point to the hot water storage tank 61 to the third position. The hot water in a high temperature state is returned to the heat exchanger 4 by flowing into the bypass pipe 39 to reduce the amount of heat recovered in the heat exchanger 4.
The startup time of the boiler 3 and the boiler 15 is shortened as much as possible, so that the efficiency of waste heat utilization is improved, and the energy saving is improved.

【0046】図6は、本発明に係るコージェネレーショ
ンシステムの温水回収制御装置の第4実施例を示す全体
概略構成図であり、第1実施例と異なるところは次の通
りである。すなわち、排熱源として、ガスエンジン1に
代えて燃料電池71が用いられ、その燃料電池71と排
熱回収回路6とが排熱回収用熱交換器72を介して接続
されている。他の構成、ならびに制御動作は第1実施例
と同じであり、同一図番を付してその説明は省略する。
FIG. 6 is an overall schematic configuration diagram showing a fourth embodiment of a hot water recovery control device for a cogeneration system according to the present invention. The difference from the first embodiment is as follows. That is, a fuel cell 71 is used instead of the gas engine 1 as an exhaust heat source, and the fuel cell 71 and the exhaust heat recovery circuit 6 are connected via the exhaust heat recovery heat exchanger 72. Other configurations and control operations are the same as those of the first embodiment, and the same reference numerals are assigned and the description will be omitted.

【0047】上述のように、本発明としては、ガスエン
ジン1に発電機2を連動連結したエンジン式発電機や燃
料電池71など、要するに熱と電気を発生する熱電併給
装置を用いたコージェネレーションシステムに適用でき
る。
As described above, the present invention relates to a cogeneration system using a cogeneration system that generates heat and electricity, such as an engine type generator in which a generator 2 is connected to a gas engine 1 and a fuel cell 71. Applicable to

【0048】上記実施例では、湯温センサ24で貯湯タ
ンク9や貯湯槽54,61内の温水の温度を測定し、そ
の測定温度をコントローラ28に入力して、排熱回収制
御手段33および補助加熱制御手段38を構成している
が、例えば、サーミスタなどのように、特定の温度のみ
を検知する温度センサを複数個用い、それぞれに対応し
てポンプ10や補助回路用ポンプ13およびボイラー1
5を制御するようにしても良く、それらの温度センサや
湯温センサ24などをして湯温測定手段と総称する。
In the above embodiment, the temperature of the hot water in the hot water storage tank 9 and the hot water storage tanks 54 and 61 is measured by the hot water temperature sensor 24, and the measured temperature is inputted to the controller 28, and the exhaust heat recovery control means 33 and the auxiliary The heating control means 38 comprises a plurality of temperature sensors, such as a thermistor, for detecting only a specific temperature, and the pump 10, the auxiliary circuit pump 13 and the boiler 1
5 may be controlled, and the temperature sensor and the hot water temperature sensor 24 are collectively referred to as hot water temperature measuring means.

【0049】前述第1および第4実施例における貯湯タ
ンク9や第2および第3実施例における貯湯槽54,6
1などをして貯湯槽と総称する。
The hot water storage tank 9 in the first and fourth embodiments and the hot water storage tanks 54 and 6 in the second and third embodiments.
1 and so on are collectively referred to as hot water storage tanks.

【0050】また、本発明としては、補助回路用ポンプ
13と補助温水回収回路14とボイラー15とから成る
構成に代えて、電気ヒータを用いても良く、それらをし
て補助加熱手段と総称する。上記電気ヒータを用いる場
合には、補助回路用ポンプ・ボイラー停止手段36を通
電停止手段として、通電停止手段から電気ヒータに通電
停止信号を出力して電気ヒータによる加熱を停止し、補
助回路用ポンプ・ボイラー駆動手段37を通電手段とし
て、通電手段から電気ヒータに通電信号を出力して電気
ヒータによる加熱を行うように構成すれば良い。
According to the present invention, an electric heater may be used instead of the auxiliary circuit pump 13, auxiliary hot water recovery circuit 14, and boiler 15, and these are collectively referred to as auxiliary heating means. . When the electric heater is used, the auxiliary circuit pump / boiler stopping means 36 serves as a power supply stopping means, and outputs a power supply stop signal to the electric heater from the power supply stopping means to stop heating by the electric heater. The boiler driving means 37 may be used as an energizing means, and an energizing signal may be output from the energizing means to the electric heater to perform heating by the electric heater.

【0051】[0051]

【発明の効果】以上説明したように、本発明のコージェ
ネレーションシステムの温水回収制御装置によれば、貯
湯槽と温水回収回路との間にバイパス配管と弁機構とを
設けるとともに、その弁機構を排熱回収回路の熱交換器
と冷却手段との間の排熱回収液の温度に基づいて制御す
るように構成するだけでありながら、補助加熱手段の起
動時間を可及的に短くするから、簡単な改良によって排
熱の利用効率を向上でき、省エネルギー性を向上でき
る。
As described above, according to the hot water recovery control device of the cogeneration system of the present invention, the bypass pipe and the valve mechanism are provided between the hot water tank and the hot water recovery circuit, and the valve mechanism is provided. Since it is only configured to control based on the temperature of the exhaust heat recovery liquid between the heat exchanger of the exhaust heat recovery circuit and the cooling means, the startup time of the auxiliary heating means is shortened as much as possible. By simple improvement, the utilization efficiency of waste heat can be improved, and energy saving can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施例のコージェネレーショ
ンシステムの温水回収制御装置を示す全体概略構成図で
ある。
FIG. 1 is an overall schematic configuration diagram illustrating a hot water recovery control device of a cogeneration system according to a first embodiment of the present invention.

【図2】制御系を示すブロック図である。FIG. 2 is a block diagram showing a control system.

【図3】制御動作を示すタイムチャートである。FIG. 3 is a time chart showing a control operation.

【図4】本発明に係る第2実施例のコージェネレーショ
ンシステムの温水回収制御装置を示す全体概略構成図で
ある。
FIG. 4 is an overall schematic configuration diagram showing a hot water recovery control device of a cogeneration system according to a second embodiment of the present invention.

【図5】本発明に係る第3実施例のコージェネレーショ
ンシステムの温水回収制御装置を示す全体概略構成図で
ある。
FIG. 5 is an overall schematic configuration diagram showing a hot water recovery control device of a cogeneration system according to a third embodiment of the present invention.

【図6】本発明に係る第4実施例のコージェネレーショ
ンシステムの温水回収制御装置を示す全体概略構成図で
ある。
FIG. 6 is an overall schematic configuration diagram showing a hot water recovery control device of a cogeneration system according to a fourth embodiment of the present invention.

【図7】第1従来例を示す全体概略構成図である。FIG. 7 is an overall schematic configuration diagram showing a first conventional example.

【図8】第2従来例を示す全体概略構成図である。FIG. 8 is an overall schematic configuration diagram showing a second conventional example.

【符号の説明】[Explanation of symbols]

1…ガスエンジン(熱電併給装置) 2…発電機(熱電併給装置) 4…熱交換器 5…冷却手段 6…排熱回収回路 9…貯湯タンク(貯湯槽) 10…ポンプ 11…温水回収回路 12…給水管 13…補助回路用ポンプ(補助加熱手段) 14…補助温水回収回路(補助加熱手段) 15…ボイラー(補助加熱手段) 24…湯温センサ(湯温測定手段) 33…排熱回収制御手段 38…補助加熱制御手段 39…第3のバイパス配管(バイパス配管) 40…弁機構 41…液センサ 54…貯湯槽 61…貯湯槽 71…燃料電池(熱電併給装置) DESCRIPTION OF SYMBOLS 1 ... Gas engine (cogeneration unit) 2 ... Generator (cogeneration unit) 4 ... Heat exchanger 5 ... Cooling means 6 ... Exhaust heat recovery circuit 9 ... Hot water storage tank (hot water storage tank) 10 ... Pump 11 ... Hot water recovery circuit 12 ... water supply pipe 13 ... pump for auxiliary circuit (auxiliary heating means) 14 ... auxiliary hot water recovery circuit (auxiliary heating means) 15 ... boiler (auxiliary heating means) 24 ... hot water temperature sensor (hot water temperature measuring means) 33 ... exhaust heat recovery control Means 38 Auxiliary heating control means 39 Third bypass pipe (bypass pipe) 40 Valve mechanism 41 Liquid sensor 54 Hot water tank 61 Hot water tank 71 Fuel cell (cogeneration unit)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気と熱とを発生する熱電併給装置と、 前記熱電併給装置からの排熱回収液を循環流動して前記
熱電併給装置を冷却する排熱回収回路と、 前記排熱回収回路に設けられる熱交換器と、 前記熱交換器に供給される排熱回収液の温度が排熱用設
定温度以下になったことを検知して前記熱交換器への排
熱回収液の供給量を制御して前記熱電併給装置に供給す
る排熱回収液の温度を冷却用設定温度に維持する冷却温
度維持手段と、 前記排熱回収回路の前記熱交換器よりも下流側に設けら
れる冷却手段と、 温水を貯める貯湯槽と、 前記貯湯槽内に水を供給する給水管と、 前記熱交換器で回収した排熱により温水を得てその温水
を前記貯湯槽に供給するポンプを付設した温水回収回路
と、 補助加熱手段と、 前記貯湯槽内の温水の温度を測定する湯温測定手段と、 前記湯温測定手段で測定される温水の温度が温水用設定
温度よりも低くなったときに前記ポンプを駆動するとと
もに上限温度になったときに前記ポンプの駆動を停止す
る排熱回収制御手段と、 前記ポンプの駆動後に前記湯温測定手段で測定される温
水の温度が前記温水用設定温度よりも低い補助加熱用設
定温度よりも低くなったときに前記補助加熱手段を起動
する補助加熱制御手段とを備えたコージェネレーション
システムの温水回収制御装置であって、 前記貯湯槽の前記温水回収回路からの温水供給箇所に近
い位置と、前記温水回収回路の前記貯湯槽と前記熱交換
器との間の箇所とをバイパス配管を介して接続するとと
もに、前記バイパス配管を通じて前記貯湯槽からの温水
を前記温水回収回路に流す流量を調整する弁機構を設
け、前記排熱回収回路の前記熱交換器と前記冷却手段と
の間に排熱回収液の温度を測定する液温センサを設け、
前記液温センサで測定される排熱回収液の温度を冷却用
設定温度以上に維持するように前記弁機構を制御する低
温化抑制制御手段を設けたことを特徴とするコージェネ
レーションシステムの温水回収制御装置。
A heat and power supply device that generates electricity and heat; a heat and heat recovery circuit that circulates and flows the waste heat recovery liquid from the heat and power supply device to cool the heat and power supply device; A heat exchanger provided in the heat exchanger, and a supply amount of the waste heat recovery liquid to the heat exchanger by detecting that a temperature of the waste heat recovery liquid supplied to the heat exchanger has become equal to or lower than a set temperature for exhaust heat. Cooling temperature maintaining means for controlling the temperature of the exhaust heat recovery liquid supplied to the cogeneration system to the set temperature for cooling, and cooling means provided downstream of the heat exchanger in the exhaust heat recovery circuit A hot water storage tank for storing hot water, a water supply pipe for supplying water into the hot water tank, and a hot water provided with a pump for obtaining hot water by exhaust heat recovered by the heat exchanger and supplying the hot water to the hot water storage tank A recovery circuit; an auxiliary heating means; and a temperature of the hot water in the hot water storage tank. Hot water temperature measuring means for measuring, and driving the pump when the temperature of the hot water measured by the hot water temperature measuring means is lower than the set temperature for hot water, and driving the pump when the temperature reaches the upper limit temperature. The exhaust heat recovery control means to be stopped; and the auxiliary heating when the temperature of the hot water measured by the hot water temperature measuring means after driving the pump becomes lower than the auxiliary heating set temperature lower than the hot water set temperature. A hot water recovery control device for a cogeneration system, comprising: auxiliary heating control means for activating means; a position of the hot water storage tank close to a hot water supply point from the hot water recovery circuit; and the hot water storage tank of the hot water recovery circuit. And a point between the heat exchanger and the heat exchanger via a bypass pipe, and adjusts a flow rate of hot water from the hot water storage tank to the hot water recovery circuit through the bypass pipe. A valve mechanism which is provided, the liquid temperature sensor for measuring the temperature of the exhaust heat recovery fluid between said cooling means and the heat exchanger of the heat recovery circuit is provided,
A cogeneration system for recovering hot water, comprising: a low-temperature suppression control unit that controls the valve mechanism so that the temperature of the exhaust heat recovery liquid measured by the liquid temperature sensor is maintained at or above a cooling set temperature. Control device.
JP2001073757A 2001-03-15 2001-03-15 Hot-water recovery control device for co-generation system Pending JP2002277053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073757A JP2002277053A (en) 2001-03-15 2001-03-15 Hot-water recovery control device for co-generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073757A JP2002277053A (en) 2001-03-15 2001-03-15 Hot-water recovery control device for co-generation system

Publications (1)

Publication Number Publication Date
JP2002277053A true JP2002277053A (en) 2002-09-25

Family

ID=18931136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073757A Pending JP2002277053A (en) 2001-03-15 2001-03-15 Hot-water recovery control device for co-generation system

Country Status (1)

Country Link
JP (1) JP2002277053A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT412670B (en) * 2003-02-17 2005-05-25 Vaillant Gmbh Heating system uses a fuel cell heater that has a bypass line with a three way valve to regulate the temperature in the water return line
KR100673611B1 (en) 2006-02-07 2007-01-24 주식회사 루텍 Heat recovery system of cogeneration
JP2008208704A (en) * 2007-02-23 2008-09-11 Sharp Corp Wall assembly, hot water supply system and building
JP2011052915A (en) * 2009-09-02 2011-03-17 Daikin Industries Ltd Hot water supply system
EP2722595A1 (en) 2012-10-16 2014-04-23 Honda Motor Co., Ltd. Cogeneration apparatus
KR101450559B1 (en) 2008-08-26 2014-10-14 엘지전자 주식회사 Co-generation system and a method of the same
JP2016097049A (en) * 2014-11-21 2016-05-30 株式会社東京洗染機械製作所 Thermal energy reuse system for industrial washing machine
JP2016133271A (en) * 2015-01-20 2016-07-25 大阪瓦斯株式会社 Heat supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT412670B (en) * 2003-02-17 2005-05-25 Vaillant Gmbh Heating system uses a fuel cell heater that has a bypass line with a three way valve to regulate the temperature in the water return line
KR100673611B1 (en) 2006-02-07 2007-01-24 주식회사 루텍 Heat recovery system of cogeneration
JP2008208704A (en) * 2007-02-23 2008-09-11 Sharp Corp Wall assembly, hot water supply system and building
JP4597197B2 (en) * 2007-02-23 2010-12-15 シャープ株式会社 Wall materials and hot water systems and buildings
KR101450559B1 (en) 2008-08-26 2014-10-14 엘지전자 주식회사 Co-generation system and a method of the same
JP2011052915A (en) * 2009-09-02 2011-03-17 Daikin Industries Ltd Hot water supply system
JP2014080904A (en) * 2012-10-16 2014-05-08 Honda Motor Co Ltd Cogeneration apparatus
EP2722595A1 (en) 2012-10-16 2014-04-23 Honda Motor Co., Ltd. Cogeneration apparatus
US9413206B2 (en) 2012-10-16 2016-08-09 Honda Motor Co., Ltd. Cogeneration apparatus
JP2016097049A (en) * 2014-11-21 2016-05-30 株式会社東京洗染機械製作所 Thermal energy reuse system for industrial washing machine
JP2016133271A (en) * 2015-01-20 2016-07-25 大阪瓦斯株式会社 Heat supply system
WO2016117220A1 (en) * 2015-01-20 2016-07-28 大阪瓦斯株式会社 Heat supply system
US10544945B2 (en) 2015-01-20 2020-01-28 Osaka Gas Co., Ltd. Heat supply system

Similar Documents

Publication Publication Date Title
US8180499B2 (en) Power supply system
US6290142B1 (en) Cogeneration apparatus
US8286423B2 (en) Cogeneration system
JP2002317697A (en) Exhaust heat recovering device of engine
JP2001123885A (en) Exhaust heat recover device for engine
JP2005061711A (en) Exhaust heat recovering water heater
JP2009103418A (en) Cogeneration system
JP2007255775A (en) Hybrid type hot water supply apparatus
JP2002277053A (en) Hot-water recovery control device for co-generation system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
US11616242B2 (en) Method for controlling fuel cell
JP5513178B2 (en) Bath bathing equipment
KR20150026170A (en) Variable flow rate control solar heat system with coil contained heat storage tank
JP2006052902A (en) Cogeneration system
JP4133628B2 (en) Cogeneration system
JP2007248008A (en) Cogeneration system and its operation method
JP2007064518A (en) Cogeneration system
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JP2003343916A (en) Cogeneration system
JP3916489B2 (en) Hot water cogeneration system
JP2008128556A (en) Cogeneration system
JP4688430B2 (en) Hot water supply system
JPH09112801A (en) Pressured fluidized bed boiler generating system
JPH0132913B2 (en)
JPH11201559A (en) Hot water supply apparatus utilizing solar heat